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Second slide: Course outcome / Topic learning 
outcome 

Name of the Topic covered Topic Learning  Outcome Course Outcome 

Complex Functions and 

differentiation 

Identify the fundamental 

concepts of analyticity and 

differentiability for calculus 

of complex functions and 

their role in applied 

context. 

Utilize the concepts of 

analyticity for finding 

complex conjugates and 

their role in applied 

contexts. 

List the course outcome / Topic outcome    



COMPLEX FUNCTIONS AND DIFFERENTIATION 

COMPLEX FUNCTIONS 

Complex number: 

For a complex number  z = x + iy, the number Re z = x is called the real part of z and 

the number Im z = y is said to be the its imaginary part. If x = 0, z is said to be a 

purely imaginary number.  

Definition : Let z = x + iy ∈ C. The complex number z = x − iy is called the complex 

conjugate of z  and  |z| = 22 yx   is said to be the absolute value or  the modulus of 

the complex number z. 
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Let D be a nonempty set in C. A single-valued 

complex function or, simply, a complex function f 

: D → C is a map that assigns to each complex 

argument z = x + iy in D a unique complex 

number w = u + iv. We write w = f(z).  

           The set D is called the domain of the 

function f and the set f(D) is the range or the 

image of f. So, a complex-valued function f of a 

complex variable z is a rule that assigns to each 

complex number z in a set D one and only one 

complex number w. We call w the image of z 

under f.  
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If z = x + iy ∈ D, we shall write f(z) = u(x, y) + iv(x, y) or f(z) 

= u(z) + iv(z). The real functions u and v are called the 

real and, respectively, the imaginary part of the complex 

function f. Therefore, we can describe a complex 

function with the aid of two real functions depending on 

two real variables. 
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Example 1.The function f : C → C, defined by f(z) = z 3 , can be 

written as f(z) = u(x, y) + iv(x, y), with u, v : R 2 → R given by u(x, y) = 

x 3 − 3xy2 , v(x, y) = 3x 2 y − y 3.  

Example 2.For the function f : C → C, defined by f(z) = e z, we have  

u(x, y) = e x cos y, v(x, y) = e x sin y, for any (x, y) ∈ R 2 . 
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Exercise 1: Prove that  
z

z
zz




lim

0

 does not exist. 

 Solution  : To prove that the above limit does not exist, we compute 

this limit as z → 0 on the real and on the imaginary axis, respectively. In 

the first situation, i.e. for z = x ∈ R, the value of the limit is 1. In the 

second situation, 

 i.e. for z = i y, with y ∈ R, the limit is −1. Thus, the limit depends on the 

direction from which we   approach  0, which implies that the limit 

does not exist.  
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Differentiability of complex function 

Let w = f(z) be a given function defined for all z in a neighbourhood of 

z0.If  
z

zfzzf

z 





)()(
lim 00

0
 exists,the function f(z) is said to be derivable at z0 and 

the limit is denoted by )( 0

, zf  . )( 0

, zf  if exists is called the derivative of f(z) at 

z0 

Exercise  : f(z)= 2z  is a function which is continuous at all z but not 

derivable at any  

z 0 

Solution:  Let  f(z)= 2z  = zz  

    Then f(z)= 00 zz  

We have to prove  that 
0

zz
lt


z=z0  and 0
0

zzlt
zz




     Thus 
0

zz
lt


00 zzzz   


0

zz
lt


f(z)=f(z0) 

The function is continuous at all z 
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COMPLEX FUNCTIONS AND DIFFERENTIATION 

The Cauchy–Riemann equations on a pair of real-
valued functions of two real variables u(x,y) and v(x,y) 
are the two equations: 

1. 
y

v

x

u









                                  

2. 
x

v

y

u









                             

Typically u and v are taken to be the real and imaginary 
parts respectively of a complex-valued function of a 
single complex variable z = x + iy,  f(x + iy) = u(x,y) + 
iv(x,y) 
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df u v df v u
i i

dz x x dz y y

   
   

   

We found 

For a unique derivative, these expressions 

      must be equal.  That is, a  condition

for the existence of a derivative of function of 

      a complex

necessary

u v u v

x y y x

df

dz

   
  

   


(implies)

 variable is that

Cauchy-Riemann conditions

We've proved that if exists, 

Cauchy-Riemann conditions  (necessity).
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polar form of Cauchy-Riemann equation: 

Theorem:  

If ),(),()()(  rivrurefzf i   and f(z) is derivable at 0

00

i
erz   then 

 

Proof: Let irez   Then ),(),()()(  rivrurefzf i   

Differentiating   it with respect to r partially, 

iezf
r

z
zfzf

r
)(')(')( 
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polar form of Cauchy-Riemann equation 
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Similarly differentiating partially with respect to  
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Equating real and imaginary parts  ,we get 
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Analytic function  

A complex function is said to be analytic on a region  if it 

is complex differentiable at every point in . The terms holomorphic 

function, differentiable function, and complex differentiable 

function are sometimes used interchangeably with "analytic 

function"  

If a complex function is analytic on a region R , it is infinitely 
differentiable in R. 

Singularities: 

A complex function may fail to be analytic at one or more points 
through the presence of singularities, or along lines or line 
segments through the presence of branch cuts.  

     Eg. f(z)=
z

1  is analytic every where except at z=0. 

    At z=0  )(, zf   does not exist. 

    So z=0 is  an  isolated singular point. 
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Entire function  

A complex function that is analytic at all finite points of the complex 
plane is said to be entire. A single-valued function that is analytic in all 
but possibly a discrete subset of its domain, and at those singularities 
goes to infinity like a polynomial (i.e., these exceptional points must 
be poles and not essential singularities), is called a meromorphic 
function.  
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Cauchy–Riemann equations 

The Cauchy–Riemann equations on a pair of real-
valued functions of two real variables u(x,y) and v(x,y) 
are the two equations: 

1. y

v

x

u










                                  

2. x

v

y

u










     

                         
Typically u and v are taken to be the real and imaginary 
parts respectively of a complex-valued function of a 
single complex variable z = x + iy,  f(x + iy) = u(x,y) + 
iv(x,y) 
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Conjugate harmonic function:  

If two harmonic functions  u and v satisfy  the Cauchy-Reimann 

equations in a domain D  and they are real and imaginary parts of an 

analytic function f in D  then v is said to be a  conjugate harmonic 

function of  u in D.If f(z)=u+iv is an analytic function  and if u and v 

satisfy Laplace’s equation ,then u and  v are called   conjugate 

harmonic functions. 

C-R equations in polar form 

The Cauchy-Riemann equations can be written in other coordinate 

systems. For instance, it is not difficult to see that in the system of 

coordinates given by the polar representation irez     these 

equations take the following form:  
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Problem: Show that the function 
zezf )(  satisfies the Cauchy-Riemann  

equations. 
Solution: 

 since  siny), i+cosy(xz ee    
 

Indeed     it follows that 
                
   

;  - =siny e =      ;   =cosy e =     and

sinye= y)     v(x,cosy,e= y)u(x,,siny   e= y)     v(x,cosy,e= y)u(x, 

xx

xxxx

x

v

y

u

y

v

x

u

















 
 
Moreover,  ez  is complex derivable and  it follows immediately that its 

complex derivative is 

ez. 
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Construction of analytic function whose real or imaginary part is known: 

Suppose f(z)=u+iv is an analytic function ,whose real part u is known .We 
can find v, the imaginary part and also the function f(z). 
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Problem: Showthat   0)('log
22

2 2
























zf

yx where f(z) is an analytic 

function. 

Solution: Taking 
)(
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Since f(z) is analytic , f(z) is analytic, )(' zf  is also 

analytic and 0
)('

,0
)('











z

zf

z

zf
 

 
Problem: Show that   f(z)=















0,0

0,
)(

42

z

z
yx

iyxxy

           is not analytic  

at z=0 although C-R equations satisified at origin. 
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Solution:      
z

zf

z

zf

z

fzf )(0)(

0

)0()(
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    Along  path x=my2 

0
1

0
.

).(
0

0

)0()(
0

2

lim

424

22limlim













m

m
y

ymy

ymy
y

z

fzf
z  

    Limit value depends on  m i.e on the path of 

approach and its different  for the different paths 

Followed  and therefore limit does not exists. 

Hence f(z) is not differentiable at z=0.Thus f(z) is not 

analytic at z=0 
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To prove that C-R conditions are 

satisified at origin 

Let  ivuzf )(
)(

)(
42

2

yx

iyxxy



  

Then u(x,y)= 
)( 42

22

yx

yx


 and    v(x,y)= 

)( 42

3

yx

xy


 for  z 0  

Also u(0,0)=0   and v(0,0)= 0     

[f(z)=0 at z=0] 
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Now 




x
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0x 0
0

0
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uxu  
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u lim

0y 0
0

0
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0
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x
x

x

vxv  

           




y

v lim

0y 0
0

0
)0,0(),0( lim




y
x

y

vyv  

Thus C-R equations  are satisified are 

satisified at the origin 

Hence f(z) is not analytic at z=0 even C-R 

equations are satisified at origin. 
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Milne Thomson method: 

Problem :  Find the regular function whose 

imaginary part is yxyx 2)log( 22  . 

Solution:   Given v yxyx 2)log( 22   

1
2

22
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equation) 

              =   













1

2
2

2
2222 yx

x

yx

y

     (using (1) ,(2)) 
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 By Milne Thomson method ,f’(z) is expressed in 

terms of z by replacing x z and y by 0. 

Hence 
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 Problem: Show that the function 234  xxyu is harmonic 

.construct  the corresponding analytic  function  f(z)=u+iv in 

terms of z. 

