ADVANCED SOLID MECHANICS

I Semester: M. Tech (STE)

Course Code	Category	Hours / Week			Credits	Maximum Marks		
BSTB02	Core	L	Т	Р	С	CIA	SEE	Total
		3	-	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil			Total Classes: 45			

COURSE OBJECTIVES:

The course should enable the students to:

- I. Solve advanced solid mechanics problems using classical methods
- II. Apply commercial software on select, applied solid mechanics problems.

COURSE OUTCOMES (COs):

- CO 1: Understand the theory of elasticity including strain/displacement and Hooke's law relationships
- CO 2: Analyse solid mechanics problems using classical methods and energy methods
- CO 3: Solve for stresses and deflections of two-dimensional under unsymmetrical loading
- CO 4: Obtain stresses and deflections of torsion of beams on elastic foundations
- CO 5: Apply various failure criteria for general stress states at points

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the Displacement, Strain and Stress Fields
- 2. Understand the Constitutive Relations, Cartesian Tensors
- 3. Solve the problems on Equations of Elasticity
- 4. Know the Elementary Concept of Strain
- 5. Understand the Strain at a Point
- 6. Know concept of Principal Strains and Principal Axes
- 7. Understand the concept of Compatibility Conditions
- 8. Understand the concept of Stress at a Point
- 9. Develop the Stress Components on an Arbitrary Plane
- 10. Understand the concepts on differential Equations of Equilibrium
- 11. Know the Hydrostatic and Deviatoric Components.
- 12. Understand the Equations of Equilibrium, Strain Displacement and Compatibility Relations
- 13. Understand the formulation of Stress- Strain relations
- 14. Concept of Strain Displacement
- 15. Understand the solutions for boundary value problems
- 16. Know the co-axiality of the Principal Directions
- 17. Understand the Plane Stress and Plane Strain Problems
- 18. Know the Two-Dimensional Problems in Polar Coordinates
- 19. Understand the Saint Venant's Method, Prandtl's Membrane Analogy
- 20. Formulation of Torsion of Rectangular Bar and thin plates
- 21. Understand the concept of Plastic Stress-Strain Relations
- 22. Solution of Principle of Normality and Plastic Potential, Isotropic Hardening

UNIT-I	INTRODUCTION TO ELASTICITY	Classes: 09				
Displacement, Strain and Stress Fields, Constitutive Relations, Cartesian Tensors and Equations of Elasticity.						
UNIT-II	STRAIN AND STRESS FIELD					
Elementary Concept of Strain, Stain at a Point, Principal Strains and Principal Axes, Compatibility Conditions, Stress at a Point, Stress Components on an Arbitrary Plane, Differential Equations of Equilibrium, Hydrostatic and Deviatoric Components.						
UNIT-III	UNIT-III EQUATIONS OF ELASTICITY AND TWO-DIMENSIONAL PROBLEMS OF ELASTICITY					
Equations of Equilibrium, Stress-Strain relations, Strain Displacement and Compatibility Relations, Boundary Value Problems, Co-axiality of the Principal Directions.						
Plane Stress and Plane Strain Problems, Airy's stress Function, Two-Dimensional Problems in Polar Coordinates.						
UNIT-IV	TORSION OF PRISMATIC BARS	Classes: 09				
Torsion of Prismatic Bars: Saint Venant's Method, Prandtl's Membrane Analogy, Torsion of Rectangular Bar, Torsion of Thin Tubes.						
UNIT-V	PLASTIC DEFORMATION	Classes: 09				
Plastic Deformation: Strain Hardening, Idealized Stress- Strain curve, Yield Criteria, von Mises Yield Criterion, Tresca Yield Criterion, Plastic Stress-Strain Relations, Principle of Normality and Plastic Potential, Isotropic Hardening.						
Text Books:						
 Timoshenko and Goodier , "Theory of Elasticity" , McGraw Hill Publishing Company, 1970. RagabA.R.,BayoumiS.E , "Engineering Solid Mechanics"., CRC Press, 1999. Kazimi S. M. A, "Solid Mechanics"., Tata McGraw Hill, 1994 						
Reference Books:						
 SaddM.H , "Elasticity", Elsevier, 2005. Ameen.M, "Computational Elasticity", Narosa, 2005. KazimiS. M. A, "Solid Mechanics", Tata McGraw Hill, 1994. SrinathL.S "Advanced Mechanics of Solids", Tata McGraw Hill, 2000. 						
Web References:						
1. https://www.youtube.com/watch?v=4meZNc2wB4s&t=1464s						
E-Text Books:						
 http://www.kstr.lth.se/fileadmin/kstr/pdf_files/forsk_kurs/Theory_of_elastic_stability_by_STimos henko_and_J.MGere1963pdf https://brijrbedu.org/Brij%20Data/Advance%20Mechanics%20of%20Solids/Book/Advanced%20Me chanics%20of%20Solids%20By%20L.%20S.%20Srinath.pdf 						