

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTION FORM

Course Title	FLIGHT SCHEDULING AND OPERATIONS										
Course Code	A72121	A72121									
Class	IV B. Tech I Semester-R15										
Regulation	R15-JNTUH	R15-JNTUH									
Course Structure	Lectures	Tutorials	Practical's	Credits							
Course Structure	4	4									
Course Coordinator	Ms. M Snigdha, Assis	Ms. M Snigdha, Assistant Professor, Department of Aeronautical Engineering									
Team of Instructors	Ms. M Snigdha, Assis	stant Professor, Dep	artment of Aerona	utical Engineering							

I. COURSE OVERVIEW

The aim is to introduce students the availability of various alternate sources of renewable energy for different day to day applications. The course covers basic principles of each of the source and the related details of equipment for given use. After completion of the course the student gains adequate knowledge to compare different sources of energy for selection and applying economically.

II. **PREREQUISITE**(S)

Level	Credits	Periods	Prerequisite
UG	4	4	Airport Planning And Operations

III. MARKS DISTRIBUTION

Sessional Marks	University End Exam Marks	Total Marks
Mid Semester Test There shall be two midterm examinations. Each midterm examination consists of		
subjective type and objective type tests.		
The subjective test is for 10 marks of 60 minutes duration. Subjective test of shall		
contain 4 questions; the student has to answer 2 questions, each carrying 5 marks.		
The objective type test is for 10 marks of 20 minutes duration. It consists of 10		
Multiple choice and 10 objective type questions, the student has to answer all the		
questions and each carries half mark.	75	100
First midterm examination shall be conducted for the first two and half units of	15	100
syllabus and second midterm examination shall be conducted for the remaining		
portion.		
Assignment		
Five marks are marked for assignments. There shall be two assignments in every		
theory course. Marks shall be awarded considering the average of two		
assignments in each course.		

IV. EVALUATION SCHEME

S No	Component	Duration	Marks
1	I Mid examination	80 minutes	20
2	I Assignment		05
3	II Mid examination	80 minutes	20
4	II Assignment		05
5	External examination	3 hours	75

V. COURSE OBJECTIVES:

The objective of the teacher is to impart knowledge and abilities to the students to:

- I. Discuss airline network flows for minimum and maximum cost flow problem.
- II. Understand mathematical formulation-decision variables, objective function, constraints and methods of solution for airline scheduling.
- III. Understand the importance fleet assignment and crew and manpower scheduling.
- IV. Demonstrate assignment and aircraft boarding strategy.
- V. Understand the common strategies for aircraft boarding.

VI. COURSE OUTCOMES

At the end of the course the students are able to:

- 1. Describe the complexity of airline planning, operations and dispatch.
- 2. Calculate the shortest path flow for minimum cost flow problem.
- 3. Understand the maximum path flow for multi commodity flow problem.
- 4. Analyse the Integer programming models- set covering/ partitioning problems, traveling salesman problem
- 5. Differentiate and analyze the problems in aircraft routing and management for maintenance of regular operations.
- 6. Differentiate and analyze the problems in aircraft routing and management of irregular operations.
- 7. Analyze the role of solution for constructing flight scheduling and operations.
- 8. Evaluate and explain with the block diagram for the time band approximation model
- 9. Analyze the route development and construction phases for flight scheduling process.
- 10. Apply the formulation of crew pairing problem, crew rostering, and crew generators.
- 11. Analyze the gate assignment for different terminal gates and aircraft boarding strategy.
- 12. Discuss fleet assignment pairing for different airlines and crew and manpower scheduling.
- 13. Explain the scheduling construction for economic viability and operations feasibility.
- 14. Explain the levels of handling the passenger flow and distance matrix.
- 15. Calculate the mathematical modeling for the interferences and model description for aisle interferences.

