

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTION FORM

Course Title	Flexible Manufacturing System										
Course Code	BC006										
Course Structure	Lectures	Tutorials	Practicals	Credits							
Course Structure	3 - 3										
Course	G Naveen Kumar Associate Professor										
Coordinator											
Team of	-										
Instructors											

I. COURSE OVERVIEW

Flexible Manufacturing Engineering is a sub discipline of mechanical engineering, and optical engineering concerned with designing machines, fixtures, and other structures that have exceptionally low tolerances, are repeatable, and are stable over time. These approaches have applications in machine tools.

II. PREREQUISITE(S)

Level	Credits	Periods/ Week	Prerequisites
PG	3	3	Operations Research, Production planning Control

III. MARKS DISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks
Flexible Manufacturing Systems	70 Marks	30 Marks	100 Marks

Semester End Examination 70 Marks All the Units (1, 2, 3, 4 and 5)	70 Marks (3 Hours)	5 questions to be answered. Each question carries 14 Marks
--	-----------------------	---

		Contin	nuous Internal Assessment (C	CIA) – 1		
			Continuous Internal	Part - A		
			Examination (CIE)	5 questions to be answered		
			(2 hours)	out of 5 questions, each		
	30 Marks	Units	[4 questions to be answered	carries 1 mark.		
	(2 Hours)	I, II and	out of 5 questions from	Part - B		
		III (half)	Part- A & B]	4 questions each carry 5		
				marks.		
			Tashaisal Causinan and			
Average of two			Term Deper	5 marks		
CIA Examinations			Term raper	J marks		
		Contin	(CIA) – 2			
			Continuous Internal	Part – A		
			Examination (CIE)	5 questions to be answered		
			(2 hours)	out of 5 questions, each		
	30 Marks	Units	[4 questions to be answered	Part - B		
	(2 Hours)	III (half)	out of 5 questions from	4 questions each carry 5		
	(2 110013)	IV and V	Part- A & B]	marks.		
			Technical Seminar and			
			Term Paper	5 marks		

IV. EVALUATION SCHEME

S. No	Component	Duration	Marks
1	CIE - I Examination	25	
2	Technical Seminar and Term Paper	10 minutes seminar and 1000 words document	05
	TOTAL		30
3	CIE - II Examination	2 hour	25
4	Technical Seminar and Term Paper	10 minutes seminar and 1000 words document	05
	TOTAL		30
	CIA Examination marks to be	e considered as average of ab	oove two CIA's
5	EXTERNAL Examination	70	
	GRAND TOTAL		100

V. COURSE OBJECTIVES

The course should enable the students to

- I. Understand of modern trends in design and manufacturing using CAD/CAM
- II. Apply performance analysis techniques.
- III. Understand preventive maintenance procedures in manufacturing.

I. **COURSE OUTCOMES**

At the end of the course the students are able to:

- 1. Apply to plan schedule and control of flexible manufacturing system.
- 2. Understand the FMS components and layouts and plan for FMS layouts.
- 3. Identify the problems encountered and problem solving.
 4. Apply the different modules in FMS software and gain knowledge of interfacing mechanical setup electrical drives.

II. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering Knowledge: Capability to apply knowledge of Mathematics, Science Engineering in the field of Mechanical Engineering	Н	Seminar
PO2	Problem Analysis: An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of Mathematics, Science and Engineering.	Н	Seminar
PO3	Design/ Development of solution: Competence to design a system, component or process to meet societal needs within realistic	S	Projects
PO4	Conduct investigation of complex problems: To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	S	Projects
PO5	Modern Tool usage: An ability to formulate solve complex engineering problems using modern engineering and information technology tools.	S	Projects
PO6	The Engineer society: To utilize the engineering practices, techniques, skills to meet needs of health, safety legal, cultural and societal issues.	Ν	
PO7	Environment and Sustainability: To understand the impact of engineering solution in the societal context and demonstrate the knowledge for sustainable development.	Ν	
PO8	Ethics: An understanding and implementation of professional and Ethical responsibilities.	Ν	
PO9	Individual Team work: To function as an effective individual and as a member or leader in multi-disciplinary environment and adopt in diverse	Ν	
PO10	Communication: An ability to assimilate, comprehends, communicate, give and receive instructions to present effectively with engineering community and society.	Ν	

	Program Outcomes	Level	Proficiency assessed by
PO11	Project Management and Finance: An ability to provide leadership in managing complex engineering project at multi-disciplinary environment and to become a professional engineer.	Ν	
PO12	Life-Long learning: Recognition of the need and an ability to engage in lifelong learning to keep abreast with technological changes.	S	Projects

III. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency assessed by
	Professional Skills: To produce engineering professional capable of		Lectures,
PSO1	synthesizing and analyzing mechanical system including allied engineering	Н	Seminars
	streams.		
PSO2	Design/ Analysis: An ability to adapt and integrate current technologies in	S	Projects
	the design and manufacturing domain to enhance the employability.		
PSO3	Successful Career and Entrepreneurship: To build the nation by imparting technological inputs and managerial skills to become a Technocrats.	S	Guest Lectures

N - None

S - Supportive

H - Highly related

IV. SYLLABUS

UNIT - I FLEXIBLE MANUFACTURING SYSTEM

Introduction: Definitions of manufacturing with input-output model, definition of system, basic problems concerning systems and system design procedure, modes of manufacturing – job/batch/flow and multi- product, small batch manufacturing.

