COMPLEX ANALYSIS AND SPECIAL FUNCTIONS

Course Code: AHSB05
B . TECH: III SEM ECE
Regulation: IARE-R18
By
Mrs. L. Indira

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)
DUNDIGAL, HYDERABAD -500 043

Institute of Aeronautical Engineering 2020-2021

COMPLEX ANALYSIS AND SPECIAL FUNCTIONS

Complex analysis and special functions

Unit-I: Complex Functions and differentiation

Unit-II: Complex integration
Unit-III: Power series expansions of complex functions
Unit-IV: Special functions-I (Beta and Gamma functions)
Unit-IV: Special functions-II (Bessel Differential Equations)

MODULE-I
 COMPLEX FUNCTIONS AND DIFFERENTIATION

Second slide: Course outcome / Topic learning outcome

List the course outcome / Topic outcome

Name of the Topic covered	Topic Learning Outcome	Course Outcome
Complex Functions and differentiation	Identify the fundamental concepts of analyticity and differentiability for calculus of complex functions and their role in applied context.	Utilize the concepts of analyticity for finding complex conjugates and their role in applied contexts.

Complex number:

For a complex number $z=x+i y$, the number $\operatorname{Re} z=x$ is called the real part of z and the number $\operatorname{Im} z=y$ is said to be the its imaginary part. If $x=0, z$ is said to be a purely imaginary number.

Definition : Let $\mathrm{z}=\mathrm{x}+\mathrm{iy} \in \mathrm{C}$. The complex number $\mathrm{z}=\mathrm{x}-\mathrm{iy}$ is called the complex conjugate of z and $|z|=\sqrt{x^{2}+y^{2}}$ is said to be the absolute value or the modulus of the complex number z.

COMPLEX FUNCTIONS AND DIFFERENTIATION

Let D be a nonempty set in C. A single-valued complex function or, simply, a complex function f $: D \rightarrow C$ is a map that assigns to each complex argument $z=x+i y$ in D a unique complex number $w=u+i v$. We write $w=f(z)$.

The set D is called the domain of the function f and the set $f(D)$ is the range or the image of f. So, a complex-valued function fof a complex variable z is a rule that assigns to each complex number z in a set D one and only one complex number w. We call w the image of z under f.

COMPLEX FUNCTIONS AND DIFFERENTIATION

If $z=x+i y \in D$, we shall write $f(z)=u(x, y)+i v(x, y)$ or $f(z)$
$=u(z)+i v(z)$. The real functions u and v are called the real and, respectively, the imaginary part of the complex function f. Therefore, we can describe a complex
function with the aid of two real functions depending on two real variables.

Example 1.The function $f: C \rightarrow C$, defined by $f(z)=z^{3}$, can be written as $f(z)=u(x, y)+i v(x, y)$, with $u, v: R^{2} \rightarrow R$ given by $u(x, y)=$ $x^{3}-3 x y^{2}, v(x, y)=3 x^{2} y-y^{3}$.
Example 2.For the function $f: C \rightarrow C$, defined by $f(z)=e^{z}$, we have $u(x, y)=e^{x} \cos y, v(x, y)=e^{x} \sin y$, for any $(x, y) \in R^{2}$.

COMPLEX FUNCTIONS AND DIFFERENTIATION

Exercise 1: Prove that $\lim _{\varepsilon \rightarrow 2} \frac{z}{z}$ does not exist.
Solution : To prove that the above limit does not exist, we compute this limit as $z \rightarrow 0$ on the real and on the imaginary axis, respectively. In the first situation, i.e. for $z=x \in R$, the value of the limit is 1 . In the second situation,
i.e. for $z=i y$, with $y \in R$, the limit is -1 . Thus, the limit depends on the direction from which we approach 0 , which implies that the limit does not exist.

COMPLEX FUNCTIONS AND DIFFERENTIATION

Let $w=f(z)$ be a given function defined for all z in a neighbourhood of z_{0}.If $\lim _{\substack{i m \\ 0 \rightarrow 0}} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$ exists, the function $f(z)$ is said to be derivable at z_{0} and the limit is denoted by ${ }_{f\left(z_{0}\right)} \cdot f\left(z_{0}\right)$ if exists is called the derivative of $\mathbf{f}(\mathrm{z})$ at z_{0}

Exercise : $\mathrm{f}(\mathrm{z})=\left|z^{2}\right|$ is a function which is continuous at all z but not derivable at any

Z $\neq 0$
Solution: Let $\mathrm{f}(\mathrm{z})=\left|z^{2}\right|=z \bar{z}$
Then $f(z)=z_{z_{0} \bar{z}_{0}}$

${ }_{2}^{l t} f(z)=f\left(\mathrm{Z}_{\mathrm{o}}\right)$
The function is continuous at all z

The Cauchy-Riemann equations on a pair of realvalued functions of two real variables $u(x, y)$ and $v(x, y)$ are the two equations:

$$
\begin{aligned}
& \text { 1. } \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
& \text { 2. } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{aligned}
$$

Typically u and v are taken to be the real and imaginary parts respectively of a complex-valued function of a single complex variable $z=x+i y, f(x+i y)=u(x, y)+$ $i v(x, y)$

- We found

$$
\frac{d f}{d z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \quad \frac{d f}{d z}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

$\square \quad$ For a unique derivative, these expressions must be equal. That is, a necessary condition for the existence of a derivative of function of a complex variable is that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \quad \text { Cauchy - Riemann conditions }
$$

$\square \quad$ We've proved that if $\frac{d f}{d z}$ exists,
(implies)
\Rightarrow
Cauchy-Riemann conditions (necessity).

polar form of Cauchy-Riemann equation

polar form of Cauchy-Riemann equation:

Theorem:
If $f(z)=f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)$ and $\mathbf{f}(\mathbf{z})$ is derivable at $z_{0}=r_{0} e^{i \theta_{0}}$ then

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

Proof: Let $z=r e^{i \theta}$ Then $f(z)=f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)$
Differentiating it with respect to r partially,
$\frac{\partial}{\partial r} f(z)=f^{\prime}(z) \frac{\partial z}{\partial r}=f^{\prime}(z) e^{i \theta}$
$f^{\prime}(\mathrm{z})=\frac{1}{e^{i \theta}} \frac{\partial f}{\partial r}=\frac{1}{e^{i \theta}}\left(u_{r}+i v_{r}\right)$
$\rightarrow(1)$

Similarly differentiating partially with respect to θ

$$
\begin{align*}
& \frac{\partial f}{\partial \theta}=f^{\prime}(z) \frac{\partial z}{\partial \theta}=f^{\prime}(z) \cdot r i e^{i \theta} \\
& \therefore f^{\prime}(z)=\frac{1}{r i e^{i \theta}}\left(u_{\theta}+i v_{\theta}\right) \tag{2}
\end{align*}
$$

From (1) and (2) we have

$$
\begin{aligned}
& \frac{1}{e^{i \theta}}\left(u_{r}+i v_{r}\right)=\frac{1}{r i e^{i \theta}}\left(u_{\theta}+i v_{\theta}\right) \\
& \therefore u_{r}+i v_{r}=\frac{1}{r} \frac{\partial v}{\partial \theta}-i \frac{1}{r} \frac{\partial u}{\partial \theta}
\end{aligned}
$$

Equating real and imaginary parts ,we get $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$

COMPLEX FUNCTIONS AND DIFFERENTIATION

Analytic function

A complex function is said to be analytic on a region r if it is complex differentiable at every point in R. The terms holomorphic function, differentiable function, and complex differentiable function are sometimes used interchangeably with "analytic function"

If a complex function is analytic on a region R, it is infinitely differentiable in R.

Singularities:

A complex function may fail to be analytic at one or more points through the presence of singularities, or along lines or line segments through the presence of branch cuts.

Eg. $f(z)=\frac{1}{z}$ is analytic every where except at $z=0$.
At $\mathrm{z}=0 \quad f^{\prime}(z)$ does not exist.
So $z=O$ is an isolated singular point.

COMPLEX FUNCTIONS AND DIFFERENTIATION

Entire function

A complex function that is analytic at all finite points of the complex plane is said to be entire. A single-valued function that is analytic in all but possibly a discrete subset of its domain, and at those singularities goes to infinity like a polynomial (i.e., these exceptional points must be poles and not essential singularities), is called a meromorphic function.

Cauchy-Riemann equations

The Cauchy-Riemann equations on a pair of realvalued functions of two real variables $u(x, y)$ and $v(x, y)$ are the two equations:

$$
\begin{aligned}
& \text { 1. } \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
& \text { 2. } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{aligned}
$$

Typically u and v are taken to be the real and imaginary parts respectively of a complex-valued function of a single complex variable $z=x+i y, f(x+i y)=u(x, y)+$ $\mathrm{iv}(x, y)$

COMPLEX FUNCTIONS AND DIFFERENTIATION

Conjugate harmonic function:

If two harmonic functions u and v satisfy the Cauchy-Reimann equations in a domain D and they are real and imaginary parts of an analytic function f in D then v is said to be a conjugate harmonic function of u in D.If $f(z)=u+i v$ is an analytic function and if u and v satisfy Laplace's equation , then u and v are called conjugate harmonic functions.

