

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	GROU	GROUND IMPROVEMENT TECHNIQUES						
Course Code	ACE50	9						
Programme	B.Tech							
Semester	VIII	VIII CE						
Course Type	Elective	Elective						
Regulation	IARE -	IARE - R16						
			Practica	1				
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits		
	3		-	3	-	-		
Chief Coordinator	Mrs. J.	Hyma	wathi, Assistant P	rofessor		•		
Course Faculty	Mr. Y.	Ravi l	Kumar, Assistant	Professor				

I. COURSE OVERVIEW:

The most common traditional objectives include improvement of the soil and ground for use as a foundation or construction material. The typical Engineering objectives have been: Increasing shear strength, durability, stiffness, stability, mitigating undesirable properties (eg. Shrink/ swell potential, compressibility, modifying permeability, the rate of fluid to flow through a medium; and Improving efficiency and productivity by using methods that save time and expense, The engineer must take a determination on how best to achieve the desired goals required by providing a workable solution for each project encountered. Ground improvement methods have provided adverse choice of approaches to solving these challenges.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	ACE006	IV	Geotechnical Engineering

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Ground Improvement Techniques	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	/	Quiz	/	Assignments	×	MOOCs		
~	LCD / PPT	~	Seminars	×	Mini Project	>	Videos		
×	Open Ended Experiments								

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Manles		
Type of Assessment	CIE Exam	Quiz / AAT	Total Marks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments/ Exams
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Assignments/ Exams
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Assignments/ Videos
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	2	Assignments/ Seminars

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Engineering Knowledge: Graduates shall demonstrate sound	2	Assignments/
	knowledge in analysis, design, construction aspects of civil		Exams
	engineering infrastructure, along with good foundation in		
	mathematics and basic sciences.		
PSO 2	Broadness and Diversity: Graduates will have a broad	-	-
	understanding of economical, environmental, societal, health		
	and safety factors involved in infrastructural development, and		
	shall demonstrate ability to function within multidisciplinary		
	teams with competence in modern tool usage.		
PSO 3	Self-Learning and Service: Graduates will be motivated for	3	Seminars
	continuous self-learning in engineering practice and/or pursue		
	research in advanced areas of civil engineering in order to offer		
	engineering services to the society, ethically and responsibly.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The o	The course should enable the students to:								
I	Identify the types of soils and categorize the problematic soils by in-situ laboratory tests.								
II Design dewatering systems to prevent significant groundwater seepage into the excavation and ensure stability of excavation side slopes.									
III	Modify the ground by different procedures such as admixtures, shotcrete, grouting and ground freezing.								
IV	Apply different methods of soil reinforcement like soil anchors, rock bolts and soil nails in cohesive and granular soils.								

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of
		win have the ability to:	Парреа	Mapping
ACE509.01	CLO 1	Understand the needs and objectives of ground improvement techniques.	PO 1	2
ACE509.02	CLO 2	Identify soil types by performing In Situ and laboratory tests to characterize problematic soils.	PO 1, PO 3	3
ACE509.03	CLO 3	Analyze Mechanical, hydraulic, physic- chemical methods of ground improvement techniques.	PO 1, PO 2	2
ACE509.04	CLO 4	Understand Electrical, Thermal methods, and their applications of ground modification.	PO 1, PO 2	3
ACE509.05	CLO 5	Understand the need for mechanical modification	PO 1	2
ACE509.06	CLO 6	Analyze Deep Compaction techniques	PO 2	3
ACE509.07	CLO 7	Recognize the need for Blasting vibrocompaction	PO 1, PO 3	3
ACE509.08	CLO 8	Understand the objectives and techniques of hydraulic modification.	PO 1	3
ACE509.09	CLO 9	Identify traditional dewatering methods and their choice	PO 1, PO 6	3
ACE509.10	CLO 10	Design of dewatering system and understanding electro-osmosis technique	PO 1, PO 3	2
ACE509.11	CLO 11	Understand Electro kinetic dewatering technique and Filtration technique used in geosynthetics.	PO 1	3
ACE509.12	CLO 12	Analyze drainage and seepage control with geosynthetics.	PO 2	3
ACE509.13	CLO 13	Identify preloading the vertical drains and understand Physical and Chemical Modification of admixtures.	PO 6	3
ACE509.14	CLO 14	Analyze the importance of Shotcreting and Guniting Technology.	PO 1, PO 2	3
ACE509.15	CLO 15	Understand modification at depth by grouting, Crack grouting and compaction grouting	PO 1	3
ACE509.16	CLO 16	Understand Jet grouting technique, Thermal modification, Ground freezing.	PO 1, PO 2	3
ACE509.17	CLO 17	Understand modification by inclusions and confinement	PO 1	3
ACE509.18	CLO 18	Recognize the need for Soil reinforcement and grid reinforced soil.	PO 1, PO 6	3
ACE509.18	CLO 19	Analyze the importance of In-situ ground reinforcement and ground anchors. Rock bolting and soil nailing.	PO 2	3