Solution:  Given 234  xxyu (1) 

Differentiating (1) partially w.r.t .x, 34 



y

x

u   

Again differentiating  0
2

2






x

u

 
 

Again differentiating (1)  partially w.r.t .y, x
x

u
4




 

Again differentiating  0
2

2






y

u
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 Let  a,b,c,d denote four complex 

constants with the restriction  

 𝑎𝑑 ≠ 𝑏𝑐 that .  Then the function 

        𝑤 = 𝑠 𝑧 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 

is called  a bilinear 

transformation, a Möbius 

transformation, or a linear 

fractional transformation. 
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 There exists a unique bilinear 

transformation that maps three 

distinct points 𝑧1, 𝑧2  𝑎𝑛𝑑 𝑧3

  onto three distinct 

points 𝑤1, 𝑤2 𝑎𝑛𝑑𝑤3 

respectively.  An implicit formula 

for the mapping is given by the 

equation     

 𝑧 − 𝑧1 (𝑧2 − 𝑧3)

 𝑧 − 𝑧3 (𝑧2 − 𝑧1)

=
 𝑤 − 𝑤1 (𝑤2 − 𝑤3)

 𝑤 − 𝑤3 (𝑤2 − 𝑤1)
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Solution: We use the implicit formula and 

write   

 

             

 

             

 

            .  

Problem: Construct the bilinear 

transformation  w = S(z)  that 

maps the points  

  onto the points  

,  respectively. 
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Expanding this equation, collecting terms involving 

w and zw on the left and then simplify. 

      

                

             



COMPLEX FUNCTIONS AND DIFFERENTIATION 

36 

 

      

Therefore the desired bilinear transformation is   

 

            .   
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Problem: Find the bilinear 

transformation  w = S(z)  that 

maps the 

points    onto 

the points  

,  respectively. 
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Solution.  Again, we use the implicit 

formula and write   
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Using the fact that 

ii

i 1

1

1




  ,  we rewrite 

this equation as   
 
            

w

w

iz

z








1

12 .     

We now expand the equation and 
obtain   

 
)2)1((2)1(

)2(2)1(
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which can be solved for w in 

terms of z, giving the desired 

solution   

 

            
2)1(

2)1(
)(






zi

zi
zsw  
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 EXCERCISE  PROBLEMS:    

u = 𝑒−2𝑥𝑦 sin 𝑥2 − 𝑦2   is a harmonic function. Hence find its 
harmonic conjugate. 

2) Prove that the real part of analytic function f (z) where u = 
log 𝑧 2 is harmonic function. If so find the analytic function by 
Milne Thompson method. 

3)Obtain the regular function f (z) whose imaginary part of an 

analytic function is  
𝑥−𝑦

𝑥2+𝑦2 

4) Find an analytic function f (z) whose real part of an analytic 

function is u = 
𝑠𝑖𝑛2𝑥

𝑐𝑜𝑠ℎ2𝑦−𝑐𝑜𝑠2𝑥
 by Milne-Thompson method. 

5) Find an analytic function f (z) = u +iv if the real part of an 
analytic function is u = a (1+cos𝜃) using Cauchy-Riemann 
equations in polar form. 

 

        1)Show that the real part of an analytic function f (z) where  
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 6) Prove that if 𝑢 =  𝑥2 − 𝑦2 , 𝑣 = −  
𝑦

𝑥2+𝑦2  both u and v satisfy 

Laplace’s equation, but u + iv is not a regular (analytic ) function 
of z. 

      7)Show that the function f (z) =   𝑥𝑦    is not analytic at the 

origin although Cauchy –Riemann equations are satisfied at origin. 

      8) If 𝑤 =  ∅ + 𝑖𝜑 represents the complex potential for an 

electric field where 𝜑 =  𝑥2 − 𝑦2 +
𝑥

𝑥2+𝑦2 then determine the 

function 𝜑.  

     9)State and Prove the necessary condition for f (z) to be an 
analytic function in Cartesian form. 

  10)If 𝑢 and 𝑣 are conjugate harmonic functions then show that  

𝑢𝑣 is also a harmonic function. 

    11)Find the orthogonal trajectories of the family of 

curves 𝑟 2𝑐𝑜𝑠2𝜃 = c 

   12)Find an analytic function whose real part is  𝑢 =
𝑠𝑖𝑛2𝑥

𝑐𝑜𝑠ℎ2𝑦−𝑐𝑜𝑠2𝑥
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   13)Find an analytic function whose imaginary part is v = 𝑒𝑥 𝑥𝑠𝑖𝑛𝑦 +

𝑦𝑐𝑜𝑠𝑦  

  14)Find an analytic function whose real part is (i) u = 
𝑥

𝑥2+𝑦2 (ii) u = 

𝑦

𝑥2+𝑦2 

   15)Find an analytic function whose imaginary part is v 

=
2𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦

𝑐𝑜𝑠ℎ2𝑥+𝑐𝑜𝑠ℎ2𝑦
 

  16)Find an analytic function f(z) = u +iv if u = a(1+cos𝜃) 

    17)Find the conjugate harmonic of u = 𝑒𝑥2−𝑦2
cos2xyand find f(z) in 

terms of z. 

   18)If f(z) is an analytic function of z and if u - v = 𝑒𝑥 𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦  

find f(z) in terms of z. 

    19)If f(z) is an analytic function of z and if u - v = (x-y) 𝑥2 + 4𝑥𝑦 +

𝑦2)  find f(z) in terms of   z. 

20) Find the orthogonal trajectories of the family of curves 𝑥3𝑦 −

𝑥𝑦3= C = constant 
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   LINE  INTEGRAL 
Defination:  In mathematics, a line integral is an integral where the 
function to be integrated is evaluated along a curve. The terms path 
integral, curve integral, and curvilinear integral are also used; contour 
integral as well, although that is typically reserved for line integrals in 
the complex plane. 

The function to be integrated may be a scalar field or a vector field. 
The value of the line integral is the sum of values of the field at all 
points on the curve, weighted by some scalar function on the curve 
(commonly arc length or, for a vector field, the scalar product of the 
vector field with a differential vector in the curve). This weighting 
distinguishes the line integral from simpler integrals defined on 
intervals. Many simple formulae in physics (for example, W = F · s) 
have natural continuous analogs in terms of line integrals (W = ∫C F · 
ds). The line integral finds the work done on an object moving through 
an atomic or gravitational field. 

 

COMPLEX INTEGRATION 



COMPLEX INTEGRATION 

46 

  
In complex analysis, the line integral  is defined in terms of 
multiplication and addition of complex numbers.  

Let us consider F(t)= u(t)+i v(t) , bta  . Where  u and v  are 
real  valued continuous functions of t in [a,b].  

  we define  tdtvitdtutdtF

b

a

b

a

b

a

  )()()(  

Thus, tdtF

b

a

 )( is a complex number such that  real part of  tdtF

b

a

 )(  

is tdtu

b

a

 )(  and imaginary part of tdtF

b

a

 )(  is tdtv

b

a

 )( . 
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  Problem: Evaluate dziyx
i

)(
1

0

2 
      along the  paths 

1)y=x          2)y=x2 

Solution: 1)along the line y=x, dy= dx  so that  dz = 

dx+idx=(1+i) dx 

   
,)1)(()(

1

0

2
1

0

2 dxiixxdziyx
i

 


       since y=x 

                         =(1+i) 









23

23
1

0

x
i

x
 

                                             =(1+i) 







 i

2

1

3

1  

                            = i
6

1

6

5
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  2) alongtheparabola y=x2,dy=2xdx 

sothatdz=dx+2ixdx 

                                                                      

dz=(1+2ix)dx and xvaries from 0to1   

               dxixixxdziyx
i

)21)(()( 2

1

0

2
1

0

2  
  

 =(1-i) dxixx )21(
1

0

2   

 

                                     =(1-i) 







 i

2

1

3

1  

 =
6

)32)(1( ii   

 = i
6

1

6

5
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  Problem: Evaluate dzxyixyx
iz

z
))(2( 2

1

0

2 



 

along  2xy 
 

Solution:  
idydxdziyxz

dzxyixy





,

))(2 x=f(z)Given 22

  

           xdxdyxythecurve 2,, 2     

dxixxidxdxdz )21(2        

)(2)( 422 xxixxxzF   

)(2 432 xxixx   

2543432

432

2242)(2

))21)((()2()(

xxixixxxixx

dxixxxixxdzZF
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dzxyixyxdzzf

i

z
c

)(2)( 2
1

0

2  



 

         = dxxxxixxx ))25(232( 34325
1

0
 ) 

                  = 









225

5
(

23

4254
3

6
1

0

xxx
i

x
x

x
 

                 = 0
2

1

2

1

5

5

2

1
1

3

1





























 

              = ii 
6

7

5

5

6

7
 

              idzzf
c

 6

7
)(  
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CAUCHY INTEGRAL THEOREM 

STATEMENT :  let F(z)=u(x,y)+iv(x,y) be analytic on and within a simple 

closed contour (or curve ) ‘c’ and let f ‘(z)  be continuous there,then 

 𝑓 𝑧 𝑑𝑧 = 0 

Proof: f (z)=u(x,y)+iv(x,y) 

      And dz=dx+idy 

           f(z).dz = (u(x,y)+iv(x,y) )dx+idy 

          f(z).dz = u(x,y)dx+i u(x,y)dy+iv(x,y)dx+i2 v(x,y)dy 

          f(z).dz= u(x,y)dx- v(x,y)dy+i( u(x,y)dy+ v(x,y)dx 

Integrate both sides, we get 

 𝑓 𝑧 𝑑𝑧 =  (udx −  vdy) + 𝑖( udy +  vdx) 
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  By greens theorem ,we have  

 𝑀𝑑𝑥 + 𝑁𝑑𝑦 =  
∂N

∂x
−  

∂M

∂Y
dxdy 

Now    𝑓 𝑧 𝑑𝑧 =  (−
∂v

∂x
−  

∂u

∂Y
)dxdy + 𝑖(

∂u

∂x
−  

∂v

∂Y
)dxdy 

Since f ‘(z)   is continuous &four partial derivatives   i.e  
∂u

∂x
,
∂u

∂Y
,  

∂v

∂x
,
∂v

∂Y
 are 

also continuous  in the region R enclosed by C, Hence we can apply 

Green’s Theorem. 

Using Green’s Theorem in plane ,assuming that R is the region bounded 

by C. 

It is given that  f (z)=u(x,y)+iv(x,y) is analytic on and within c. 