VII. HOW PROGRAM OUTCOMES AREASSESSED

	Program outcomes	Level	Proficiency assessed by
PO1	General knowledge: An ability to apply the knowledge of mathematics, science and Engineering for solving multifaceted issues of Aeronautical Engineering.	S	Assignments
PO2	Problem Analysis: An ability to communicate effectively and to prepare formal technical plans leading to solutions and detailed reports for Aeronautical systems.	Н	Exercise
PO3	Design/Development of solutions : To develop Broad theoretical knowledge in Aeronautical Engineering and learn the methods of applying them to identify, formulate and solve practical problems involving Aerodynamics.	S	Assignments, Discussion
PO4	Conduct investigations of complex problems : An ability to apply the techniques of using appropriate technologies to investigate, analyze, design, simulate and/or fabricate/commission complete systems involving complex aerodynamics flow situations.	S	Exercise
PO5	Modern tool usage : An ability to model real life problems using different hardware and software platforms, both offline and real-time with the help of various tools along with upgraded versions.	-	-
PO6	The engineer and society : An Ability to design and fabricate modules, control systems and relevant processes to meet desired performance needs, within realistic constraints for social needs.	-	-
PO7	Environment and sustainability : An ability To estimate the feasibility, applicability, optimality and future scope of power networks and apparatus for design of eco-friendly with sustainability	-	-
PO8	Ethics : To Possess an appreciation of professional, societal, environmental and ethical issues and proper use of renewable resources	-	-
PO9	Individual and team work : An Ability to design schemes involving signal sensing and processing leading to decision making for real time Aeronautical systems and processes at individual and team levels.	-	-
PO10	Communication : an Ability to work in a team and comprehend his/her scope of work, deliverables, issues and be able to communicate both in verbal, written for effective technical presentation	-	-
PO11	Project management and finance : To be familiar with project management problems and basic financial principles for a multi-disciplinary work.	-	-
PO12	Life-long learning : An ability to align with and upgrade to higher learning and research activities along with engaging in life-long learning.	S	Prototype, Discussions

S – Supportive

H – Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

Program Specific Outcomes	Level	Proficiency assessed by
PSO1 Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products.	Н	Lectures, Assignments
PSO2 Problem solving skills: imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight Vehicles.	S	Tutorials
PSO3 Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies.	S	Seminars and Projects
PSO4 Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats.	-	-

S-Supportive

IX. SYLLABUS

UNIT-I:

NETWORK FLOWS AND INTEGER PROGRAMMING MODELS

Complexity of airline planning, operations and dispatch- need for optimization- role of operations research and simulation. Networks- definitions, network flow models- shortest path problem, minimum cost flow problem, maximum flow problem, multi-commodity problem. Integer programming models- set covering/ partitioning problems, traveling salesman problem- mathematical formulation- decision variables, objective function, constraints, and methods of solution, Solution by simulation.

UNIT-II:

AIRCRAFT ROUTING AND MANAGEMENT OF IRREGULAR OPERATIONS

Goal of aircraft routing- maintenance requirements, other constraints. Routing cycles, route generators. Mathematical models of routing- decision variables, objective functions, alternatives, constraints- flight coverage and aircraft available. Example problems and solutions. The problem statement, the time band approximation model-formulation of the problem-the scenarios- solution.

UNIT-III:

FLIGHT SCHEDULING

Significance of flight scheduling. The route system of the airlines- point-to-point flights, hub and spoke flights.

Schedule construction-operational feasibility, economic viability. Route development and flight scheduling process- load factor and frequency- case study.

UNIT-IV:

FLEET ASSIGNMENT AND CREW AND MANPOWER SCHEDULING

Purpose of fleet assignment. Fleet types, fleet diversity, and fleet availability-performance measures, Formulation of the fleet assignment problem- decision variables, objective function, constraints, and solution. Scenario analysis, fleet assignment models. Crew scheduling process-significance. Development of crew pairing- pairing generators- mathematical formulation of crew pairing problem-methods of solution. Crew rostering- rostering practices. The crew rostering problem-formulation, solutions. Man power scheduling- modeling, formulation of the problem, solutions.

UNIT-V:

GATE ASSIGNMENT AND AIRCRAFT BOARDING STRATEGY

Gate assignment-significance- the problem-levels of handling-passenger flow, distance matrixmathematical formulation, solution. Common strategies for aircraft boarding process, mathematical model, interferences, model description, aisle interferences.

TEXT BOOKS:

1. Bazargan M, "Airline Operations and Scheduling", 2nd edn, Ash gate Publishing Ltd, 2010.

REFERENCES:

- 1. Belobaba P, Odoni, A., Barnhart, C. "The Global Airline Industry", Wiley, 2009.
- 2. Wu, Cheng-Lung, "Airline Operations and Delay Management", Ashgate Publishing Ltd, 2010.
- 3. Wensveen, J.G., "Air Transportation: A Management Perspective", 6th edn, Ashgate Publishing Ltd, 2007.
- 4. Ahuja, R. et al, "Network Flows-Theory, Algorithms and Applications", Prentice-Hall, 1993.
- 5. Yu. G, "Operations Research in Airlines Industry", Academic Publishers, 1998.
- 6. www.airlinestechnology.net