UNIT - II SYSTEM MODELLING ISSUES

System modeling issues: Centralized versus distributed control; Real-time vs discrete event control; Forward vs. backward scheduling approaches with finite/infinite capacity loading; Modeling of absorbing states and deadlocks; Conflicts; Concurrency, and synchronization.

UNIT – III SYSTEM MODELLING TOOLS AND TECHNIQUES

System Modeling Tools and Techniques: Introduction to mathematical modeling, optimization, and simulation; issues related with deterministic and stochastic models.

Continuous and discrete mathematical modeling methods -discrete event, monte carlo method; Basic concepts of Markov chains and processes; The M/M/1 and M/M/m queue; Models of manufacturing systems including transfer lines and flexible manufacturing systems, introduction to Petri nets.

UNIT - IV PERFORMANCE ANALYSIS

Performance Analysis: Transient analysis of manufacturing systems, analysis.

UNIT – V PREVENTATIVE MATAINANCE

Preventive maintenance, Karban system, implementation issues.

TEXT BOOKS

 N. K. Jha, "Hand Book of Flexible Manufacturing Systems", Academic Press, 1st Edition, 2013.
 Talichi Ohno, "Production System beyond Large Scale Production", Toyota Productivity Press India Pvt. Ltd, 1st Edition, 2010.

3. H K Shivanand, "Flexible Manufacturing Systems", New Age International, 1st Edition, 2006.

REFERENCE BOOKS

- 1. Farid Amirouche, "Principles of Computer-Aided Design and Manufacturing, 2nd Edition, 2004.
- 2. P. Radha Krishnan, "CAD/ CAM/ CIM", New Age International, 4th Edition, 2016.

COURSE PLAN

At the end of the course, the students are able to achieve the following course learning outcomes.

Lecture	Course learning outcomes	Topics to be covered	Referenc
No.			e
1 – 3	Understand the basic concepts of FMS	Introduction: Definitions of manufacturing with input-output model, definition of system, basic problems concerning systems.	T1,T2, R1
4-6	Apply the concept of system design procedures to different levels of production.	system design procedure, modes of manufacturing– job/batch/flow and multi- product, small batch manufacturing	T1,T2
7 – 9	Identify the system modeling issues and control them	System modeling issues: Centralized versus distributed control; Real-time vs discrete event control.	T2,T3
10 – 13	Apply the concept of scheduling	Forward vs. backward scheduling approaches with finite/infinite capacity loading; Modeling of absorbing states and deadlocks; Conflicts; Concurrency, and synchronization.	T1,T2
14 – 16	Understand and Apply system modeling techniques	System Modeling Tools and Techniques: Introduction to mathematical modeling, optimization, and simulation; issues related with deterministic and stochastic models.	T1, R1
17 – 20	Distinguish between continuous and discrete modeling techniques	Continuous and discrete mathematical modeling methods -discrete event, monte carlo method; Basic concepts of Markov chains and processes; The M/M/1 and M/M/m queue.	T1
21 – 22	Design models of manufacturing systems	Models of manufacturing systems including transfer lines and flexible manufacturing systems, introduction to Petri nets.	T1
23 – 25	Analysis of performance of manufacturing system	Performance Analysis: Transient analysis of manufacturing systems, analysis.	T1,T2
29 - 35	Understand the preventative maintenance	Preventive maintenance, Karban system, implementation issues.	T1,T2

XI MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course Objectives					P	rogran	n Outo	comes					Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н	Н										S	Н	Н	
II		Н	S		S								S	Н	
III	S	Н	S										Н		S
IV	Н	S											Н	S	
V	Н	S											Н	S	S

S - Supportive

H - Highly related

XII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course		Program Outcomes												Program Specific Outcomes		
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	Н			S									Н	S		
2	S	Н	S									S	Н		S	
3	S	Н			S								S			
4	Н			S								S	S	S		
5	S	Н	S		S							S	Н		S	
6	Н	S		S									S			
7	Н				S							S	Н	S		
8	Н			S									Н	S		
9	S	Н	S									S	Н		S	

S - Supportive

H - Highly related

Prepared by: G. Naveen Kumar, Associate Professor

HOD, ME