C-R equations in polar form

The Cauchy-Riemann equations can be written in other coordinate systems. For instance, it is not difficult to see that in the system of coordinates given by the polar representation $z=r e^{i \theta}$ these equations take the following form:

$$
\begin{aligned}
& \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \\
& \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
\end{aligned}
$$

COMPLEX FUNCTIONS AND DIFFERENTIATION

Problem: Show that the function $f(z)=e^{z}$ satisfies the Cauchy-Riemann equations.
Solution:
since $e^{z}=e^{x}(\cos y+i \sin y)$,

Indeed it follows that

$$
\begin{aligned}
& u(x, y)=e^{x} \cos y, \quad v(x, y)=e^{x} \sin y, u(x, y)=e^{x} \cos y, \quad v(x, y)=e^{x} \operatorname{si} \\
& \text { and } \quad \frac{\partial u}{\partial x}=e^{x} \cos y=\frac{\partial v}{\partial y} ; \quad \frac{\partial u}{\partial y}=e^{x} \sin y=-\frac{\partial v}{\partial x}
\end{aligned}
$$

Moreover, e^{z} is complex derivable and it follows immediately that its complex derivative is e^{2}.

COMPLEX FUNCTIONS AND DIFFERENTIATION

Construction of analytic function whose real or imaginary part is known:
Suppose $f(z)=u+i v$ is an analytic function , whose real part u is known. We can find v, the imaginary part and also the function $f(z)$.

COMPLEX FUNCTIONS AND DIFFERENTIATION

Problem: Showthat $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left|f^{\prime}(z)\right|=0$ where $f(z)$ is an analytic function.

Solution: Taking $x=\frac{z+\bar{z}}{2}, y=\frac{z-\bar{z}}{2}=\frac{-i}{2}(z-\bar{z})$
We have $\frac{\partial}{\partial z}=\frac{\partial}{\partial x}\left(\frac{\partial x}{\partial z}\right)+\frac{\partial}{\partial y}\left(\frac{\partial y}{\partial z}\right)=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)$
And $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$

COMPLEX FUNCTIONS AND DIFFERENTIATION

$\therefore \frac{\partial^{2}}{\partial z \partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \cdot \frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)=\frac{1}{4}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$
Hence $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\log \left|f^{\prime}(z)\right|=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\frac{1}{2} \log \left|f^{\prime}(z)\right|^{2}\right)\right.$

$$
=\mathbf{2} \frac{\partial^{2}}{\partial z \partial z}
$$

$\left[\left(\log f^{\prime}(z) f^{\prime}(\bar{z})\right)\right]$

$$
\left(\because|z|^{2}=z \bar{z}\right)
$$

$$
=2 \frac{\partial^{2}}{\partial z \partial \bar{z}}
$$

$\left[\left(\log f^{\prime}(z)+f^{\prime}(\bar{z})\right)\right]$
$=2$
$\left[\frac{\partial}{\partial \bar{z}} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{\partial}{\partial z} \frac{f^{\prime \prime}(z)}{f^{\prime}(z-)}\right]$
$=2(0+0)=0$

Since $\mathrm{f}(\mathrm{z})$ is analytic, $\mathrm{f}(\mathrm{z})$ is analytic, $f^{\prime}(\mathrm{z})$ is also analytic and $\frac{\partial f^{\prime}(z)}{\partial \bar{z}}=0, \frac{\partial f^{\prime}(\bar{z})}{\partial z}=0$

Problem: Show that $f(z)= \begin{cases}\frac{x y(x+i y)}{x^{2}+y^{4}} & , z \neq 0 \\ 0 & , z=0\end{cases}$ is not analytic at $\mathrm{z}=0$ although $\mathrm{C}-\mathrm{R}$ equations satisified at origin.

COMPLEX FUNCTIONS AND DIFFERENTIATION

Solution: $\quad \frac{f(z)-f(0)}{z-0}=\frac{f(z)-0}{z}=\frac{f(z)}{z}$

$$
=\frac{x y^{2}(x+i y)}{\left(x^{2}+y^{4}\right) \cdot z}=\frac{x y^{2}(z)}{\left(x^{2}+y^{4}\right) \cdot z}=\frac{x y^{2}}{\left(x^{2}+y^{4}\right)}
$$

Clearly $x \underset{y \rightarrow 0}{\lim } 0 \frac{x y^{2}}{\left(x^{2}+y^{4}\right)}=\underset{y \rightarrow 0}{\lim _{x \rightarrow 0} 0} \frac{x y^{2}}{\left(x^{2}+y^{4}\right)} \quad=0$

Along path $\mathrm{y}=\mathrm{mx}$

$$
z \rightarrow 0 \frac{f(z)-f(0)}{z-0}=x \rightarrow 0 \frac{x\left(m^{2} \cdot x^{2}\right)}{\lim ^{2}+m^{4} \cdot x^{4}}=x \rightarrow 0 \lim _{\rightarrow} 0 \frac{m^{2} \cdot x^{2}}{1+m^{4} \cdot x^{2}}=0
$$

COMPLEX FUNCTIONS AND DIFFERENTIATION

Along path $\mathrm{x}=\mathrm{my}^{2}$

$$
z \rightarrow 0 \frac{\lim _{z \rightarrow}(z)-f(0)}{z-0}=y \rightarrow 0 \frac{\lim ^{2}\left(m \cdot y^{2}\right)}{y^{4}+m^{2} \cdot y^{4}}=y \rightarrow 0 \frac{\lim }{1+m^{2}} \neq 0
$$

Limit value depends on m i.e on the path of approach and its different for the different paths Followed and therefore limit does not exists.

Hence $f(z)$ is not differentiable at $z=0$. Thus $f(z)$ is not analytic at $z=0$

COMPLEX FUNCTIONS AND DIFFERENTIATION

To prove that $C-R$ conditions are satisified at origin

Let $f(z)=u+i v=\frac{x y^{2}(x+i y)}{\left(x^{2}+y^{4}\right)}$
Then $u(x, y)=\frac{x^{2} y^{2}}{\left(x^{2}+y^{4}\right)}$ and $v(x, y)=$ $\frac{x y^{3}}{\left(x^{2}+y^{4}\right)}$ for $\mathbf{Z} \neq 0$

Also $u(0,0)=0$ and $v(0,0)=0$
$[\because f(z)=0$ at $z=0]$

NOW $\frac{\partial u}{\partial x}=x \xrightarrow{\lim } 0 \frac{u(x, 0)-u(0,0)}{x}=x \xrightarrow{\lim } 0 \frac{0}{x}=0$

$$
\begin{aligned}
\frac{\partial u}{\partial y} & =y \xrightarrow{\lim } 0 \frac{u(0, y)-u(0,0)}{y}=x \rightarrow 0 \frac{\mathrm{O}}{y}=0 \\
\frac{\partial v}{\partial x} & =x \rightarrow 0 \\
\frac{\lim }{x} \frac{v(x, 0)-v(0,0)}{\partial}=x \rightarrow 0 & \frac{0}{x}=0 \\
\frac{\partial v}{\partial y} & =y \xrightarrow{\lim } 0 \frac{v(0, y)-v(0,0)}{y}=x \xrightarrow{\lim } 0 \frac{0}{y}=0
\end{aligned}
$$

Thus C-R equations are satisified are satisified at the origin

Hence $f(z)$ is not analytic at $z=0$ even C-R equations are satisified at origin.

Milne Thomson method:

Problem : Find the regular function whose imaginary part is $\log \left(x^{2}+y^{2}\right)+x-2 y$.

Solution: Given $v=\log \left(x^{2}+y^{2}\right)+x-2 y$

$$
\begin{aligned}
& \therefore \frac{\partial v}{\partial x}=\frac{2 x}{x^{2}+y^{2}}+1 \quad \rightarrow(1) \quad \text { and } \frac{\partial v}{\partial y}=\frac{2 y}{x^{2}+y^{2}}-2 \rightarrow(2) \\
& \quad f^{\prime}(z)=\quad \frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}+i \frac{\partial v}{\partial x} \quad \text { (Using C-R } \\
& \text { equation) }
\end{aligned}
$$

$$
\begin{equation*}
=\frac{2 y}{x^{2}+y^{2}}-2+\left(\frac{2 x}{x^{2}+y^{2}}+1\right) \tag{1}
\end{equation*}
$$

COMPLEX FUNCTIONS AND DIFFERENTIATION

By Milne Thomson method,$^{\prime}(z)$ is expressed in terms of z by replacing $x z$ and y by 0 .

Hence $f^{\prime}(z)=-2+i\left(\frac{2 z}{z^{2}}+1\right)=-2+i\left(\frac{2}{z}+1\right)$
On integrating, $f(z)=\int\left[-2+i\left(\frac{2}{z}+1\right)\right] d z+c$
$=-2 z+i(2 \log z+z)+c=2 i \log z-(2-i) z+c$.

COMPLEX FUNCTIONS AND DIFFERENTIATION

Problem: Show that the function $u=4 x y-3 x+2$ is harmonic .construct the corresponding analytic function $f(z)=u+i v$ in terms of z.

Solution: Given $u=4 x y-3 x+2 \rightarrow$ (1)
Differentiating (1) partially w.r.t .x, $\frac{\partial u}{\partial x}=4 y-3$
Again differentiating $\frac{\partial^{2} u}{\partial x^{2}}=0$
Again differentiating (1) partially w.r.t.y, $\frac{\partial u}{\partial x}=4 x$
Again differentiating $\frac{\partial^{2} u}{\partial y^{2}}=0$

Let a, b, c, d denote four complex

 constants with the restriction$a d \neq b c$ that. Then the function

$$
w=s(z)=\frac{a z+b}{c z+d}
$$

is called a bilinear transformation, a Möbius transformation, or a linear fractional transformation.