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture	Course Learning	e Learning Topics to be covered								
No	Outcomes									
1-4	Define different types of Programming Models	UNIT I: NETWORK FLOWS AND INTEGER PROGRAMMING MODELS:	T1- 1.1,1.2,1.3							
		Complexity of airline planning, operations and dispatch-								
		need for optimization-role of operations research and								
		simulation								
5-10	Classification of network	Networks-definitions, network flow models- shortest path	T1-							
	flow models	problem, minimum cost flow problem, maximum flow	1.4,1.5,1.6							
		problem, multi-commodity problem								
10-13	Describe integer	Integer programming models-set covering/partitioning	T1-							
	programming models	problems, traveling salesman problem-mathematical	1.7,1.8,1.9							
		formulation-decision variables, objective function,	,1.10							
14.20	Define Douting	UNIT IL AIDCDAET DOUTING, Cool of singulation.	T 1							
14-20	Cycles Routing	maintenance requirements, other constraints, Routing cycles	212223							
	Generators	route generators	.2.4							
	Generators	Touce generators.	,							
20-24	Define flight coverage	Mathematical models of routing-decision variables, objective	T1-							
	and aircraft availability	functions, alternatives, and constraints-flight coverage and	2.5,2.5.1,2							
25.29	Explain the operations of	The problem statement, the time hand approximation model	.J.2,2.J.3, T1 26 27							
23-28	explain the operations of	formulation of the problem the scenarios solution	11-2.0,2.7							
	and recovery	formulation of the problem-the scenarios-solution.								
29-34	Define The Term flight	UNIT III : FLIGHT SCHEDULING Significance off	T1-							
27 51	scheduling and the route	light scheduling. The route system of the airlines-point-to-	3.1.3.2.3.3							
	system of the airlines	point flights, hub and spoke flights	011,012,010							
34-39	Explain schedule	Schedule construction-operational feasibility, economic	T1-3.4							
	construction	viability								
39-42	Discuss route	Route development and flight scheduling process- load factor	T1-3.5,3.6							
	development and flight	and frequency-case study.								
12.15	scheduling process									
42-45	Explain the purpose of	UNIT IV: FLEET ASSIGNMENT AND CREW AND	TI-							
	fleet assignment and	MANPOWER SCHEDULING: Purpose of fleet	4.1,4.2,4.5							
	types fleet diversity	assignment. Fleet types, neet diversity, neet availability-								
	types, neer diversity	problem								
46-48	Explain fleet availability	Decision variables, objective function, constraints, solution.	T1-							
		Scenario analysis, fleet assignment models	4.4,4.5,4.6							
49-53	Explain the process of	Crew scheduling process- significance. Development of crew	T1-							
	crew scheduling	pairing- pairing generators-	5.1,5.2,5.3							
		Mathematical formulation of crew pairing problem- methods								
		of solution.Crew rostering-rostering practices								
54-59	Define crew rostering	The crew rostering problem-formulation, solutions. Man	11-5.4,5.5							
	of solutions	power scheduling-modeling, formulation of the problem,								
60-67	Describe the different	UNIT V. CATE ASSIGNMENT AND AIDCDAET	T1_							
00-07	levels of gate assignment	BOARDING	5.6.5.6.1.5							
		STRATEGY: Gate assignment-significance-the problem-	.6.2							
		levels of handling-passenger flow, distance matrix-								
		mathematical formulation, solution								
68-72	Explain the common	Common strategies for aircraft boarding process,	T1-							
	boarding process of an	mathematical model, interferences, model, description, aisle	5.7,5.7.1,5							
	aircraft	interference.	.1.2							

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM **OUTCOMES AND PROGRAM SPECIFIC OUTCOMES**

Course Objectives	Program Outcomes													Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
Ι	S	Н	S		S							Н	Н				
II														S			
III														Н			
IV	Н				S							Н		Н			
V	S	Н	S	S	S							Н	Н				
		S – S	uppo	rtive			1	1			H - Hi	ighly r	elated				

H - Highly related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM **OUTCOMES AND PROGRAM SPECIFIC OUTCOMES**

Course Outcomes	Program Outcomes												Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
1	Н			S									Н			
2			S											Н		
3					Η										Н	
4		Н											Н			
5			Η	Η											S	
6		Н		Η												
7	Η															
8	Η										Η					
9		Н	Η											Н		
10	Η		Η								Η		Н		S	
11		Η									S		Η			
12	Η		Η												Н	
13		Η									S		Н		Η	
14	Н	S									Η					
15	Η		Η										Н		S	

S – Supportive

H - Highly related

or

HOD, AE