 Hence  
y

v

x

u








 , 
x

v

y

u








  

Using this we have  

    
Rc R

dxdyidxdydzzf 000)(  

                                           Hence   the  theorem. 

 



  

Cauchy's integral formula 

Cauchy's integral formula states that  

 

 

 

where the integral is a contour integral along the contour c enclosing the 
point z0. 

 

dz
az

zf

i
zf

c

 


)(

)(

2

1
)( 0
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Generalization of Cauchy's integral formula: 

Generalization of Cauchy's integral formula states that  

 

 

 

 

 

where the integral is a contour integral along the contour c enclosing the 

point z0 

dz
az

zf

i

n
zf

c

n

n

 


10
)(

)(

2

!
)(
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Problem: Evaluate using cauchy’s integral formula  

c

z

dz
zz

e

)2)(1(

2

where c is the circle 3z  

Solution: Given   
c

z

dz
zz

e

)2)(1(

2

              ……………(1) 

Both the points z=1,z=2 line inside 3z  

Resolving   into partial  fractions 

)2)(1(

1

 zz
=

)1( z

A
+

)2( z

B
 

A=-1, B=1 

From(1) 

 

 
c

z

dz
zz

e

)2)(1(

2

=  



c

z

dz
z

e

)1(

2

+   
c

z

dz
z

e

)2(

2

             (by cauchy’s integral formula) 

 



COMPLEX INTEGRATION 

56 

                          =-2�̎�if(1)+2𝜋if(2) 

                          =-2𝜋ie
2.1

+2𝜋ie
2.2 

                           =-2𝜋ie
2
+2𝜋𝑖e4

=2𝜋𝑖(𝑒4
-e

2
) 
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Problem: Using cauchy’sintegralformula  to evaluate ,

)2)1(

cossin 22

dz
zz

zz

c

 

 
where c is the circle 3z  

Solution:  dz
zz

zf

c

  )2)1(

)(
=( dz

z
c

  )2(

1
+ dz

z
c

  )1(

1
)f(z)dz 

                                   =     dz
z

zf

c

  )2(

)(
+ dz

z

zf

c

  )1(

)(
 

                                    =2Пif(2)- 2∏if(1) 

                                =2Пi(sin4П+cos4П)-(sinП+cosП)) 

                                =2Пi(1-(-1))=4Пi             

 

dz
zz

zz

c

 



)2)1(

cossin 22 
=4Пi 
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Problem: Evaluate dz

zz

z

c

 



)2()1(

)1(
2

  whrere    c is 2 iZ  

Solution: the singularities of
)2()1(

)1(
2 



zz

z
 are given by 

(z+1)
2
(z-2)=0 

  Z=-1 and z=2 

Z=-1 lies inside the  circle since 021  i  

Z=2 lies outside the  circle sinceI2-iI-2>0 022  i  

The given line integral can be written as 

dz
zz

z

c

 



)2()1(

)1(
2

=  





c
z

z

z

2)1(

)2(

)1(

----------------------------(1) 
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The derivative of analytic function is given by  

           dz
az

zf

c

n  1)(

)(
=

2𝜋𝑖𝑓𝑛 (𝑎)

𝑛 !
-------------------------------------(2) 

        From (1) and (2) f(z)=
(𝑧−1)

(𝑧−2)
, a=-1,n=1 

22

1

)2(

1

)2(

)1(1)2(1
)(









zz

zz
zf  

9

1
)1(1


f  

Substituting in (2),we get 

 

dz
zz

z

c

 



)2()1(

)1(
2

= )
9

1
(

1

2


i
 

                          =
−2

9
Пi 

 



60 

 

Problem: Evaluate dz
z

e

c

z

  4

2

)1(
 where c: 11 z  

Solution:  the singular points of  dz
z

e z

4

2

)1( 
 are givenby7 

               (z+1)
4
=0 1 z  

The singular point z=-1 lies insidethecirclec: 31 z  

Applying   cauchy’s integral formula for derivatives 

 

     dz
az

zf

c

n  1)(

)(
   =   dz

n

if

c

n




!

)1(2
--------------------------(1) 
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f(z)=e

2z
,n=3,a=-1 

f(z)=2e
2z

 

f
1
(z)=4e

2z
 

f
11

(z)=8e
2z

 

f
111

)z)=16e
2z

 

f
111

(-1)=16e
-2

 

substituting in(1) 

 

    dz
z

e

c

z

  4

2

)1(
= 



c
n

if

!

)1(2 111

 

                      =
!2

162 2ei
 

                               =16Пie-2 
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Problem: Use cauchy’s  integral formula to evaluate  dz
z

e

c

z

 



3

2

)1(
     

with c: 2z

 

Solution:  

Given 

dz
z

e

c

z

 



3

2

)1(
 

       f(z)=e
-2z

 

the singular poin  z=-1 lies inside the given circle 2z  

apply Cauchy’s integral formula for derivatives 
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=
!2

)1(2 1 if
           











c

aif

az

zf

!2

)(2

)(

)( 1

3


  

Where f(z)=e
-2z

 

              f
1
(z)=-2 e

-2z
 

             f
11

(z)=4 e
-2z

 

             f
11

(-1)= 4 e
2
 

 dz
z

e

c

z

 



3

2

)1(
=

2
2

4
2

42
ie

ei





 

 

dz
z

e

c

z

 



3

2

)1(
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Problem: Evaluate  dz

zz

dz

c

  )4(8         
withc: 2z

     
 

Solution:  
The singularities of 

dz
zz

dz

c

  )4(8

   are given by  

-4z0,z   0=4)+(zZ8 

The point z=0  

lie  inside and the z=-4 lies 

outside the circle 
2z

 

By the derivative of analytic function. 
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Problem: Evaluate using integral formula  c

z

zz

dze

)2)(1(

2

 where  c 

is the circle 3z

  

 

Solution:  Let (z)= e
z
 which is analytic within  the circle c: 3z  

and the two singular points  a=1,a=2 lie inside  c. 

 c

z

zz

dze

)2)(1(

2

=

dz
z

e
dz

z

e

dz
zz

e

c

z

c

z

z
























12

1

1

2

1

22

2
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Now using   cauchy’s integral formula ,we obtain  

 c

z

zz

dze

)2)(1(

2

= 24 22 ieie    

                       = )(2 24 eei   

 c

z

zz

dze

)2)(1(

2

= )(2 24 eei   
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Problem : Evaluate dz

z

zz

c 



1

3
2

2

 

where cisthe circle 11 z  

Solution:  Given f(z)= 3z2+z 

Z=a=+1or -1 

The circle 11 z  has centre at 

z=1 and radius  1 and 

includes the point 

z=1,f(z)=3z2+z  is an analytic 

function 

 



COMPLEX INTEGRATION 

68 

 

Also 

















 1

1

1

1

2

1

)1)(1(

1

1

1
2 zzzzz

 



















c

dz
z

zz

z

zz

1

3

2

1

1

3 2

2

2

- 












c

dz
z

zz

1

3

2

1 2

----------------(1) 

Since z=1 lies inside c,we have by cauchy’s 

integralformula 

=2 )(iif  

                  =  2 4*i         

 

dz
z

zz

c 



1

3
2

2
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    Bycauchy’sintegral theorem 

,since z=-1 lies out side c,we have 

dz
z

zz

c 



1

3 2

=  0 

From equation(1) we have  

=
i

i





4

0)8(
2

1



  dz
z

zz

c 



1

3
2

2
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EXCERCISE   PROBLEMS:    

1) Evaluate 
0

dz

z z  where 

c: 0z z = r                                                           

      2) Evaluate  (2,2)

(1,1)
( ) ( )x y dx y x dy    

along the parabola  2y x            

       3)Evaluate 
2

2

4

1
c

z
dz

z



   where 

C: 2z   using Cauchy’s Integral 

formula 
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       4)Evaluate 

2

( 1)( 2)

z

c

e
dz

z z   where C: 

4z   using Cauchy’s integral 

formula     

       5) Evaluate 
3

3( 2)
c

z z

z



  where : 3C z   

using Cauchy’s integral formula     

       6) Expand f(z) = 
2

3( 1)

z

c

e

z   at a 

point  z=1          

       7) Expand  f(z)= 
2

1

4 3
c

z z   for   

31  z   
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       8)Evaluate 2 2 2 2 2 2( ) ( ) ( )y z dx z x dy x y dz      from 

(0,0,0) to (1,1,1) , where 

      C is the curve 2 3, ,x t x t x t                                                                      

       9) Evaluate 

(1,1)

2 2

(0,0)

(3 4 )x xy ix dz   along  2y x                                                       
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       10) Evaluate )(

1

0

2






i

ixyx dz 

(i)  along the straight  from z  = 0 
to z = 1+i . 

(ii) along the real axis from z = 0 
to z = 1 and then along a line 
parallel to real axis from z = 1 
to z = 1+i 

(iii) along the imaginary axis from 
z = 0 to z = I  and then along a 
line parallel to real axis z = i to 
z = 1+ i . 

11) Evaluate )12(

2

1








i

i

iyx dz along (1-i) 

to (2+i)  

12) Evaluate  
c

dyxyxdxxyy )2()2( 22 where 

c is boundary of the region y=x 2

and x=y 2  
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Radius of Covergence 

Power series: 

A series expansion is a representation of a particular 

function as a sum of powers in one of its variables, or by 

a sum of powers of another (usually elementary) 

function f(z). 

A power series in a variable is an infinite sum of the 
form  

 i

iza  

   A series of the form  n

nza is called as power series.  

       That is  ...............2

21  n

n

n

n zazazaza   
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Determination of Radius of Cnvergence of power series 

Taylor's series: 

Taylor's theorem states that any function 
satisfying certain conditions may be represented 
by a Taylor series. 

The Taylor series is an  infinite series, whereas a 
Taylor  polynomial is a polynomial of degree n and 
has a finite number  of terms. The form of a Taylor 
polynomial of degree n for a function  

f (z) at x = a is 

  
.......

!

)(
)(.........