COMPLEX FUNCTIONS AND DIFFERENTIATION

There exists a unique bilinear transformation that maps three distinct points z_{1}, z_{2} and z_{3}
onto three distinct
points W_{1}, W_{2} and W_{3}
respectively. An implicit formula forthe mapping is given by the equation

$$
\begin{array}{r}
\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)} \\
=\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w_{1}-w_{3}\right)\left(w_{2}-w_{1}\right)}
\end{array}
$$

Problem: construct the bilinear transformation $W=S(z)$ that
 ontothepoints $w_{1}=-1, w_{z}=0, \quad w_{s}=1$, respectively.

Solution: We use the implicit formula and write

$$
\begin{aligned}
& \frac{(z+\dot{I})(1-\dot{I})}{(z-\dot{I})(1+\dot{I})}=\frac{(w+1)(0-1)}{(w-1)(0+1)} \\
& \frac{(z+\text { in })(1-\dot{L})}{(z-\dot{I})(1+\dot{L})}=\frac{w+1}{-w+1} .
\end{aligned}
$$

COMPLEX FUNCTIONS AND DIFFERENTIATION

Expanding this equation, collecting terms involving w and zw on the left and then simplify.

$$
\begin{aligned}
& (1+\dot{I}) z \pi+(1-\dot{I}) \pi+(1+\dot{I}) z+(1-\dot{I}) \\
& \text { = } \\
& (-1+\dot{I}) z \mathbb{N}+(-1-\dot{I}) \mathbb{N}+(1-\dot{I}) z+(1+\dot{I}) \\
& z \mathbb{W}+\dot{I} z \mathbb{W}+\mathbb{W}-\dot{1} \mathbb{W}+z+\dot{I} z+l-\dot{I} \\
& = \\
& -z W+\dot{I} z W-W-\dot{I} W+z-\dot{I} z+1+\dot{I}
\end{aligned}
$$

COMPLEX FUNCTIONS AND DIFFERENTIATION

$$
\begin{aligned}
2 z w+2 w & =-2 \dot{\text { in }}+2 \dot{1} \\
z w+w & =-\dot{1} z+\dot{1} \\
\pi(1+z) & =\dot{1}(1-z)
\end{aligned}
$$

Therefore the desired bilinear transformation is

$$
w=S(z)=\frac{\dot{\text { in }}(1-z)}{l+z} .
$$

Problem: Find the bilinear

 transformation $w=S(z)$ that maps thepoints $z_{1}=-2, z_{8}=-1-1, z_{2}=0$ onto the points $w_{1}=-1, w_{z}=0, w_{z}=1$
, respectively.

Solution. Again, we use the implicit formula and write

$$
\begin{aligned}
& \frac{(z-(-2)((-1-\dot{1})-0)}{(z-0)((-1-\dot{1})-(-2)}=\frac{(w-(-1)(0-1)}{(w-1)(0-(-1))} \\
& \frac{(z+2)(-1-\dot{1})}{(z)(-1-\dot{1}+2)}=\frac{(w+1)(-1)}{(w-1)(1)}
\end{aligned}
$$

$$
\frac{z+2}{z} \frac{-l-\dot{\text { i }}}{l-\dot{\text { in }}}=\frac{1+\pi}{l-\pi}
$$

Using the fact that $\frac{-1-i}{1-i}=\frac{1}{i}$, we rewrite

 this equation as$$
\frac{z+2}{i z}=\frac{1+w}{1-w}
$$

We now expand the equation and
obtain $(z+2)(1-w)=i z(1+w)$
$z+2-z w-2 w=i z+i z w$
$z-i z+2=z w+2 w+i z w$
$z(1-i)+2=w(z+i z+2)$
$(1-i) z+2=m(1+i) z+2)$
which can be solved for w in terms of z, giving the desired solution

$$
w=s(z)=\frac{(1-i) z+2}{(1+i) z+2}
$$

COMPLEX FUNCTIONS AND DIFFERENTIATION

EXCERCISE PROBLEMS:

1)Show that the real part of an analytic function $f(z)$ where $\mathrm{u}=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is a harmonic function. Hence find its harmonic conjugate.
2) Prove that the real part of analytic function $f(z)$ where $u=$ $\log |z|^{2}$ is harmonic function. If so find the analytic function by Milne Thompson method.
3)Obtain the regular function $f(z)$ whose imaginary part of an analytic function is $\frac{x-y}{x^{2}+y^{2}}$
4) Find an analytic function $f(z)$ whose real part of an analytic function is $\mathrm{u}=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$ by Milne-Thompson method.
5) Find an analytic function $f(z)=u+i v$ if the real part of an analytic function is $u=a(1+\cos \theta)$ using Cauchy-Riemann equations in polar form.
6) Prove that if $u=x^{2}-y^{2}, v=-\frac{y}{x^{2}+y^{2}}$ both u and v satisfy Laplace's equation, but $u+i v$ is not a regular (analytic) function of z.
7)Show that the function $\mathrm{f}(z)=\sqrt{|x y|}$ is not analytic at the origin although Cauchy -Riemann equations are satisfied at origin.
8) If $w=\varnothing+i \varphi$ represents the complex potential for an electric field where $\varphi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$ then determine the function φ.
9)State and Prove the necessary condition for $f(z)$ to be an analytic function in Cartesian form.
10)If u and v are conjugate harmonic functions then show that $u v$ is also a harmonic function.
11)Find the orthogonal trajectories of the family of curves $r^{2} \cos 2 \theta=c$
12)Find an analytic function whose real part is $u=$
13)Find an analytic function whose imaginary part is $v=e^{x}(x \sin y+$ $y \cos y)$
14)Find an analytic function whose real part is (i) $u=\frac{x}{x^{2}+y^{2}}$ (ii) $u=$ $\frac{y}{x^{2}+y^{2}}$
15) Find an analytic function whose imaginary part is v $=\frac{2 \sin x \sin y}{\cosh 2 x+\cosh 2 y}$
16) Find an analytic function $f(z)=u+i v$ if $u=a(1+\cos \theta)$
17)Find the conjugate harmonic of $u=e^{x^{2}-y^{2}} \cos 2 x y$ and find $f(z)$ in terms of z.
18)If $f(z)$ is an analytic function of z and if $u-v=e^{x}(\operatorname{cosy}-\sin y)$ find $f(z)$ in terms of z.
19)If $f(z)$ is an analytic function of z and if $u-v=(x-y)\left(x^{2}+4 x y+\right.$ $\left.y^{2}\right)$) find $f(z)$ in terms of z.
20) Find the orthogonal trajectories of the family of curves $x^{3} y$ $x y^{3}=\mathrm{C}=\mathrm{constant}$

MODULE-II
COMPLEX INTEGRATION

COMPLEX INTEGRATION

Defination: In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral as well, although that is typically reserved for line integrals in the complex plane.

The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector in the curve). This weighting distinguishes the line integral from simpler integrals defined on intervals. Many simple formulae in physics (for example, $W=F \cdot s$) have natural continuous analogs in terms of line integrals ($W=\int_{c} F$. ds). The line integral finds the work done on an object moving through an atomic or gravitational field.

COMPLEX INTEGRATION

In complex analysis, the line integral is defined in terms of

 multiplication and addition of complex numbers.Let us consider $\mathrm{F}(\mathrm{t})=\mathrm{u}(\mathrm{t})+\mathrm{i} \mathrm{v}(\mathrm{t}),{ }_{a \leq t \leq b}$. Where u and v are real valued continuous functions of t in $[a, b]$.
we define $\int_{a}^{b} F(t) d t=\int_{d}^{b} u(t) d t+i \int_{a}^{b} v(t) d t$
 is $\int_{a}^{k} u(t) d t$ and imaginary part of $\int_{a}^{h} F(t) d t$ is $\int_{0}^{k} v(t) d t$.

COMPLEX INTEGRATION

Problem: Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the paths

1) $y=x \quad$ 2) $y=x^{2}$

Solution: 1)along the line $y=x, d y=d x$ so that $d z=$ $d x+i d x=(1+i) d x$

$$
\begin{aligned}
& \therefore \int_{0}^{1+i}\left(x^{2}-i y\right) d z=\int_{0}^{1}\left(x^{2}-i x\right)(1+i) d x, \quad \text { since } \mathrm{y}=\mathrm{x} \\
&=(1+\mathrm{i})\left[\frac{x^{3}}{3}-i \frac{x^{2}}{2}\right]_{0}^{1} \\
&=(1+\mathrm{i})\left[\frac{1}{3}-\frac{1}{2} i\right] \\
&=\frac{5}{6}-\frac{1}{6} i
\end{aligned}
$$

2) alongtheparabola $y=x^{2}, d y=2 x d x$ sothatdz=dx+2ixdx
$d z=(1+2 i x) d x$ and $\times v a r i e s$ from Oto1

$$
\begin{gathered}
\therefore \int_{0}^{1+i}\left(x^{2}-i y\right) d z=\int_{0}^{1}\left(x^{2}-i x^{2}\right)(1+2 i x) d x \\
=(1-i) \int_{0}^{1} x^{2}(1+2 i x) d x \\
=(1-i)\left(\frac{1}{3}+\frac{1}{2} i\right) \\
=\frac{(1-i)(2+3 i)}{6} \\
=\frac{5}{6}+\frac{1}{6} i
\end{gathered}
$$

Problem: Evaluate $\int_{z=0}^{z=1+i}\left(x^{2}+2 x y+i\left(y^{2}-x\right)\right) d z$ along $y=x^{2}$