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLO	Program Outcomes (POs)						Program Specific Outcomes (PSOs)								
CLO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	2												2		
CLO 2	3		3												3
CLO 3	2	3											2		
CLO 4	3	2											3		
CLO 5	2												2		
CLO 6		3													2
CLO 7	2		3												3
CLO 8	3												2		
CLO 9	3					2									3
CLO 10	3		2												2
CLO 11	2												3		
CLO 12		3											2		
CLO 13						2									3
CLO 14	3	3											3		
CLO 15	3												2		
CLO 16	2	3											3		
CLO 17	3												3		
CLO 18	3					2									2
CLO 19	2 11	3	3.7		4	-									3

^{3 =} High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO2, PO3, PO6	SEE Exams	PO1,PO2,PO3, PO6	Assignments	PO 1, PO2, PO3, PO6	Seminars	PO6
Laboratory Practices	1	Student Viva	1	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I INTRODUCTION TO GROUND MODIFICATION

Need and objectives, identification of soil types, in situ and laboratory tests to characterize problematic soils; mechanical, hydraulic, physical, chemical, electrical, thermal methods and their applications.

UNIT-II MECHANICAL MODIFICATION

Deep compaction techniques- blasting vibro compaction, dynamic tamping and compaction piles.

UNIT-III HYDRAULIC MODIFICATION

Objective and techniques, traditional dewatering methods and their choice, design of dewatering system, electro-osmosis, electro kinetic dewatering. Filtration, drainage and seepage control with geosynthetics, preloading the vertical drains.

UNIT-IV PHYSICAL AND CHEMICAL MODIFICATION

Modification by admixtures, shotcreting and guniting technology, modification at depth by grouting, crack grouting and compaction grouting. Jet grouting, thermal modification, ground freezing.

UNIT-V MODIFICATION BY INCLUSIONS AND CONFINEMENT

Soil reinforcement, reinforcement with strip, and grid reinforced soil. In-situ ground reinforcement, and ground anchors, rock bolting and soil nailing.

Text Books:

1. Hausmann, M.R "Engineering principles of Ground Modifications", Tata McGraw-Hill publications, 1990.

Reference Books:

- 1. Koener, R.M, "Designing with Geosynthetics", Prentice Hall, New Jersey, 1994.
- 2. Jones C.J.P, "Earth Reinforcement and soil structures", Butterworths, London, 1985.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Introduction to ground modification	CLO 1	T1:11.1
2-4	Need and objectives of ground modification techniques.	CLO 1	T1:11.4
5-7	Identification of soil types.	CLO 2	T:16.6
8-11	In Situ and laboratory tests to characterize problematic soils.	CLO 2	T1:13.1
12-13	Mechanical, hydraulic, physic-chemical methods of ground improvement techniques.	CLO 3	T3:13.15
14-15	Electrical, Thermal methods, and their applications of ground modification.	CLO 4	T1:13.3
16	Introduction to mechanical modification	CLO 5	T1:13.8
17	Analyzing Deep Compaction techniques	CLO 6	T1:13.9
18-19	Blasting vibrocompaction	CLO 7	T1:14.3
20	Objectives and techniques of hydraulic modification	CLO 8	T1:15.9
21	Traditional dewatering methods and their choice	CLO 9	T1:15.5

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
22-23	Design of dewatering system	CLO 10	T1:15.6
24	Electro-osmosis technique.	CLO 10	T1:15.8
25	Electro kinetic dewatering technique.	CLO 11	T1:16.9
26-28	Filtration technique used in geosynthetics.	CLO 11	T1:16.5
29-30	Drainage and seepage control with geosynthetics.	CLO 12	T1:16.3
31-33	Preloading the vertical drains.	CLO 13	T1:17.22
34	Physical and Chemical Modification of admixtures.	CLO 13	T1:17.22
35	Shotcreting and Guniting Technology.	CLO 14	T1:19.3
36-37	Modification at depth by grouting,	CLO 15	T1:19.6.1
38	Crack grouting and compaction grouting	CLO 15	T1:19.6.2
39-40	Jet grouting technique. Thermal modification, Ground freezing.	CLO 16	T1:21.6.2
41	Modification by inclusions and confinement	CLO 17	T1:22.6.3
42-43	Soil reinforcement and grid reinforced soil.	CLO 18	T1:17.4
44	In-situ ground reinforcement and ground anchors	CLO 19	T1:17.2.1
45	Rock bolting and soil nailing	CLO 19	T1:17.2.4

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with	Relevance with
			POs	PSOs
1	Emerging trends in ground improvement techniques.	Seminars/NPTEL	PO 3	PSO 1
2.	Methods for remediation of contaminated soils.	Seminars/Guest Lectures.	PO 1	PSO 1
3.	Applications in filtration, drainage and erosion control.	Seminars/NPTEL	PO 2	PSO 1

Prepared by:

Mrs. K. Shruthi, Assistant Professor

HOD, CIVIL ENGINEERING