!3

)(
)(

!2

)(
)())(()()(

3
'''

2
''' 










n

az
af

az
af

az
afazafafzf

n
n , raz   
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A Maclaurin series  is a Taylor series expansion of a 
function about  x=0,  

.......
!

)(
)0(.........

!3

)(
)0(

!2

)(
)0())(0()0()(

3
'''

2
''' 

n

z
f

z
f

z
fzffzf

n
n  

This series is called as maclurins series expansion of f(z). 

Some important result: 
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Problem:  Determine the first four terms of the power 
series for sin 2x using Maclaurin’s series. 
Solution: 
 Let 
 f(x) = sin 2x            f(0) = sin 0 = 0 
f′(x)= 2 cos 2x              f′(0) = 2 cos 0 = 2 
f′′(x)= –4 sin 2x           f′′(0) = –4 sin 0 = 0  
f′′′(x) = –8 cos 2x         f′′′(0) = –8 cos 0 = –8 
 fiv(x)= 16 sin 2x           fiv(0)= 16 sin 0 = 0  
fv (x)= 32 cos 2x(0)       fv (0)= 32 cos 0 = 32 
fvi (x)= –64 sin 2x          fvi (0)= –64 sin 0 = 0 
fvi i(x )= –128 cos 2x      fvii (0)= –128 cos 0 = –128 

  f(x )= sin2x = 0+2 x+0 x2+(-8) 
!3

3x +0.x4 +32 
!5

5x  

                      = 2x - 
3

4 3x +
15

4 5x  
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Problem :  Find the Maclaurin series for f (z) = z e z Express 
your answer in  sigma notation. 

Solution: 
Let   f (z) = z e z                                           f (0) = 0 
         f ' = e z+ z e z                                       f '(0) = 1 + 0 = 1 
         f '' = e z+ e z+ z e z                               f ''(0) = 1 + 1 + 0 = 2 
         f ''' = e z+ e z+ e z+ z ez                        f '''(0) = 1 + 1 + 1 + 
0 = 3 
        f '''' = e z+ e z+ e z+ ez+ z e z                 f ''''(0) = 1 + 1 + 1 + 
1 + 0 = 4 
      .............

!4

4

!3

3

!2

2
10)( 432  zzzzzf  

               = .............
6

1

2

1 432  zzzz  

               =  


 1 )!1(n

n

n

z  
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Laurent series: 
 
In mathematics, the Laurent series of a 
complex function  f(z) is a representation of 
that function as a power series which includes 
terms of negative degree. It may be used to 
express complex functions in cases where a 
Taylor series expansion cannot be applied. 

The Laurent series for a complex function f(z) 
about a point c is given by: 

   





n

n

n azazf )()(  

           






 


10 )(

1
)()(

n
nn

n

n

n
az

bazazf  

where the an and a are constants. 
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Zero’s of an analytic function: 

      A zero of an analytic function f(z) is a value of z such that f(z)=0 .Particularly a point  a is  

called a zero of an analytic function  f (z)  if f(a) = 0. 

   Eg:  
22

2

)1(

)1(
)(






z

z
zf    

        Now, 0)1( 2 z   

                    Z = -1, z = -1 are zero’s of an analytic function. 

Zero’s of m
th

 order: 

 

If an analytic function f(z) can be expressed in the form  )()()( zazzf m  where )(z   is 

analytic function  and 0)(  a   then z=a is called zero of  m
th

 order  of the function f(z). 

 A  simple  zero is a zero of order 1. 

Eg:  1.   3)1()(  zzf  

                   0)1( 3 z  

                    z=1 is a zero of  order 3 of the function f(z). 

       2. 
z

zf



1

1
)(  

         i.e z  is a simple zero of f(z). 

       3.  zzf sin)(   

         i.e  ,......3,2,1,0 nnz   are simple zero’s of  f(z). 
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Problem: Find the first four terms of the Taylor’s series 
expansion of the complex function  
        

)4)(3(

1
)(






zz

z
zf  about z =2.Find the region of 

convergence. 
Solution:       
     The   singularities of the function 

)4)(3(

1
)(






zz

z
zf  are z = 3 

and z = 4 
      Draw   a circle   with centre at z=2 and radius 1 .Then 
the distance of singularities from the centre are 1 and 2. 
  Hence within the circle 12 z   ,the  given function is 

analytic .Hence ,it can be extended in Taylor’s series within 
the circle 12 z . 

  Hence 12 z  is the circle of convergence. 
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Now  
3

4

4

5
)(







zz
zf   (partial fraction) , f(2)= 3/2 

          
22

'

)3(

4

)4(

5
)(







zz
zf  ,   

4

11
)2(' f    

     
           

33 )4(

10

)3(

8
)(''







zz
zf   ,  

4

27
)2('' f  

 
 

44 )4(

30

)3(

24
)('''







zz
zf   ,  

8

177
)2(''' f  

Taylor’s series expansion for f(z) at z=a is  

.......
!

)(
)(.........

!3

)(
)(

!2

)(
)())(()()(

3
'''

2
''' 










n

az
af

az
af

az
afazafafzf

n
n  

    






















8

177

!3

)2(

4

27

!2

)2(

4

11
)2(

2

3

)4)(3(

1 32 zz
z

zz

z  

 
 

 


















16

59
)2(

8

27
)2(

4

11
)2(

2

3
)( 32 zzzzf . 

 

POWER SERIES EXPANSION OF COMPLEX  FUNCTION 



84 

Problem:  Obtain Laurent series for  
3

2

)1(
)(




z

e
zf

z

about z = 1. 

Solution:       

      Given 
3

2

)1(
)(




z

e
zf

z

 

    Put   z-1= w    so that    z = w+1 

              
3

)1(2

)(
w

e
zf

w

  

              
3

22

)(
w

ee
zf

w

  

         = 







 .......

!3

)2(

!2

)2(
21

32

3

2 ww
w

w

e  if 0w  

                      = 3

0

2

!

2 




 n

n

n

w
n

e  

                      = 3

0

2 )1(
!

2 




 n

n

n

z
n

e     , if 01 z  

                       

          = 3

0

2 )1(
!

2 




 n

n

n

z
n

e     , if 01 z  

      3

0

2 )1(
!

2
)( 





  n

n

n

z
n

ezf     , if 01 z  

 Since   points 01 z will be singular points. 
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Singular point   of an analytic function:  A point at which 
an analytic function f(z) is not analytic, i.e. at which f '(z) 
fails to exist, is called a singular point or singularity of the 
function.                                         

There are different types of singular points:   

Isolated and non-isolated singular points: A singular point 
z0 is called an isolated singular point of an analytic 
function f(z) if there exists a deleted ε-spherical 
neighborhood of z0 that contains no singularity. If no such 
neighborhood can be found, z0 is called a non-isolated 
singular point. Thus an isolated singular point is a singular 
point that stands completely by itself, embedded in 
regular points. In fig 1a  where z1, z2 and z3 are isolated 
singular points. Most singular points are isolated singular 
points. A non-isolated singular point is a singular point 
such that every deleted ε-spherical neighborhood of it 
contains singular points. See Fig. 1b where z0 is the limit 
point of a set of singular points. Isolated singular points 
include poles, removable singularities, essential 
singularities and branch points.  
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The Taylors Series 
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The Taylors Series 
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Taylors Series Expansion  
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Maclaurine’s Series Expansion  
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Problem on Maclaurine’s Series  
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The Laurent’s Series 
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The Laurent’s Series  

This generalizes the concept of a Taylor series 

to include cases where the function is analytic 

in an annulus.  
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Note: We no longer have the “derivative formula” as we do for a Taylor 

series. 
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The Laurent’s Series  
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Derivation of the Laurent’s Series  
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 



104 
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Problem on Taylor’s and Laurent’s Series 
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Problem on the Laurent’s series 
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Problem on the Laurent’s series 
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116 

 

POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 



117 

 

Problem on the Laurent’s series 
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Problem on the Laurent’s series 
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Problem on the Laurent’s series 
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Summary of the methods for generating Taylors and 
Laurent's Series  
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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Some more Examples on Taylor’s and Laurent’s series  
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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Definition  
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Definition  
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Definition  
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Definition  



133 

Problem on Definitions  
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Problem on Definitions  
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Definition  
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Problems on Residues of a function by definition,  
Laurent’s Series and by formulae method 
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 



138 

 

 

Problem   



139 

 

Problem   



140 

 

 

Problem   
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Problem   



142 

Problem   



143 

Problem   
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Residue at Infinity 
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Problem   



147 

Cauchy’s Residue Theorem 
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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Problem  
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Problem   
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Problem   
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Problem   
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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Contour Integration 



158 

Problem on Type-1   



159 

To find Residue 

POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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Problem on Type-1   
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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163 

Problem on Type-1   
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165 

Contour Integration and Problem on Type-2 
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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Problem on Type-2   



169 

POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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Problem on Type-2   
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POWER SERIES EXPANSION 
OF COMPLEX  FUNCTION 
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 Beta and Gamma functions: 

 Improper  Integrals: Beta and Gamma functions 

 Definitions 

 Properties of Beta and Gamma functions 

 Standard forms of Beta functions 

 Relationship between Beta and Gamma function 

 

                MODULE IV-  SPECIAL FUNCTIONS-
I 
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                   DEFINITIONS:      
 
IMPROPER INTEGRAL: 

The integral  
b

a

dxxf for which  

i) Either the interval of integration is not 

finite i. e.  orba  or both 

ii) The function f(x) is unbounded at one or 

more point in [a, b] is called das improper 

integral.  
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                   Beta function 

NOTE: Integral of (i) and (ii) are called the 

improper integrals of first and second kinds 

respectively. 

Examples: 

1. 


0
41

1
dx

x
 And 



 
dx

x 21

1  are improper 

integrals of the first kind. 

2. 