Solution: Given $\left.\mathrm{f}(\mathrm{z})=\mathrm{x}^{2}+2 x y+i\left(y^{2}-x\right)\right) d z$

$$
z=x+i y, d z=d x+i d y
$$

$$
\therefore \text { thecurve, } y=x^{2}, d y=2 x d x
$$

$\therefore d z=d x+2 x i d x=(1+2 i x) d x$
$F(z)=x^{2}+2 x x^{2}+i\left(x^{4}-x\right)$
$=x^{2}+2 x^{3}+i\left(x^{4}-x\right)$
$F(Z) d z=\left(x^{2}+2 x^{3}\right)+i\left(\left(x^{4}-x\right)(1+2 i x)\right) d x$ $=x^{2}+2 x^{3}+i\left(x^{4}-x\right)+2 i x^{3}+4 i x^{4}-2 x^{5}+2 x^{2}$

$$
\begin{aligned}
& \therefore \int_{c} f(z) d z= \int_{z=0}^{1+i} x^{2}+2 x y+i\left(y^{2}-x\right) d z \\
&\left.=\int_{0}^{1}\left(-2 x^{5}+3 x^{2}+2 x^{3}+i\left(5 x^{4}-x+2 x^{3}\right)\right) d x\right) \\
&= {\left[-\frac{x^{6}}{3}+x^{3}+\frac{x^{4}}{2}+i\left(\frac{5 x^{5}}{5}-\frac{x^{2}}{2}+\frac{x^{4}}{2}\right]_{0}^{1}\right.} \\
&= {\left[\left(\frac{-1}{3}+1+\frac{1}{2}\right)+\left(\frac{5}{5}-\frac{1}{2}+\frac{1}{2}\right)\right]-0 } \\
&= \frac{7}{6}+\frac{5}{5} i=\frac{7}{6}+i \\
& \int_{c} f(z) d z=\frac{7}{6}+i
\end{aligned}
$$

CAUCHY INTEGRAL THEOREM

STATEMENT : let $\mathrm{F}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ be analytic on and within a simple closed contour (or curve) ' c ' and let $f^{\prime}(z)$ be continuous there, then $\int f(z) d z=0$

Proof: $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$
And dz=dx+idy

$$
\begin{aligned}
& \Rightarrow f(z) \cdot d z=(u(x, y)+i v(x, y)) d x+i d y \\
& f(z) \cdot d z=u(x, y) d x+i u(x, y) d y+i v(x, y) d x+i^{2} v(x, y) d y \\
& f(z) \cdot d z=u(x, y) d x-v(x, y) d y+i(u(x, y) d y+v(x, y) d x
\end{aligned}
$$

Integrate both sides, we get

$$
\int f(z) d z=\int(u d x-v d y)+i(u d y+v d x)
$$

By greens theorem, we have

$$
\int M d x+N d y=\iint \frac{\partial \mathrm{N}}{\partial \mathrm{x}}-\frac{\partial \mathrm{M}}{\partial \mathrm{Y}} \mathrm{dxdy}
$$

Now $\int f(z) d z=\iint\left(-\frac{\partial v}{\partial \mathrm{x}}-\frac{\partial \mathrm{u}}{\partial \mathrm{Y}}\right) \mathrm{dxdy}+i\left(\frac{\partial \mathrm{u}}{\partial \mathrm{x}}-\frac{\partial \mathrm{v}}{\partial \mathrm{Y}}\right) \mathrm{dxdy}$
Since $f^{\prime}(z)$ is continuous \&four partial derivatives i.e $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ are also continuous in the region R enclosed by C, Hence we can apply Green's Theorem.

Using Green's Theorem in plane, assuming that R is the region bounded by C.

It is given that $f(z)=u(x, y)+i v(x, y)$ is analytic on and within c.
Hence $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
Using this we have

$$
\int_{c} f(z) d z=\iint_{R} \mathrm{O} \quad d x d y+i \iint_{R} \mathrm{O} \quad d x d y=0
$$

Hence the theorem.

Cauchy's integral formula

Cauchy's integral formula states that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)} d z
$$

where the integral is a contour integral along the contour c enclosing the point z_{0}.

Generalization of Cauchy's integral formula:

Generalization of Cauchy's integral formula states that

$$
f^{n}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)^{n+1}} d z
$$

where the integral is a contour integral along the contour cenclosing the point z_{0}

Problem: Evaluate using cauchy's integral formula $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where c is the circle $|z|=3$
Solution: Given $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$
Both the points $\mathrm{z}=1, \mathrm{z}=2$ line inside $|z|=3$
Resolving into partial fractions

$$
\frac{1}{(z-1)(z-2)}=\frac{A}{(z-1)}+\frac{B}{(z-2)}
$$

$$
\mathrm{A}=-1, \mathrm{~B}=1
$$

From(1)

$$
\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z=\int_{c} \frac{-e^{2 z}}{(z-1)} d z+\int_{c} \frac{e^{2 z}}{(z-2)} d z
$$

COMPLEX INTEGRATION

$$
\begin{aligned}
= & -2 \pi i \mathrm{if}(1)+2 \pi \mathrm{if}(2) \\
= & -2 \pi \mathrm{ie}^{2.1}+2 \pi \mathrm{ie}^{2.2} \\
& =-2 \pi \mathrm{ie}^{2}+2 \pi i \mathrm{e}^{4}=2 \pi i\left(e^{4}-\mathrm{e}^{2}\right)
\end{aligned}
$$

Problem: Using cauchy'sintegralformula to evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1) z-2)} d z$, where c is the circle $|z|=3$
Solution: $\int_{c} \frac{f(z)}{(z-1) z-2)} d z=\left(\int_{c} \frac{1}{(z-2)} d z+\int_{c} \frac{1}{(z-1)} d z\right) \mathrm{f}(\mathrm{z}) \mathrm{d} \mathrm{z}$

$$
\begin{aligned}
& =\int_{c} \frac{f(z)}{(z-2)} d z+\int_{c} \frac{f(z)}{(z-1)} d z \\
& =2 \Pi i f(2)-2 \Pi \mathrm{if}(1) \\
= & 2 \Pi \mathrm{i}(\sin 4 \Pi+\cos 4 \Pi)-(\sin \Pi+\cos \Pi)) \\
= & 2 \Pi \mathrm{i}(1-(-1))=4 \Pi \mathrm{i}
\end{aligned}
$$

$$
\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1) z-2)} d z=4 \Pi i
$$

Problem: Evaluate $\int_{c} \frac{(z-1)}{(z+1)^{2}(z-2)} d z \quad$ whrere $\quad \mathrm{c}$ is $|Z-i|=2$
Solution: the singularities of $\frac{(z-1)}{(z+1)^{2}(z-2)}$ are given by
$(z+1)^{2}(z-2)=0$
$\Rightarrow \mathrm{Z}=-1$ and $\mathrm{z}=2$
$\mathrm{Z}=-1$ lies inside the circle since $|-1-i|-2<0$
$\mathrm{Z}=2$ lies outside the circle sinceI2-iI-2>0|2-i|-2>0
The given line integral can be written as

$$
\begin{equation*}
\int_{c} \frac{(z-1)}{(z+1)^{2}(z-2)} d z=\int_{c} \frac{\frac{(z-1)}{(z-2)}}{(z+1)^{2}} \tag{1}
\end{equation*}
$$

The derivative of analytic function is given by

$$
\begin{equation*}
\int_{c} \frac{f(z)}{(z-a)^{n+1}} d z=\frac{2 \pi i f^{n}(a)}{n!} \tag{2}
\end{equation*}
$$

From (1) and (2) $f(z)=\frac{(z-1)}{(z-2)}, a=-1, n=1$

$$
f^{1}(z)=\frac{1(z-2)-1(z-1)}{(z-2)^{2}}=\frac{1}{(z-2)^{2}}
$$

$$
f^{1}(-1)=\frac{1}{-9}
$$

Substituting in (2), we get

$$
\begin{aligned}
\int_{c} \frac{(z-1)}{(z+1)^{2}(z-2)} & d z=\frac{2 \pi i}{1}\left(-\frac{1}{9}\right) \\
& =\frac{-2}{9} \Pi i
\end{aligned}
$$

Problem: Evaluate $\int_{c} \frac{e^{2 z}}{(z+1)^{4}} d z$ where $\mathrm{c}:|z-1|=1$
Solution: the singular points of $\frac{e^{2 z}}{(z+1)^{4}} d z$ are givenby 7

$$
(\mathrm{z}+1)^{4}=0 \Rightarrow z=-1
$$

The singular point $z=-1$ lies insidethecirclec: $|z-1|=3$
Applying cauchy's integral formula for derivatives

$$
\begin{equation*}
\int_{c} \frac{f(z)}{(z-a)^{n+1}} d z=\int_{c} \frac{2 \pi i f^{n}(-1)}{n!} d z- \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& f(z)=e^{2 z}, n=3, a=-1 \\
& f(z)=2 e^{2 z} \\
& f^{1}(z)=4 e^{2 z} \\
& f^{11}(z)=8 e^{2 z} \\
& \left.\left.f^{111}\right) z\right)=16 e^{2 z} \\
& f^{111}(-1)=16 e^{-2}
\end{aligned}
$$

substituting in(1)

$$
\begin{aligned}
\int_{c} \frac{e^{2 z}}{(z+1)^{4}} d z & =\int_{c} \frac{2 \pi i f^{111}(-1)}{n!} \\
= & \frac{2 \pi i 16 e^{-2}}{2!} \\
& =16 \Pi i \mathrm{e}^{-2}
\end{aligned}
$$