1

0
21

1
dx

x
 is an improper integral of 

the second kind. 
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                   Beta functions 

DEFINITION: 

BETA FUNCTION: 

The definite integral  
 

1

0

11 1 dxxx
nm  is called the 

Beta function and is denoted by  nm, . The integral 

converges for m>0,n>0.                                     
NOTE: 

Beta function is also called as Eulerian integral of 

first kind 

 

 

 

 nm,  
 

1

0

11 1 dxxx
nm
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                   Beta functions 

 

PROPERTIES OF BETA FUNCTION: 

i) SYMMETRY PROPERTY OF BETA FUNCTION  

i.e.,  nm, =  mn,  

Proof: 

By definition, we have 

 nm, =  
 

1

0

11 1 dxxx
nm

 
 

 

Put 1-x=y  so that dx=-dy 

       
0

1

11

1, dyyynm nm
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  dyyy
mn


 

1

0

11 1  

 
 

1

0

11 1 dxxx
mn  

 mn,     







 

b

a

b

a

dxxfdttf  

Hence  nm, =  mn,  

ii)              Prove that      

                          
  



0

1

1212 cossin,  dnm nm

 
Proof: 

By definition, we have 

 nm, =  
 

1

0

11 1 dxxx
nm  

put 2sinx so that  ddx 2sin  

     



2

0

1212 2sinsin1sin,



 dnm
nm  
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2

0

1212 cossin2



 dnm  

Hence proved 

i)  nm, =    1,,1  nmnm   

Proof:  

By definition, we have 

                  1,,1  nmnm  =      
1

0

1

1

0

1
11 dxxxdxxx

nmnm  

                    
     

1

0

1

1

0

1
11 dxxxdxxx

nmnm  

                    
  



1

0

11 )]1([1 dxxxxx
nm  

                   
 

 

1

0

11 1 dxxx
nm  

=  nm,  

Hence  nm, =    1,,1  nmnm   
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Iv)  

If m and n are positive integers, then 

 
   
 !1

!1!1
,






nm

nm
nm  

 

Proof: 

We have  nm, =  
 

1

0

11 1 dxxx
nm  

Integrating by parts 
 
 

 
 

  dxxm
n

x

n

x
x m

nn

m 2

1

0

1

0

1 1
1

1

1

1  
















  

 

 

=    1,1
1

1
1

1

0

2

1

0








 nm

n

m
dxxx

n

m nm  …………..(1) 

Now we have to find  1,1  nm . 

To obtain this put m=m-1 and n=n+1 

in (1). Then, we have  
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   2,2
1

2
.

1
, 




 nm

n

m

n

m
nm  ……………………(2) 

Changing m to m-2 and n to n-2 from (1) we have 

 2,2  nm =  3,3
1

2
.

2

3









nm

n

m

n

m
  

From (2) 

 

   3,3
2

3
.

1

2
.

1
, 








 nm

n

m

n

m

n

m
nm   

Proceeding like this we get 

 

 
  
  

    1,1
2

1
............

2

3
.

1

2
.

1
, 












 mnmm

mn

mm

n

m

n

m

n

m
nm   

 

 
 1,1

2

1
............

2

3
.

1

2
.

1









 mn

mnn

m

n

m

n

m
 ……(3) 

From (3) 

 
   1

1
..

2

1
............

2

3
.

1

2
.

1
,










mnmnn

m

n

m

n

m
nm  
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     nnnmnmn

m

12...........................21

!1




  

Multiplying the numerator and denominator by (n-

1)!, we have  

 

 
   
 !1

!1!1
,






mn

nm
nm

 
 

 

STANDARD FORMS OF BETA FUNCTIONS 

FORM I: 

To show  

 nm, =
 







0

1

1
dx

x

x
nm

m

=
 







0

1

1
dx

x

x
nm

n

 

Proof: 

We have  

                         nm, =  
 

1

0

11 1 dxxx
nm

……………………………(1)
 

 
                     put 

y
x




1

1  so that 
 2
1 y

dy
dx




 
From (1) 

We have 

 nm, =
 





























0

2

11

1
.

1

1
1

1

1

y

dy

yy

nm
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0

1

1
nm

n

y

dyy

 

 nm, =
 







0

1

1
dx

x

x
nm

m

 

Hence proved. 

 

 

FORM II: 

To show that 

 nm, =
 











0

11

1
dx

x

xx
nm

nm

 

Proof: 

From form we have 
 

 nm, =
 







0

1

1
dx

x

x
nm

m

 

=
   

dx
x

x
dx

x

x
nm

n

nm

m















 0

1

0

1

11
 

Now putting 
y

x
1

 and dy
y

dx
2

1
 in the second integral, 

we get
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1

1

1
dx

x

x
nm

m

= 


























0

2

1

1
.

1
1

1

dy
y

y

y
nm

m

 

  

 



1

0

1

1
.

1
dy

yy

y
mnm

nm

 

=
  





1

0

1

1
dy

y

y
nm

n

 

 

 

  





1

0

1

1
dx

x

x
nm

n

 

 

Hence  

 nm, =
 











0

11

1
dx

x

xx
nm

nm
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FORM III: 

 nm, =
 







0

1

dx
bax

x
ba

nm

m
nm  

Proof:   

We have 

 






0

1

dx
bax

x
ba

nm

m
nm = 



















0

1

1

dx

b

ax
b

x
ba

nm

nm

m
nm  

Put  

b

ax =t then dt
b

dxa
  

 











0

1

1

1

1
dt

a

b

t

t
a

b

b

ba
nm

m

m

m

nm

nm

 

 

 









0

1

1
dt

t

t
nm

m

=  nm,  

Hence proved. 
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FORM IV:  

To show  
 

 
 mnnm

nm

aa

nm
dx

ax

xx







 



1

,1
1

0

11 

 

PROOF: 

 nm, =  
 

1

0

11 1 dxxx
nm

 

Put  
at

ta
x






1  then  
   

 














2

011
1

at

tat
adx  

 
 
 2

1

at

aa




  

 
 

dt
at

aa
dx

2

1




  

Also when x=0, t=0 and x=1,t=1. 

Now (1) become 

 nm, =  
 

 
 

 
 





























1

0

2

1

1

1

1

11
11

1
1

dt
at

aa

at

ta

at

ta
n

m

nm
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 nm, =  
 























1

0

1

1

11
1

dta
at

ata

at

ta
n

m

nm

 
Also we have  

   
 nm

nm
nm






 ,  

 
   
 nm

nm
dx

x

x
nm

n

















0

1

1
 

Taking m + n=1 so that m=n-1, we get 

 

 
   

 1
1

10

1



 nn
dx

x

x
nm

n 











 

Or  

     1........
1

1
0

1


 


 dx

x

x
nn

n

  

We have  
 

n

m
ec

n
dx

x

x
n

n

2

12
cos

21
0

2

2  







Where m>0, n>0 and m>n 

Put x2n=t and  
s

n

m




2

12 , we have 

 
 

  



ecs

n
dt

ttn

tt nn
m

cos
212

0

2
1

2
2




 


 

 

 



ecs

n
dt

t

tt nn
m

cos
21

0

1
2

1

2
2
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Or 
 

 



ecs

n
dt

t

tt nn
m

cos
21

0

1
2

1
1

2
12




 







 

 

  



sn
dt

t

t s

sin21
0

1





 

 

  



sn
dt

x

x s

sin21
0

1





 

………………(2) 

From (1) and (2) we have 
 

 
 
 mnnm

nm

aa

nm
dx

ax

xx







 



1

,1
1

0

11 

 
Hence Proved 
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PROBLEMS: 

 

1.  Show that   








 
 2

1
,

2

1

2

1
cossin

2

0

nm
dnm 



 

                   Solution: 

                          
 


2

0

11
2

0

cossincossincossin



 dd nmnm  

                            



2

0

2

1
2

2

1
2 cossincossin



 d
nm

 

                       Put 2sin = x so that  
2

cossin
dx

d   

                      
  dxxxd

nm

nm






1

0

2

1

2

12

0

1cossin





 

                      
  dxxx

nm









 







 



1

0

1
2

1
1

2

1

1

 

                          







 


2

1
,

2

1

2

1 nm
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  2

1
,

2

1

2

1
cossin

2

0

nm
dnm 



 

                                             Hence proved 

 

 

1. Express the following integrals in terms of Beta 

function: 

2. dx
x

x




1

0
21

 

3. dx
x

x




4

0
29

                                                                   

Answer:      








2

1
,

2

1

2

1
                           

Solution:  Put yx 2 so that dyydx 2
1

2

1 
  

When x=0, y=0 when x=1, y=1. 

dyy
y

y
dx

x

x
2

1
1

0

2
11

0
2 2

1

11
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  dyy




1

0

2
1

1
2

1  

  dyyy


 

1

0

1
2

1

1
2

1
11  











2

1
,1

2

1
  

Exercise Problems: 

 

1. Prove that    nmadxxxa nm

a

nm
,1

0

11


  

Hint: put x=ay 

2. Show that   












 1,
11

1
0

1 p
n

m

n
dxxx

a
pnm   

Hint: put nx =y 

3. Show that      nmdxxx nm

a
nm

,211 1

0

11


  

Hint: put 
2

1 y
x
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1. Show that 

i. 
 

0
10

11












dx
x

xx
nm

nm

 

ii. 
 

 nmdx
x

xx
nm

nm

,2
10

11












 

2. Prove that      
qp

qp

p

qp

q

qp







 ,,11,  , where p>0, q>0. 

Show that        1,1
1




 nmabdxxbax
nmn

b

a

m
  

            Gamma functions 
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GAMMA FUNCTION: 

 

Definition:  

The definite integral dxxe nx 1

0







  is called the Gamma function 

and is denoted by  

  dxxen nx 1

0







  And read as “gamma n”. 

NOTE:   

1. The integral converges for n>0. 

2. Gamma function is also called Eulerian integral of the 

second kind. 

3. The integral   Gamma function does not converges if 

n≤0. 

 

            Gamma functions 
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PROPERTIES OF GAMMA FUNCTIONS: 

I. To show that   11   

Proof: By definition of Gamma function, we have 

  dxxen nx 1

0







  

    10

0

0

0













xxx edxedxxen  

 

 

II. To show that      11  nnn where n > 1. 

Proof:  By definition of Gamma function, we have 

 
 

  dx
e

xn
e

xdxxen
x

n
x

nnx




































 1
.1

1

2

00

11

0

Integrate by parts 

     111 2

0

 





 nndxxen nx  

 

            Gamma functions 
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Note: 

1.      nnn  1  

2. If n is a positive  fraction,  then we write 

        rnnnnnn  ................4321  

Where   0 rn  

3. If n is a non-negative integer, then    !1 nn   

 

 

            Gamma functions 
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RELATION BETWEEN BETA AND GAMMA FUNCTIONS   

1. 
 

   
 nm

nm
nm






 ,

    Where m>0, n>0  
Proof: 
 
: By definition of Gamma function, we have 

  dxxem mx 1

0







 ……………………….. (1) 

Put x = yt so that dx =y dt then (1) gives 
 

  dxxyedttyeydttytem mmyxmmytmmyt 1

0

1

0

11

0















  …………………….(2) 

Or     
dxxe

y

m myx

m

1

0








 ……………………….(3) 
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Multiplying both sides of (3) 

     dydxxyedyyem mnmxyny

 
 
















0 0

1111

0

……………..(4) 

      dxxdyyenm mnmxy 1

0 0

11 

 



 








 , by interchanging the order of 

integration 

   
 

 
dxx

x

nm
nm m

nm

1

0 1









  

 

   
 

 
   nmnmdxx

x

nm
dxnm m

nm
,

1

1

0





 



  

 
                                            

   
 nm

nm
nm






 ,  

                                                       Hence proved 
1. To prove that    





n
nn

sin
1   

Proof:  
By Form I of Beta function 

 nm, ==
 







0

1

1
dx

x

x
nm

n

 
 

Also we have  
   
 nm

nm
nm






 ,  
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 nm

nm
dx

x

x
nm

n
















0

1

1  
 
Taking m + n=1 so that m=1-n, we get 
 
 

 
   

 1
1

1
0

1



 nn
dx

x

xn 



 

 

   
 

 




0

1

1
1 dx

x

x
nn

n



 
We have  

                
 

 
n

m
ec

n
dx

x

x
n

m

2

12
cos

21
0

2

2  





, where m>0, n>0 and n>m 

                   Put tx m 2  and  
s

n

m




2

12 , we have 
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sec

n
dt

ttn

tt nn
m

cos
212

0

2
1

2
2







 

Or 
 

 



sec

n
dt

t

tt nn
m

cos
21

0

1
2

1

2
2









 

 

 
 secdt

t

t n
m

cos
1

0

1
2

12


 




 

Or 
  



n
dt

t

t s

sin1
0

1


 




 

    




n
nn

sin
1 

 
 Hence proved 

1. To show that 









2

1  

Proof:  we know that 
 

   
 nm

nm
nm






 ,

 
Taking m=n=

2

1 , we have 
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2

2

1

2

1

2

1

2

1

2

1

2

1
,

2

1


























































   11 
…………………………..(1) 

 

   










1

0

2

1
2

11

0

1
2

11
2

1

11
2

1
,

2

1
dxxxdxxx

 
 

2sinx  so that  ddx cossin2  

Also when x=0,  =0:  when x=1,  =
2

  

 









1

0

2

0

cossin2
cos

1

sin

1

2

1
,

2

1







ddx

 

 
2

0

2



d

……………(2)
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From (1) and (2) we have  











2

1  

1. To show that 
20

2 



 dxe x  

Proof:  we have  

 

  dxxen nx 1

0









 

Taking n=
2

1 , we have dxxe x 2
1

0
2

1 












  

Put x =t2 so that d x=2t d t 

Also when x=0, t=0: when  tx ,  

  dtedtte tt









 









0

2
1

2

0

22

22
2

1  

Or 


 dxe x

0

2

2

 

2
0

2 




 dxe x
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PROBLEMS 

 

1. Compute    

i) 









2

11

 
 

ii) 









2

1  

iii) 









2

7  

Solutions:   i) 

We have      nnn  1  

                                         Taking 
2

7
n  

        



















2

9

2

9

2

11  

     










2

7

2

7

2

9  

 










2

5

2

5

2

7

2

9  

 










2

3

2

3

2

5

2

7

2

9  

 










2

1

2

1

2

3

2

5

2

7

2

9  
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2

1

2

3

2

5

2

7

2

9
  

Solution: ii) 

We have      nnn  1  
 

 
n

n
n

1
  

                          Taking 
2

1
n  

                             2
2

1
2

2

1

1
2

1

2

1
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            Gamma functions 
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1. Evaluate  

i.    

1

0

35 1 dxxx  

 

ii.   

1

0

24 1 dxxx                                                      Answer: 1/105 

 

iii.   

1

0

3
1

1 dxxx                                                  Answer: 
39

16   

iv.   

1

0

2/322/5 1 dxxx                                            Answer: 




















4

1

4

3

65

8
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Solution: i)  
 

   
 

1

0

1416

1

0

35 11 dxxxdxxx  

 
   
 46

46
4,6




  

 

504

1

!9

!3!5
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1. Evaluate 
 

i) 




0

26 dxex x  

ii) 




0

42
3

dxex x  

iii) 




0

2 2

dxex x  

iv) 




0

2

dxex x  

Solution: Put yx 2 so that dydx
2

1
  

 
 



















0

6

0

26

2

1

2
dye

y
dxex yx  
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= 




0

6

2

1

2

1
dyey y  

 
 

= !6
2

1

2

1

2

1
7

0

17 


 dyey y  

 
Evaluate  

i. 
2

0

2
7

5 cossin



 d  

ii. 
2

0

7sin



 d  

iii. 
2

0

11cos



 d  

iv. 
2

0

cot



 d  

Solution: i) we have  nmdnm ,
2

1
cossin

2

0

1212 






 
                    Put 2 m-1=5 and 2n-1=1/2 so that m=3, n=9/4 

Therefore  4/9,3
2

1
cossin

2

0

2
7

5 



 d

 

 

  1989

64

4
21

4

9

4

9
3

3

2

1
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            Gamma functions 
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1. Evaluate  

1. 





0

4 2

3 dxx

      
 
                           

       2.        





0

2

dxa bx

 
 

         3.          












0

3

4 1
log dx

x
x

 
 
 

4.  
 

            Gamma functions 



215 

.   












0

3

2 1
log dx

x
x
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 SPECIAL FUNCTIONS-II 
Bessel's equation 

Bessel's equation  

x2 y''+x y'+(x2-v2)y=0 is called Bessel's equation. 
 
Solution of Bessel's Equation: 
Because x=0 is a regular singular point of Bessel's equation we know 

that there exists at least one solution of the form 
rn

n

on

xcy 






.  
 Substituting the last expression into   
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x2 y"+x y'+(x2-v2)y= rn

n
on

x)1rn)(rn(c 




 + rn

n

on

x)rn(c 




 + 2rn

n

on

xc 




  

-v2
rn

n

on

xc 




  = c0(r2-r+r-v2)xr 

+xr 2n

n

on

rn2

n

1n

xcxx]v)rn()1rn)(rn[(c 








   

= 







 on

2n

n

rn22

n
1n

rr22

0 xcxx]v])rn[(cxx)vr(c
 

From , we see that the indicial equation is r2-v2=0, so the 
indicial roots are r1=v and r2 = -v. When r1=v, becomes  
xv

2n

n

on

vn

n

1n

xcxx)v2n(nc 








        

=xv








  











2n 0n

2n

n

n

n1 xcx)v2n(ncxc)v21(  

=xv
0x]cc)v22k)(2k[(xc)v21(

0k

2k

k2k1 







 







  

Solution of Bessel's Equation: 
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Therefore by the usual argument we can write (1+2v)c1=0 and  
(k+2) (k+2+2v)ck+2+ck=0 

or  - - - -,2,1,0,
)22)(2(

 =C 2K 



 k

vkk

Ck

    

The choice c1=0 in  implies c3=c5=c7= - - - - = 0, so for k=0,2,4, - - - - 
we find, after letting k +2 = 2n,  
 
n = 1,2,3, - - - - that  

  )(22

22
2

vnn

c
C n

n


 

      

 Thus     )1(1.22

0
2

v

c
C


       

 )2)(1(1.2.2)2(22 4

0

2

2
4

vv

c

v

c
C
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 )3)(2)(1(3.2.1.2)3(3.2 6

0

2

4
6

vvv

C

v

C
C







   

…………………………. 
………………………….. 

  
- - - -,3,2,1,

)).....(2)(1(!2

)1(
2

0
2 




 n

vnvvn

c
C

n

n
  

It is standard practice to choose c0 to be specific value – namely. 

    )1(2

1
0

v
C

v 


 

 

where  (1+v) is the gamma function. (See Appendix) Since this latter function  

possesses the convenient property  (1+) = (), we can reduce the 
indicated product in the denominator of to one term.  
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For example: 

 (1+v+1)= (1+v)  (1+v) 

 (1+v+2)= (2+v)  (2+v)= (2+v)(1+v)(1+v). 
Hence we can write  as  

)1(!2

)1(

)1())...(2)(1(!2

)1(
222

nvnvvnvvn
c

vn

n

vn

n

n










  

for n=0,1,2, - - - -  
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Bessel Function of the First Kind:  
Using the coefficients c2n just obtained and r=v, a series solution of (6.10) is y=








0n

vn2

n2 xc  This solution is usually denoted by :)x(Jv  

 .
2

x

)nv1(!n

)1(
)x(J

0n

vn2n

v 


















    

 

If v0,  the series converges at least on the interval [o,). Also, for the second 
exponent r2= -v we obtain, in exactly the same manner, 

  .
2

x

)nv1(!n

)1(
)x(J

0n

vn2n

v 






 











    

 
The functions Jv(x) and J-v(x) are called Bessel functions of the first kind of order v 
and –v, respectively. Depending on the value of v, (6.16) may contain negative 
powers of x and hence converge on (0, ).* 
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Bessel Function of the First Kind:  
 

Using the coefficients c2n just obtained and r=v, a series solution of   





0

2

2

n

vn

n xcY  

This solution is usually denoted by :)(xJv  

 
.

2)1(!