Problem: Use cauchy's integral formula to evaluate $\int_{c} \frac{e^{-2 z}}{(z+1)^{3}} d z \quad$ with $c:|z|=2$

Solution: Given $\int_{c} \frac{e^{-2 z}}{(z+1)^{3}} d z$

$$
\mathrm{f}(\mathrm{z})=\mathrm{e}^{-2 z}
$$

the singular poin $z=-1$ lies inside the given circle $|z|=2$
apply Cauchy's integral formula for derivatives

$$
\int_{c} \frac{e^{-2 z}}{(z+1)^{3}} d z=\frac{2 \pi i f^{1}(-1)}{2!} \quad\left[\because \int_{c} \frac{f(z)}{(z-a)^{3}}=\frac{2 \pi i f^{1}(a)}{2!}\right]
$$

Where $f(z)=e^{-2 z}$

$$
\begin{gathered}
\mathrm{f}^{1}(\mathrm{z})=-2 \mathrm{e}^{-2 \mathrm{z}} \\
\mathrm{f}^{11}(\mathrm{z})=4 \mathrm{e}^{-2 \mathrm{z}} \\
\mathrm{f}^{11}(-1)=4 \mathrm{e}^{2}
\end{gathered}
$$

$\therefore \int_{c} \frac{e^{-2 z}}{(z+1)^{3}} d z=\frac{2 \pi i 4 e^{2}}{2}=4 \pi i e^{2}$

Problem: Evaluate $\int_{c} \frac{d z}{z^{8}(z+4)} d z$

Withc: $|z|=2$
Solution:

The singularities of

$$
\begin{aligned}
& \int_{c} \frac{d z}{z^{8}(z+4)} d z \text { are given by } \\
& z^{8}(z+4)=0 \Rightarrow z=0, z=-4 \text { The point } z=0
\end{aligned}
$$

lie inside and the $z=-4$ lies outside the circle $|z|=2$

By the derivative of analytic function.

Problem: Evaluate using integral formula $\oint_{c} \frac{e^{2 z} d z}{(z-1)(z-2)}$ where c is the circle $|z|=3$

Solution: Let $(\mathrm{z})=\mathrm{e}^{\mathrm{z}}$ which is analytic within the circle $\mathrm{c}:|z|=3$ and the two singular points $a=1, a=2$ lie inside c.
$\oint_{c} \frac{e^{2 z} d z}{(z-1)(z-2)}=\begin{aligned} & \oint^{2 z\left(\frac{1}{z-2}-\frac{1}{z-1}\right) d z} \\ & \oint_{c} \frac{e^{2 z}}{z-2} d z-\oint_{c} \frac{e^{2 z}}{z-1} d z\end{aligned}$

COMPLEX INTEGRATION

Now using cauchy's integral formula, we obtain

$$
\begin{aligned}
\oint_{c} \frac{e^{2 z} d z}{(z-1)(z-2)} & =2 \pi i e^{4}-2 \pi i e^{2} \\
& =2 \pi i\left(e^{4}-e^{2}\right) \\
\oint_{c} \frac{e^{2 z} d z}{(z-1)(z-2)} & =2 \pi i\left(e^{4}-e^{2}\right)
\end{aligned}
$$

Problem : Evaluate $\oint_{c} \frac{3 z^{2}+z}{z^{2}-1} d z$ where cisthe circle $|z-1|=1$
Solution: Given $f(z)=3 z^{2}+z$
$Z=\mathbf{a}=+1$ or -1
The circle $|z-1|=1$ has centre at $z=1$ and radius 1 and includes the point $z=1, f(z)=3 z^{2}+z$ is an analytic function

COMPLEX INTEGRATION

$$
\begin{align*}
& \text { Also } \frac{1}{z^{2}-1}=\frac{1}{(z-1)(z+1)}=\frac{1}{2}\left(\frac{1}{z-1}-\frac{1}{z+1}\right) \\
& \oint \frac{3 z^{2}+z}{z^{2}-1}=\frac{1}{2}\left[\int_{c} \frac{3 z^{2}+z}{z-1} d z\right]-\frac{1}{2}\left[\int_{c} \frac{3 z^{2}+z}{z+1} d z\right]- \tag{1}
\end{align*}
$$

Since $\mathrm{z}=1$ lies inside c, we have by cauchy's integralformula

$$
\begin{aligned}
\oint_{c} \frac{3 z^{2}+z}{z^{2}-1} d z & =2 \pi i f(i) \\
& =2 \pi i * 4
\end{aligned}
$$

COMPLEX INTEGRATION

Bycauchy'sintegral theorem

 ,since $z=-1$ lies out side c, we have$\int_{-\frac{3 z^{2}+z}{z-1} d z}=0$
From equation(1) we have

$$
\begin{aligned}
\oint_{c} \frac{3 z^{2}+z}{z^{2}-1} d z= & \frac{1}{2}(8 \pi i)-0 \\
& =4 \pi i
\end{aligned}
$$

COMPLEX INTEGRATION

EXCERCISE PROBLEMS:

1) Evaluate $\int \frac{d z}{z-z_{0}}$ where

$$
\mathbf{C}:\left|z-z_{0}\right|=\mathbf{r}
$$

2) Evaluate $\int_{(1,1)}^{(2,2)}(x+y) d x+(y-x) d y$ along the parabola $y^{2}=x$
3) Evaluate $\int_{c} \frac{z^{2}+4}{z^{2}-1} d z$ where

C: $|z|=2$ using Cauchy's Integral formula
4) Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where C : |z|=4 using Cauchy's integral
formula

using Cauchy's integral formula
6) Expand $f(z)=\int_{c} \frac{e^{z z}}{(z-1)^{3}}$ at a point $z=1$
7) Expand $f(z)=\int_{c} \frac{1}{z^{2}-4 z+3}$ for
$1<|z|<3$
8)Evaluate $\int\left(y^{2}+z^{2}\right) d x+\left(z^{2}+x^{2}\right) d y+\left(x^{2}+y^{2}\right) d z$ from $(0,0,0)$ to $(1,1,1)$, where

$$
\mathrm{C} \text { is the curve } x=t, x=t^{2}, x=t^{3}
$$

9) Evaluate $\int_{(0,0)}^{(1,1)}\left(3 x^{2}+4 x y+i x^{2}\right) d z$ along $y=x^{2}$

COMPLEX INTEGRATION

10) Evaluate ${ }^{\prime} \Gamma^{\prime}\left(x-y+i x^{2}\right) d z$
(i) alongthestraight from $z=0$ toz $z=$ 1-i -
(ii) along the real axis from $z=0$ toz $2=1$ and then alongaline parallel to real axis from $z=1$ toz $=1+i$
(iii) along the inaginary axis from $z=0$ to $z=1$ and then alonga line parallelto real axis z =ito $\geq=1 \div$ -
11) Evaluate ${ }^{2} \mathrm{I}_{1}(2 x+1+i y d z$ alone (1-i) to (2-i)
12) EValuate $\int\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right) d y$ Where cis boundary oftheregion $y=x=$ and $x=y^{2}$

MODULE-III
POWER SERIES EXPANSION OF COMPLEX FUNCTION

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Power series:

A series expansion is a representation of a particular function as a sum of powers in one of its variables, or by a sum of powers of another (usually elementary) function $f(z)$.

A power series in a variable zis an infinite sum of the form

$$
\sum a z^{\prime}
$$

A series of the form $\sum a_{n} z^{2}$ is called as power series.
That is $\sum a_{n} z^{n}=a_{1} z+a_{2} z^{2}+\ldots \ldots . .+a_{n} z^{n}+\ldots .$.

Taylor's series:

Taylor's theorem states that any function satisfying certain conditions may be represented by a Taylor series.

The Taylor series is an infinite series, whereas a Taylor polynomial is a polynomial of degree n and has a finite number of terms. The form of a Taylor polynomial of degree n for a function
$f(z)$ at $x=a$ is
$f(z)=f(a)+f^{\prime}(a)(z-a)+f^{\prime \prime}(a) \frac{(z-a)^{2}}{2!}+f^{\prime \prime \prime}(a) \frac{(z-a)^{3}}{3!}+\ldots \ldots \ldots+f^{n}(a) \frac{(z-a)^{n}}{n!}+\ldots \ldots .,|z-a|<r$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

A Maclaurin series is a Taylor series expansion of a function about $x=0$,

$$
f(z)=f(0)+f^{\prime}(0)(z)+f^{\prime \prime}(0) \frac{(z)^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{(z)^{3}}{3!}+\ldots \ldots \ldots .+f^{n}(0) \frac{(z)^{n}}{n!}+\ldots \ldots .
$$

This series is called as maclurins series expansion of $f(z)$.

Some important result:

$$
\begin{gathered}
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots \quad \text { for }-1<x \leq 1 \\
e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\ldots \quad \text { for }-\infty<x<\infty \\
\cos x=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\ldots \quad \text { for }-\infty<x<\infty \\
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots \quad \text { for }-1<x<1
\end{gathered}
$$

Problem: Determine the first four terms of the power series for $\sin 2 x$ using Maclaurin's series.