)1(
)(

0

2






















n

vnn

v

x

nvn
xJ

   

 

If v0,  the series converges at least on the interval [o,). Also, for the second 
exponent r2= -v we obtain, in exactly the same manner, 

  
.

2

x

)nv1(!n

)1(
)x(J

0n

vn2n

v 






 













   

 
The functions Jv(x) and J-v(x) are called Bessel functions of the first kind of order v 
and –v, respectively. Depending on the value of v, (6.16) may contain negative 
powers of x and hence converge on (0, ).* 
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SPECIAL FUNCTIONS 

Introduction 

 

Many Differential equations arising from physical problems are linear 

but have variable coefficients and do not permit a general analytical 

solution in terms of known functions. Such equations can be solved by 

numerical methods (Unit – I), but in many cases it is easier to find a 

solution in the form of an infinite convergent series. The series solution 

of certain differential equations give rise to special functions such as 

Bessel’s function, Legendre’s polynomial. These special functions have 

many applications in engineering. 
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Consider the Bessel Differential equation of order n in the 

form 

0)( 22

2

2
2  ynx

dx

dy
x

dx

yd
x      (i) 

where n is a non negative real constant or parameter. 

We assume the series solution of (i) in the form 







0r

rk

r xay  where a0  0      (ii) 

Hence,  





0

1)(
r

rk

r xrka
dx

dy
 







0

2

2

2

)1)((
r

rk

r xrkrka
dx

yd
 

 

Substituting these in (i) we get, 

 

 

Series solution of the Bessel Differential 
Equation 
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0

22

0

1

0

22 0)()1)((
r

rk

r

r

rk

r

r

rk

r xanxxrkaxxrkrkax

 

i.e.,





















 
0

2

0

2

00

0)()1)((
r

rk

r

r

rk

r

r

rk

r

r

rk

r xanxaxrkaxrkrka

 

Grouping the like powers, we get 
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  0)()1)((
0

2

0

2  











r

rk

r

r

rk

r xaxnrkrkrka
 

  0)(
0

2

0

22  











r

rk

r

r

rk

r xaxnrka
 (iii) 

 
Now we shall equate the coefficient of various powers of 
 x to 0 
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Equating the coefficient of xk from the first term and equating it to 
zero, we get 

  nknkanka  ,0get    we,0 Since   .0 22

0

22

0  
Coefficient of xk+1 is got by putting r = 1 in the first term and equating it 
to zero, we get 

i.e., 

 

nknk

a

nka







1,gives0)1(  since

 ,0  gives This

   .0)1(

22

1

22

1

 

which is a contradiction to k =  n. 
 
Let us consider the coefficient of xk+r from (iii) and equate it to zero. 

i.e,    .0)( 2

22  rr anrka  
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)( 22

2

nrk

a
a r

r



 

   (iv) 

If k = +n, (iv) becomes 

   nrr

a

nrn

a
a rr

r
2

 
)( 2

2

22

2









 

 

Now putting r = 1,3,5, ….., (odd vales of n) we obtain, 
 

0a,0
9n6

a
a 1

1
3 




   

Similarly a5, a7, ….. are equal to zero. 
i.e.,  a1 = a5 = a7 = …… = 0 
Now, putting r = 2,4,6, ……( even values of n) we get, 

;
)1(444

 00
2











n

a

n

a
a  ;

)2)(1(32168
 02

4








nn

a

n

a
a  

Similarly we can obtain a6, a8, …  
We shall substitute the values of ,,,, 4321 aaaa in the 
assumed series solution, we get 
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)xaxaxaxaa(xxay 4
4

3
3

2
210

k

0r

rk
r 







 

Let y1 be the solution for k = +n 















 4020

01
)2)(1(32)1(4

x
nn

a
x

n

a
axy n

 















 

)2)(1(2)1(2
1.,.

5

4

2

2

01
nn

x

n

x
xayei n

   (v) 

This is a solution of the Bessel’s equation. 
Let y2 be the solution corresponding to k = - n. Replacing n be – n in (v) we get 















  

)2)(1(2)1(2
1

5

4

2

2

02
nn

x

n

x
xay n

   (vi) 

The complete or general solution of the Bessel’s differential equation is y = c1y1 
+ c2y2, where c1, c2 are arbitrary constants. 
Now we will proceed to find the solution in terms of Bessel’s function by 

choosing 
)1(2

1
 0




n
a

n and let us denote it as Y1. 
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2)2)(1(

1

2)1(

1

2
1

)1(2
.,.

42

1
nn

x

n

x

n

x
Yei

n

n

 

             














































 

2)1()2)(1(

1

2)1()1(

1

2)1(

1

2

42

nnn

x

nn

x

n

x
n

 

We have the result  (n) = (n – 1) (n – 1) from Gamma function 

Hence, (n + 2)  = (n + 1) (n + 1) and  

 (n + 3)  = (n + 2) (n + 2) = (n + 2) (n + 1) (n + 1) 
Using the above results in Y1, we get 















































 

2)3(

1

2)2(

1

2)1(

1

2

42

1
n

x

n

x

n

x
Y

n

 

which can be further put in the following form 





























































 

422100

1
2!2)3(

)1(

2!1)2(

)1(

2!0)1(

)1(

2

x

n

x

n

x

n

x
Y

n
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0

2

2!)1(

)1(

2 r

rrn
x

rrn

x

 

    



















0

2

!)1(

1

2
)1(

r

rn

r

rrn

x

 

This function is called the Bessel function of the first kind of order n and is 
denoted by Jn(x). 

Thus 



















0

2

!)1(

1

2
)1()(

r

rn

r

n
rrn

x
xJ

 

 
Further the particular solution for k = -n ( replacing n by –n ) be denoted as J-

n(x). Hence the general solution of the Bessel’s equation is given by y = AJn(x) 
+ BJ-n(x), where A and B are arbitrary constants 
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Properties of Bessel’s function 
 

1. )()1()( xJxJ n

n

n  , where n is a positive integer. 
 
Proof:  By definition of Bessel’s function, we have 

 


















0

2

!)1(

1

2
)1()(

r

rn

r

n
rrn

x
xJ

  ……….(1) 

Hence, 




















0

2

!)1(

1

2
)1()(

r

rn

r

n
rrn

x
xJ

  ……….(2) 

But gamma function is defined only for a positive real number. Thus we write 
(2) in the following from 
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But gamma function is defined only for a positive real number. Thus we write 
(2) in the following from 

  





















nr

r2n
r

n
!r)1rn(

1

2

x
)1()x(J

 ………..(3) 

Let r – n = s or r = s + n. Then (3) becomes 

  




















0s

n2s2n
ns

n
)!ns()1s(

1

2

x
)1()x(J

 

We know that (s+1) = s! and (s + n)! = (s+n+1) 

                                  




















0

2

!)1(

1

2
)1(

s

sn

ns

sns

x  

   



















0

2

!)1(

1

2
)1()1(

s

sn

sn

sns

x

 

Comparing the above summation with (1), we note that the RHS is Jn(x). 

Thus,    (x)J1)((x)J n

n

n   
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2) 

)()()1()( xJxJxJ nn

n

n 
  , where n is a positive integer 

 
Proof : By definition,  
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!)1(
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n
rrn

x
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0r

r2n
r

n
!r)1rn(

1

2

x
)1()x(J

 

  i.e.,      
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r2n
r2nr

!r)1rn(

1

2

x
1)1(  

             
  



















0r

r2n
rn

!r)1rn(

1

2

x
)1(1

 

Thus,  (x)J1)((-x)J n
n

n   

Since, )x(J)x(J)1( nn
n

 , we have  (x)J(x)J1)(x)(J nn
n

n   
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Recurrence Relations: 
Recurrence Relations are relations between Bessel’s functions of different 
order. 

Recurrence Relations 1:   )x(Jx)x(Jx
dx

d
1n

n
n

n
  

From definition,  
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)rn(2
r

0r

r2n
rn

n
n

!r)1rn(

1

2

x
)1(

!r)1rn(
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2

x
)1(x)x(Jx
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n
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x)rn(2
)1()x(Jx

dx

d
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1r2n
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x)rn(
)1(x

 

  

 

)x(Jx
!r)1r1n(

)2/x(
)1(x 1n
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0r

r21n
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 Thus, 
  )x(Jx)x(Jx

dx

d
1n

n
n

n


   --------(1) 
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Recurrence Relations 2: 
  )x(Jx)x(Jx

dx

d
1n

n
n

n


 
 

From definition,  
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rrn

xr
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)1r(21n
1rn
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Let k = r – 1 

   
)x(Jx

!k)1k1n(2

x
)1(x 1n

n

0k
k21n

k21n
kn










 




 

 Thus, 

  )x(Jx)x(Jx
dx

d
1n

n
n

n


 
 ………(2) ) 
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Recurrence Relations 3: 

 )()(
2

)( 11 xJxJ
n

x
xJ nnn  

 

We know that   )x(Jx)x(Jx
dx

d
1n

n
n

n
  

Applying product rule on LHS, we get   

  
)x(Jx)x(Jnx)x(Jx 1n

n
n

1n/
n

n


 
 

Dividing by xn we get  )()()/()( 1

/ xJxJxnxJ nnn  --------(3) 

Also differentiating LHS of 
  )x(Jx)x(Jx

dx

d
1n

n
n

n


 
, we get 

 )x(Jx)x(Jnx)x(Jx 1n
n

n
1n/

n
n


     

Dividing by –x–n  we get  )x(J)x(J)x/n()x(J 1nn
/
n  --------(4) 

Adding (3) and (4), we obtain  )x(J)x(Jx)x(nJ2 1n1nn    

i.e., 
 )x(J)x(J

n2

x
)x(J 1n1nn  
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Recurrence Relations 4: 

 
 )x(J)x(J

2

1
)x(J 1n1n

/
n  

 

Subtracting (4) from (3), we obtain  

 )x(J)x(J)x(J2 1n1n
/
n  

 

i.e.,  )x(J)x(J
2

1
)x(J 1n1n

/
n    

Recurrence Relations 5:  

)()()( 1

/ xJxJ
x

n
xJ nnn 

 

This recurrence relation is another way of writing the Recurrence relation 
2. 

Recurrence Relations 7: )x(J)x(J
x

n2
)x(J 1nn1n    

This recurrence relation is another way of writing the Recurrence  
relation 3. 
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Prove that 
x

x
xJbx

x
xJa cos

2
)()(sin

2
)()( 2/12/1


   

By definition, 
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Putting n = ½, we get 
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  --------(1) 

Using the results (1/2) =  and (n) = (n – 1) (n–1), we get 

8

15
)2/7(,

4

3
)2/5(,

2
)2/3(








   and so on. 

Using these values in (1), we get 
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8

15
)2/7(,

4

3
)2/5(,

2
)2/3(








   and so on. 

Using these values in (1), we get 
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Putting n = - 1/2, we get 
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Using the results (1/2) =  and (n) = (n – 1) (n–1) in (2), we get 
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3. Show that 
   )x(J)1n()x(nJ

x

2
)x(J)x(J

dx

d 2
1n

2
n

2
1n

2
n  

 

Solution: 

L.H.S = 
  )x(J)x(J2)x(J)x(J2)x(J)x(J

dx

d /
1n1n

/
nn

2
1n

2
n  

------- (1) 

We know the recurrence relations 

  )x(xJ)x(nJ)x(xJ 1nn
/
n    ------- (2) 

  )x(J)1n()x(xJ)x(xJ 1nn
/

1n    ------- (3) 
Relation (3) is obtained by replacing n by n+1 in )x(nJ)x(xJ)x(xJ n1n

/
n    

 
Now using (2) and (3) in (1), we get 

L.H.S   = 
  







 









  )x(J

x

1n
)x(J)x(J2)x(J)x(J

x

n
)x(J2)x(J)x(J

dx
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2
n  

 )x(J
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1n
2)x(J)x(J2)x(J)x(J2)x(J

x

n2 2
1nn1n1nn

2
n 


  

Hence, 
   )x(J)1n()x(nJ

x

2
)x(J)x(J

dx

d 2
1n

2
n

2
1n

2
n  
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4. Prove that  )x(J)x(J
2

1
)x(J 02

//
0   

Solution :  

We have the recurrence relation  )x(J)x(J
2

1
)x(J 1n1n

/
n    -------(1) 

Putting n = 0 in (1), we get     )x(J)x(J)x(J
2

1
)x(J)x(J

2

1
)x(J 11111

/
0    

Thus, )x(J)x(J 1
/
0  . Differentiating this w.r.t. x we get, )x(J)x(J /

1
//
0   ----- (2) 

Now, from (1), for n = 1, we get  )x(J)x(J
2

1
)x(J 20

/
1  .  

Using (2), the above equation becomes 

    )x(J)x(J
2

1
)x(orJ)x(J)x(J

2

1
)x(J 02

//
020

//
0  . 

Thus we have proved that, 
 )x(J)x(J

2

1
)x(J 02

//
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5. Show that  (a) )x(J
x

2
)x(Jcdx)x(J 123    

  (b)  )x(J)x(Jx
2

1
dx)x(xJ 2

1
2
0

22
0   

Solution : 

(a) We know that   )x(Jx)x(Jx
dx

d
1n

n
n

n


   or )()(1 xJxdxxJx n

n

n

n 



   ------ (1) 

Now,   cdxdx)x(Jxx2dx)x(Jxxcdx)x(Jxxdx)x(J 3
2

3
22

3
22

3  


 

      cdx)x(Jxx2)x(Jxx 2
2

2
22  

( from (1) when n = 2) 

  )x(J
x

2
)x(Jcdx)x(J

x

2
)x(Jc 1222   ( from (1) when n = 1) 

Hence, )x(J
x

2
)x(Jcdx)x(J 123   

(b) dxx
2

1
).x(J)x(J2x

2

1
)x(Jdx)x(xJ 2/

00
22

0
2
0    (Integrate by parts) 

  dx)x(J)x(Jx)x(Jx
2

1
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22
0

2
   (From (1) for n = 0) 

   dx)x(xJ
dx

d
)x(xJ)x(Jx

2

1
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2
0

2
    








 (1)relation  recurrence from)x(xJ)x(xJ

dx

d
01  

 
   )x(J)x(Jx
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1
)x(xJ

2

1
)x(Jx
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1 2
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2
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Generating Function for Jn(x) 

To prove that 






n
n

n
)t/1t(

2

x

)x(Jte  

or 
If n is an integer then Jn(x) is the coefficient of tn in the expansion of  

)t/1t(
2

x

e


. 
Proof: 

We have 
t2/x2/xt
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x
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(using the expansion of exponential function) 
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If we collect the coefficient of tn in the product, they are 
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Similarly, if we collect the coefficients of t–n in the product, we get J–n(x). 

Thus, 
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Result:   
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Proof :  
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Problem 6: Show that  

(a)  



 0

n d)sinxncos(
1

)x(J , n being an integer 

(b) 



 0

0 d)cosxcos(
1

)x(J  

(c) 1JJ2J2J 2
3

2
2

2
1

2
0    

Solution : 
 

We know that   







1n
n

nnn
0

)t/1t(
2

x

)x(Jt)1(t)x(Je  

  






 )x(Jt)x(Jt)x(Jt)x(Jt)x(Jt)x(tJ)x(J 3

3
2

2
1

1
3

3
2

2
10  

Since )x(J)1()x(J n
n

n 
, we have 

 

      


33
3

22
210

)t/1t(
2

x

t/1t)x(Jt/1t)x(Jt/1t)x(J)x(Je  ----- (1) 

Let t = cos + i sin so that tp = cosp + i sinp and 1/tp = cosp - i sinp.  

From this we get, tp + 1/tp = 2cosp and tp – 1/tp = 2i sinp 
Using these results in (1), we get 
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3sin)x(Jsin)x(Ji24cos)x(J2cos)x(J2)x(Jee 31420
sinix

)sini2(
2

x

 
          -----(2) 

Since eixsin = cos(xsin) + i sin(xsin), equating real and imaginary parts in (2) 
we get, 

    4cos)x(J2cos)x(J2)x(J)sinxcos( 420  --
--- (3) 

    3sin)x(Jsin)x(J2)sinxsin( 31   ----- (4) 
These series are known as Jacobi Series. 
 

 Now multiplying both sides of (3) by cos n and both sides of (4) by sin 

n and integrating each of the resulting expression between 0 and , we 
obtain 
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zeroor even  isn 
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),x(J
dncos)sinxcos(

1 n
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and 
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Here we used the standard result 











qpif,0

qpf,
2dqsinpsindqcospcos

00

i





 



SPECIAL FUNCTIONS-II 

250 

 

From the above two expression, in general, if n is a 
positive integer, we get 

    






 00

n d)sinxncos(
1

dnsin)sinxsin(ncos)sinxcos(
1

)x(J  

(b) Changing  to (/2)  in (3), we get 
   )4cos()x(J)2cos()x(J2)x(J)cosxcos( 420   
   4cos)x(J22cos)x(J2)x(J)cosxcos( 420  

Integrating the above equation w.r.t  from 0 to , we 
get 

  



0

420
0

4cos)x(J22cos)x(J2)x(Jd)cosxcos(   








 )x(J
4

4sin
)x(J2

2

2sin
)x(J2)x(Jd)cosxcos( 0

0

420
0

  

Thus, 



 0

0 d)cosxcos(
1

)x(J  
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(c) Squaring (3) and (4) and integrating w.r.t.  from 0 to  and noting that 
m and n being integers 
  

      
2

)x(J4
2

)x(J4)x(Jd)sinx(cos
2

4
2

2
2

0
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2

)x(J4
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2

3
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1
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Adding, 
   )x(J)x(J2)x(J2)x(Jd 2

3
2
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2
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2
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Hence, 
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2
0  

 
 



SPECIAL FUNCTIONS-II 

252 

 
 

Orthogonality of Bessel Functions 

 

 

If  and  are the two distinct roots of Jn(x) = 0, then   

   





















0

2
1n

2/
n

nn if,)(J
2

1
)(J

2

1

if,0

dx)x(J)x(xJ  

 

Proof:  

 

We know that the solution of the equation 

  x
2
u

//
 + xu

/
 + (2

x
2
 – n

2
)u = 0 -------- (1) 

  x
2
v

//
 + xv

/
 + (2

x
2
 – n

2
)v = 0 -------- (2) 

are u = Jn(x) and v = Jn(x) respectively. 

  

 Multiplying (1) by v/x and (2) by u/x and subtracting, we get 
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x(u// v - u v//)+ (u/ v – uv/)+ (2 –2)xuv = 0 

or     xuvuvvux
dx

d 22//    

Now integrating both sides from 0 to 1, we get 

 
       1x

//1

0
//

1

0

22 uvvuuvvuxdxxuv 
 ------- (3) 

Since u = Jn(x),     )x(J
dx

)x(d
)x(J

)x(d

d
)x(J

dx

d
u /

nnn
/ 





   

Similarly v = Jn(x) gives   )x(J)x(J
dx

d
v /

nn
/   .  Substituting these 

values in (3), we get 

 22

/
nnn

/
n

1

0
nn

)(J)(J)(J)(J
dx)x(J)x(xJ











 ------- (4) 
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If  and  are the two distinct roots of Jn(x) = 0, then  Jn() = 0 and Jn() = 0, 
and hence (4) reduces to   




0

nn 0dx)x(J)x(xJ . 

This is known as Orthogonality relation of  Bessel functions. 
 

 When  = , the RHS of (4) takes 0/0 form. Its value can be found by 

considering  as a root of Jn(x) = 0 and  as a variable approaching to . 
Then (4) gives 

 22

n
/
n

1

0
nn

)(J)(J
Ltdx)x(J)x(xJLt






 


  

Applying L’Hospital rule, we get 
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0
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 --------(5) 

We have the recurrence relation )x(J)x(J
x

n
)x(J 1nn

/
n  . 

)(J)(J,0)(J).(J)(J
n

)(J 1n
/
nn1nn

/
n 


    have weSince  

Thus, (5) becomes 
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