Solution:

Let
$f(x)=\sin 2 x \quad f(0)=\sin 0=0$
$f^{\prime}(x)=2 \cos 2 x$

$$
f^{\prime}(0)=2 \cos 0=2
$$

$$
f^{\prime \prime}(x)=-4 \sin 2 x
$$

$$
f^{\prime \prime}(0)=-4 \sin 0=0
$$

$$
f^{\prime \prime \prime}(x)=-8 \cos 2 x
$$

$$
f^{\prime \prime \prime}(0)=-8 \cos 0=-8
$$

$$
f^{i v}(x)=16 \sin 2 x
$$

$$
f^{\text {iv }}(0)=16 \sin 0=0
$$

$f^{v}(x)=32 \cos 2 x(0)$

$$
f^{v}(0)=32 \cos 0=32
$$

$f^{v i}(x)=-64 \sin 2 x$
$f^{v i}(0)=-64 \sin 0=0$
$f^{v i}(x)=-128 \cos 2 x \quad f^{\text {vii }}(0)=-128 \cos 0=-128$ $f(x)=\sin 2 x=0+2 x+0 x^{2}+(-8) \frac{x^{3}}{3!}+0 \cdot x^{4}+32 \frac{x^{5}}{5!}$

$$
=2 x-\frac{4 x^{3}}{3}+\frac{4 x^{5}}{15}
$$

Problem : Find the Maclaurin series for $f(z)=z e^{z}$ Express your answer in sigma notation.

Solution:

Let $f(z)=z e^{z}$

$$
f^{\prime}=e^{z}+z e^{z}
$$

$$
f^{\prime \prime}=e^{z}+e^{z}+z e^{z}
$$

$$
f^{\prime \prime \prime}=e^{z}+e^{z}+e^{z}+z e^{z}
$$

$$
\begin{aligned}
& f(0)=0 \\
& f^{\prime}(0)=1+0=1 \\
& f^{\prime \prime}(0)=1+1+0=2 \\
& f^{\prime \prime}(0)=1+1+1+
\end{aligned}
$$

$0=3$

$$
f^{\prime \prime}{ }^{\prime \prime}=e^{z}+e^{z}+e^{z}+e^{z}+z e^{z}
$$

$$
f^{\prime \prime \prime}(0)=1+1+1+
$$

$$
1+0=4
$$

$$
f(z)=0+1 z+\frac{2}{2!} z^{2}+\frac{3}{3!} z^{3}+\frac{4}{4!} z^{4}+\ldots \ldots \ldots \ldots
$$

$$
=z+z^{2}+\frac{1}{2} z^{3}+\frac{1}{6} z^{4}+\ldots \ldots \ldots . .
$$

$$
=\sum_{n=1}^{\infty} \frac{z^{n}}{(n-1)!}
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Laurent series:

In mathematics, the Laurent series of a complex function $f(z)$ is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied.

The Laurent series for a complex function $f(z)$ about a point c is given by:

$$
\begin{aligned}
& f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n} \\
& f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\sum_{n=1}^{\infty} b_{n} \frac{1}{(z-a)^{n}}
\end{aligned}
$$

where the a_{n} and a are constants.

Zero's of an analytic function:

A zero of an analytic function $f(z)$ is a value of z such that $f(z)=0$. Particularly a point a is called a zero of an analytic function $f(z)$ if $f(a)=0$.

$$
\text { Eg: } f(z)=\frac{(z+1)^{2}}{\left(z^{2}+1\right)^{2}}
$$

Now, $(z+1)^{2}=0$
$\mathrm{Z}=-1, \mathrm{z}=-1$ are zero's of an analytic function.
Zero's of $\mathbf{m}^{\text {th }}$ order:
If an analytic function $\mathrm{f}(\mathrm{z})$ can be expressed in the form $f(z)=(z-a)^{m} \Phi(z)$ where $\Phi(z)$ is analytic function and $\Phi(a) \neq 0$ then $\mathrm{z}=\mathrm{a}$ is called zero of $\mathrm{m}^{\text {th }}$ order of the function $\mathrm{f}(\mathrm{z})$.

- A simple zero is a zero of order 1 .

Eg: 1. $f(z)=(z-1)^{3}$

$$
\Rightarrow(z-1)^{3}=0
$$

$\mathrm{z}=1$ is a zero of order 3 of the function $\mathrm{f}(\mathrm{z})$.
2. $f(z)=\frac{1}{1-z}$
i.e $z=\infty$ is a simple zero of $f(z)$.
3. $f(z)=\sin z$
i.e $z=n \pi \quad \forall n=0,1,2,3$,
are simple zero's of $\mathrm{f}(\mathrm{z})$.

Problem: Find the first four terms of the Taylor's series expansion of the complex function $f(z)=\frac{z+1}{(z-3)(z-4)}$ about $z=2$. Find the region of
convergence.

Solution:

The singularities of the function $f(z)=\frac{z+1}{(z-3)(z-4)}$ are $z=3$ and $z=4$

Draw a circle with centre at $z=2$ and radius 1 .Then the distance of singularities from the centre are 1 and 2.

Hence within the circle $|z-2|=1$, the given function is analytic. Hence, it can be extended in Taylor's series within the circle $|z-2|=1$.

Hence $|z-2|=1$ is the circle of convergence.

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Now $f(z)=\frac{5}{z-4}-\frac{4}{z-3}$ (partial fraction), $\mathbf{f}(2)=3 / 2$

$$
\begin{aligned}
& f^{\prime}(z)=-\frac{5}{(z-4)^{2}}+\frac{4}{(z-3)^{2}}, \quad f^{\prime}(2)=\frac{11}{4} \\
& f^{\prime \prime}(z)=-\frac{8}{(z-3)^{3}}+\frac{10}{(z-4)^{3}}, \quad f^{\prime \prime}(2)=\frac{27}{4}
\end{aligned}
$$

$$
f^{\prime \prime \prime}(z)=\frac{24}{(z-3)^{4}}-\frac{30}{(z-4)^{4}} \quad, \quad f^{\prime \prime \prime}(2)=\frac{177}{8}
$$

Taylor's series expansion for $f(z)$ at $z=a$ is

$$
\begin{gathered}
f(z)=f(a)+f^{\prime}(a)(z-a)+f^{\prime \prime}(a) \frac{(z-a)^{2}}{2!}+f^{\prime \prime \prime}(a) \frac{(z-a)^{3}}{3!}+\ldots \ldots \ldots+f^{n}(a) \frac{(z-a)^{n}}{n!}+\ldots \ldots \\
\frac{z+1}{(z-3)(z-4)}=\frac{3}{2}+(z-2) \frac{11}{4}+\frac{(z-2)^{2}}{2!}\left(\frac{27}{4}\right)+\frac{(z-2)^{3}}{3!}\left(\frac{177}{8}\right)
\end{gathered}
$$

$$
f(z)=\frac{3}{2}+(z-2) \frac{11}{4}+(z-2)^{2}\left(\frac{27}{8}\right)+(z-2)^{3}\left(\frac{59}{16}\right)
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Problem: Obtain Laurent series for $f(z)=\frac{e^{2 z}}{(z-1)^{3}}$ about $z=1$.

Solution:

Given $f(z)=\frac{e^{2 z}}{(z-1)^{3}}$

$$
\begin{aligned}
& \text { Put } \mathbf{z - 1}=\mathbf{W} \quad \text { SO that } \quad \mathbf{z}=\mathbf{W}+\mathbf{1} \\
& \qquad \begin{array}{c}
f(z)=\frac{e^{2(1+w)}}{w^{3}} \\
f(z)=\frac{e^{2} e^{2 w}}{w^{3}} \\
=\frac{e^{2}}{w^{3}}\left[1+2 w+\frac{(2 w)^{2}}{2!}+\frac{(2 w)^{3}}{3!}+\ldots \ldots .\right] \text { if } w \neq 0 \\
=e^{2} \sum_{n=0}^{\infty} \frac{2^{n}}{n!} w^{n-3} \\
=e^{2} \sum_{n=0}^{\infty} \frac{2^{n}}{n!}(z-1)^{n-3} \quad, \text { if } z-\mathbf{1} \neq 0 \\
=e^{2} \sum_{n=0}^{\infty} \frac{2^{n}}{n!}(z-1)^{n-3} \quad, \text { if }|z-\mathbf{1}| \neq 0
\end{array} \\
& f(z)=e^{2} \sum_{n=0}^{\infty} \frac{2^{n}}{n!}(z-1)^{n-3} \quad, \text { if }|z-\mathbf{1}|>0
\end{aligned}
$$

Since points $|z-1| \leq 0$ will be singular points.

Abstract

Singular point of an analytic function: A point at which an analytic function $f(z)$ is not analytic, i.e. at which f ' (z) fails to exist, is called a singular point or singularity of the function.

There are different types of singular points:
Isolated and non-isolated singular points: A singular point z_{o} is called an isolated singular point of an analytic function $f(z)$ if there exists a deleted ε-spherical neighborhood of z_{o} that contains no singularity. If no such neighborhood can be found, z_{0} is called a non-isolated singular point. Thus an isolated singular point is a singular point that stands completely by itself, embedded in regular points. In fig la where z_{1}, z_{2} and z_{3} are isolated singular points. Most singular points are isolated singular points. A non-isolated singular point is a singular point such that every deleted e-spherical neighborhood of it contains singular points. See Fig. Ib where z_{o} is the limit point of a set of singular points. Isolated singular points include poles, removable singularities, essential singularities and branch points.

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1712. Yet an explicit expression of the error was not provided until much later on by JosephLouis Lagrange. An earlier version of the result was already mentioned in 1671 by James Gregory.

Brook Taylor (1685-1731)

This expansion assumes we have a function that is analytic in a disk.

$$
\begin{gathered}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \\
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime} \\
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!} \quad \text { "derivative formula" }
\end{gathered}
$$

Note: Both forms are useful.

Here z_{s} is the closest singularity.
The path C is any counterclockwise closed path that encircles the point z_{0}.

$$
R_{c}=\text { radius of convergence of the Taylor series }
$$

The Taylor series will converge within the radius of convergence, and diverge outside.

- Write the Cauchy integral formula in the form
f is analytic inside \mathcal{R}

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{z^{\prime}-z} d z^{\prime} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)-\left(z-z_{0}\right)} d z^{\prime} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)\left[1-\frac{z-z_{0}}{z^{\prime}-z_{0}}\right]^{\prime}} d z^{\prime} \quad\left(\left|z^{\prime}-z_{0}\right|>\left|z-z_{0}\right|\right) \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{z^{\prime}-z_{0}}\right)^{n} d z^{\prime} \\
& \begin{array}{l}
\text { uniform } \\
\\
\end{array} \quad \begin{array}{l}
= \\
2 \pi i \\
\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { derivative } \\
\text { formulas }
\end{array} \\
\Rightarrow & \left.\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \frac{f^{(n)}\left(z_{0}\right)}{n!} \quad \text { (recall } f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}\right) \\
& f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \Leftrightarrow \text { Taylor series expansion of } f(z) \text { about } z_{0}
\end{aligned}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}=\frac{f^{(n)}\left(z_{0}\right)}{n!} \quad \text { (both form s are us eful!) }
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Note that in the result for a_{n}, the integrand is analytic away from z_{0}, and hence the path is now arbitrary, as long as it encircles z_{0}.

$$
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}
$$

د Note that the construction is valid for any $\left|z-z_{0}\right|<\left|z_{s}-z_{0}\right|$ where z_{s} is the singularity nearest z_{0}; hence the series will converge if

$$
\left|z-z_{0}\right|<\left|z_{s}-z_{0}\right|
$$

Note: It can also be shown that the series will diverge for $\left|z-z_{0}\right|>\left|z_{s}-z_{0}\right|$

The radius of convergence of a Taylor series is the distance out to the closest singularity.

Key point:

The point z_{0} about which the expansion is made is arbitrary, but It determines the region of convergence of the Taylor series.

Converges for: $\left|z-z_{0}\right|<R_{c} \equiv\left|z_{s}-z_{0}\right|$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Properties of Taylor Series

$R_{c}=$ radius of convergence $=$ distance to closest singularity
$>$ A Taylor series will converge for $\left|z-z_{0}\right|<R_{s}$ (i.e., inside the radius of convergence).
$>$ A Taylor series will diverge for $\left|z-z_{0}\right|>R_{c}$ (i.e., outside the radius of convergence).
$>$ A Taylor series may be differentiated or integrated term-by-term within the radius of convergence. This does not change the radius of convergence.
$>$ A Taylor series convorges absolutely inside the radius of convergence (i.e., the series of absolute values converges).
$>$ A Taylor series converges uniformly for $\left|z-z_{0}\right| \leq R<R_{c}$.
$>$ When a Taylor series converges, the resulting function is an analytic function.
$>$ Within the common region of convergence, we can add and multiply Taylor series, collecting terms to find the resulting Taylor series.

Maclaurine's Series Expansion

Maclaurin series:

A Maclaurin series is a Taylor series expansion of a function about $x=0$,

$$
f(z)=f(0)+f^{\prime}(0)(z)+f^{\prime \prime}(0) \frac{(z)^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{(z)^{3}}{3!}+\ldots \ldots \ldots+f^{n}(0) \frac{(z)^{n}}{n!}+\ldots \ldots
$$

This series is called as maclurins series expansion of $f(z)$.

Some important result:

$$
\begin{aligned}
& \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots \text { for }-1<x \leq 1 \\
& e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\cdots \text { for }-\infty<x<\infty \\
& \cos x=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\ldots \text { for }-\infty<x<\infty \\
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots \quad \text { for }-1<x<1 \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
\end{aligned}
$$

Problem on Maclaurine's Series

Problem: Determine the first four terms of the power series for $\sin 2 \mathrm{x}$ using Maclaurin's series.

Solution:

$$
\begin{array}{ll}
\text { Let } \\
\begin{array}{ll}
\mathrm{f}(\mathrm{x})=\sin 2 \mathrm{x} & \mathrm{f}(0)=\sin 0=0 \\
\mathrm{f}^{\prime}(\mathrm{x})=2 \cos 2 \mathrm{x} & \mathrm{f}^{\prime}(0)=2 \cos 0=2 \\
\mathrm{f}^{\prime \prime}(\mathrm{x})=-4 \sin 2 \mathrm{x} & \mathrm{f}^{\prime}(0)=-4 \sin 0=0 \\
\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=-8 \cos 2 \mathrm{x} & \mathrm{f}^{\prime \prime}(0)=-8 \cos 0=-8 \\
\mathrm{f}^{\mathrm{v}}(\mathrm{x})=16 \sin 2 \mathrm{x} & \mathrm{f}^{\text {v }}(0)=16 \sin 0=0 \\
\mathrm{f}^{\mathrm{v}}(\mathrm{x})=32 \cos 2 \mathrm{x}(0) & \mathrm{f}^{\mathrm{v}}(0)=32 \cos 0=32 \\
\mathrm{f}^{\mathrm{vi}}(\mathrm{x})=-64 \sin 2 \mathrm{x} & \mathrm{f}^{\mathrm{vi}}(0)=-64 \sin 0=0 \\
\mathrm{f}^{\mathrm{vi} i}(\mathrm{x})=-128 \cos 2 \mathrm{x} & \mathrm{f}^{\text {vii }}(0)=-128 \cos 0=-128 \\
\mathrm{f}(\mathrm{x})=\sin 2 \mathrm{x}=0+2 \mathrm{x}+0 \mathrm{x}^{2}+(-8) \frac{x^{3}}{3!}+0 . \mathrm{x}^{4}+32 \frac{x^{5}}{5!} \\
& =2 \mathrm{x}-\frac{4 x^{3}}{3}+\frac{4 x^{5}}{15}
\end{array}
\end{array}
$$

The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass may have discovered it first in a paper written in 1841, but it was not published until after his death.

Pierre Alphonse Laurent (1813-1854)

This generalizes the concept of a Taylor series to include cases where the function is analytic in an annulus.

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

$$
\begin{aligned}
& \text { or } f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} b_{n} \frac{1}{\left(z-z_{0}\right)^{n}} \\
& \text { where } b_{n}=a_{-n} \\
& a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime} \quad \text { (derived later) }
\end{aligned}
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Here z_{a} and z_{p} are two singularities

Note:

The point z_{z} may be at infinity.
The path C is any counterclockwise closed path that stays inside the annulus an encircles the point z_{0} -

Note: We no longer have the "derivative formula" as we do for a Taylor series.

Laurent series:

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

The Laurent series converges inside the region

$$
a<\left|z-z_{0}\right|<b
$$

The Laurent series diverges outside this region if there are singularities at

$$
\left|z-z_{0}\right|=a, b
$$

This is particularly useful for functions that have poles.

Examples of functions with poles, and how we can choose a Laurent series:

$$
\begin{aligned}
& f(z)=\frac{1}{z} \quad\left(\text { Choose } z_{0}=0: a=0, b<\infty\right) \\
& f(z)=\frac{z}{z-1} \quad\left(\text { Choose } z_{0}=0: a=1, b<\infty\right) \\
& f(z)=\frac{z}{z-1} \quad\left(\text { Choose } z_{0}=1: a=0, b<\infty\right) \\
& f(z)=\frac{z}{(z-1)(z-2)} \quad\left(\text { Choose } z_{0}=0: a=1, b=2\right) \\
& f(z)=\frac{z}{(z-1)(z-2)} \quad\left(\text { Choose } z_{0}=0: a=2, b<\infty\right)
\end{aligned}
$$

Theorem:

The Laurent series expansion in the annulus region is unique.
(So it doesn't matter how we get it; once we obtain it by any series of valid steps, it is correct!)

This is justified by our Laurent series expansion formula, derived later.

Example:

$$
\begin{aligned}
& f(z)=\frac{\cos (z)}{z} \quad\left(z_{0}=0, a=0, b<\infty\right) \\
& \Rightarrow f(z)=\overbrace{\frac{1}{z}}^{\begin{array}{c}
\text { analytic } \\
\text { for }|z|>0
\end{array}}[\overbrace{1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\ldots}^{\text {valid for }|z|<\infty}]
\end{aligned}
$$

Hence $f(z)=\frac{1}{z}-\frac{z}{2!}+\frac{z^{3}}{4!}-\frac{z^{5}}{6!} \ldots, \quad 0<|z|<\infty$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

A Taylor series is a special case of a Laurent series.

$$
\begin{aligned}
& f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \\
& a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime} \\
& a_{n}=0, \quad n=-1,-2,-3 \ldots
\end{aligned}
$$

Here f is assumed to be analytic within C.

If $f(z)$ is analytic within C, the integrand is analytic for negative values of n. Hence, all coefficients a_{n} for negative n become zero (by Cauchy's theorem).

Derivation of the Laurent's Series

Derivation of Laurent Series

We use the "bridge" principle again

Pond, island, \& bridge
Pond: Domain of analyticity
Island: Region containing singularities
Bridge: Region connecting island and boundary of pond

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Contributions from the paths c_{1}

 and c_{2} cancel!- By Cauchy's Integral Formula,

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \oint_{C_{2}+\grave{\delta}_{1}-\grave{\delta}_{2}-C_{1}} \frac{f\left(z^{\prime}\right)}{z^{\prime}-z} d z^{\prime} \\
& =\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f\left(z^{\prime}\right)}{z^{\prime}-z} d z^{\prime}-\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f\left(z^{\prime}\right)}{z^{\prime}-z} d z^{\prime}
\end{aligned}
$$

where on $C_{2},\left|z^{\prime}-z_{0}\right|>\left|z-z_{0}\right|$,
$\Rightarrow \frac{1}{z^{\prime}-z}=\frac{1}{\left(z^{\prime}-z_{0}\right)-\left(z-z_{0}\right)}=\frac{1}{\left(z^{\prime}-z_{0}\right)\left(1-\frac{z-z_{0}}{z^{\prime}-z_{0}}\right)}=\frac{1}{z^{\prime}-z_{0}} \sum_{n=0}^{\infty} \frac{\left(z-z_{0}\right)^{n}}{\left(z^{\prime}-z_{0}\right)^{n}}=\sum_{n=0}^{\infty} \frac{\left(z-z_{0}\right)^{n}}{\left(z^{\prime}-z_{0}\right)^{n+1}}$
and on $C_{1},\left|z^{\prime}-z_{0}\right|<\left|z-z_{0}\right|$ (note the convergence regions for C_{1}, C_{2} overlap!)
$\Rightarrow \frac{1}{z^{\prime}-z}=\frac{1}{\left(z^{\prime}-z_{0}\right)-\left(z-z_{0}\right)}=\frac{-1}{\left(z-z_{0}\right)\left(1-\frac{z^{\prime}-z_{0}}{z-z_{0}}\right)}=-\sum_{n=0}^{\infty} \frac{\left(z^{\prime}-z_{0}\right)^{n}}{\left(z-z_{0}\right)^{n+1}} \stackrel{\substack{n \rightarrow-n^{\prime}-1, n^{\prime} \rightarrow n}}{=}-\sum_{n=-1}^{-\infty} \frac{\left(z-z_{0}\right)^{n}}{\left(z^{\prime}-z_{0}\right)^{n+1}}$

Hence,

$$
f(z)=\frac{1}{2 \pi i} \oint_{C_{2}+\dot{\alpha}_{2}-\delta_{2}-C_{1}} \frac{f\left(z^{\prime}\right)}{z^{\prime}-z} d z^{\prime}
$$

uniform

$$
\begin{aligned}
\stackrel{\text { convergence }}{=} & \frac{1}{2 \pi i} \sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \oint_{C_{2}} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime} \\
& +\frac{1}{2 \pi i} \sum_{n=-1}^{-\infty}\left(z-z_{0}\right)^{n} \oint_{C_{1}} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}
\end{aligned}
$$

Let $C_{1} \rightarrow C_{2}$ (call them path C).

We thus have

$$
\begin{aligned}
f(z)= & \frac{1}{2 \pi i} \sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime} \\
& +\frac{1}{2 \pi i} \sum_{n=-1}^{-\infty}\left(z-z_{0}\right)^{n} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}
\end{aligned}
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Because the integrand for the coefficient is analytic with \mathcal{R}, the path C is arbitrary as long as it stays within \mathcal{R}.

$$
\begin{aligned}
f(z)= & \frac{1}{2 \pi i} \sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime} \\
& +\frac{1}{2 \pi i} \sum_{n=-1}^{-\infty}\left(z-z_{0}\right)^{n} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}
\end{aligned}
$$

We thus have

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}
$$

The path C is now arbitrary, as long as it stays in the analytic (blue) region.

Problem on Taylor's and Laurent's Series

Example 1: Obtain all expansions of $f(z)=\frac{1}{z(z-1)}$ about the origin.

Use the integral formula for the a_{n} coefficients.

$$
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}
$$

The path C can be inside the yellow region or outside of it (parts (a) and (b)).

POWER SERIES EXPANSION OF COMPLEX FUNCTION

a) Laurent series with $a=0, b=1$

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{z^{\prime n+1}} d z^{\prime}=\frac{1}{2 \pi i} \oint_{C} \frac{1}{\left(z^{\prime}-1\right) z^{\prime n+2}} d z^{\prime}=\frac{1}{2 \pi i} \oint_{C} \frac{-1}{z^{\prime n+2}} \sum_{m=0}^{\infty} z^{\prime m} d z^{\prime}, \quad\left(\left|z^{\prime}\right|<1\right) \\
& =\frac{1}{2 \pi i} \oint_{C} \sum_{m=0}^{\infty} \frac{-1}{z^{\prime n-m+2}} d z^{\prime}=\frac{-1}{2 \pi i} \sum_{m=0}^{\infty} \oint_{C} \frac{1}{z^{\prime n-m+2}} d z^{\prime}=\frac{-1}{2 \pi i} \cdot\left\{\begin{array}{c}
2 \pi i, m=n+1 \\
0, m \neq n+1
\end{array}\right. \\
& =-1 \text { (for } m=n+1 \geq 0) \quad \text { From uniform convergence } \quad \text { From previous example in Notes } 3
\end{aligned}
$$

The path C is inside the yellow region.

POWER SERIES EXPANSION OF COMPLEX FUNCTION

b) Laurent series with $a=1, b=\infty$

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{z^{\prime n+1}} d z^{\prime}=\frac{1}{2 \pi i} \oint_{C} \frac{1}{\left(z^{\prime}-1\right) z^{\prime n+2}} d z^{\prime}=\frac{1}{2 \pi i} \oint_{C} \frac{1}{\left(1-\frac{1}{z^{\prime}}\right) z^{\prime n+3}} d z^{\prime} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{1}{z^{\prime} n+3} \sum_{m=0}^{\infty} \frac{1}{z^{\prime m}} d z^{\prime}, \quad\left(\left|z^{\prime}\right|>1\right)
\end{aligned} \quad \text { From previous exal } \quad \text {, }
$$

$$
=\frac{1}{2 \pi i} \oint_{C} \sum_{m=0}^{\infty} \frac{1}{z^{\prime n+m+3}} d z^{\prime}=\frac{1}{2 \pi i} \sum_{m=0}^{\infty} \oint_{C} \frac{1}{z^{\prime n+m+3}} d z^{\prime}=\frac{1}{2 \pi i} \cdot\left\{\begin{array}{c}
2 \pi i, m=-n-2 \\
0, m \neq-n-2
\end{array}\right.
$$

$$
=1 \quad(\text { for } m=-n-2 \geq 0)
$$

From uniform convergence

The path C is outside the yellow region.

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Summary of results for the example:

$$
\begin{gathered}
f(z)=\frac{1}{z(z-1)} \\
f(z)=-\frac{1}{z}-1-z-z^{2}-z^{3}-\cdots, 0<|z|<1 \\
f(z)=\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}+\cdots,|z|>1
\end{gathered}
$$

Note:

Often it is easier to directly use the geometric series (GS) formula together with some algebra, instead of the contour integral approach, to determine the coefficients of the Laurent expanson.

This is illustrated next (using the same example as in Example 1).

Problem on the Laurent's series

\bigcirc Example 1

Expand $f(z)=\frac{1}{z(z-1)}$ about the origin (we use partial fractions and GS):

$$
\begin{aligned}
& f(z)=\frac{1}{z(z-1)}=\frac{A}{z}+\frac{B}{z-1} \\
& A=\lim _{z \rightarrow 0} z f(z)=\lim _{z \rightarrow 0} \frac{z}{z(z-1)}=-1 \\
& B=\lim _{z \rightarrow 1}(z-1) f(z)=\lim _{z \rightarrow 1} \frac{\frac{z-1}{z(z-1)}}{z(z)}=1 \\
& \Rightarrow f(z)=\frac{1}{z(z-1)}=\frac{-1}{z}+\frac{1}{z-1}=\frac{-1}{z}-\frac{1}{1-z} \\
&
\end{aligned}
$$

Hence

$$
f(z)=-\frac{1}{z}-1-z-z^{2}-z^{3}-\cdots, 0<|z|<1
$$

Alternative expansion:

$$
\begin{aligned}
& f(z)=\frac{1}{z(z-1)}=\frac{-1}{z}+\frac{1}{z-1}=\frac{-1}{z}+\frac{1}{z}\left(\frac{1}{1-1 / z}\right) \\
& \Rightarrow f(z)=\frac{ \pm 1}{\Sigma}+\frac{1}{z}\left(1+\frac{1}{z}+\frac{1}{z^{2}}+\cdots\right)
\end{aligned}
$$

Hence

$$
f(z)=\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}+\cdots,|z|>1
$$

Problem on the Laurent's series

\bigcirc Example 2
Expand $f(z)=\frac{1}{(z-2)(z-3)}$ in a Taylor/Laurent series about $z_{0}=1$, valid following in the annular regions:
(a) $0 \leq|z-1|<1$,
(b) $1<|z-1|<2$,
(c) $|z-1|>2$.
a) For $0 \leq|z-1|<1$:

Using partial fraction expansion and GS,

$$
\begin{aligned}
f(z) & =\frac{1}{(z-2)(z-3)}=\frac{1}{z-3}-\frac{1}{z-2} \\
& =\frac{1}{(z-1)-2}-\frac{1}{(z-1)-1}=\frac{-1}{2[1-(z-1) / 2]}+\frac{1}{1-(z-1)} \\
& =-\frac{1}{2}\left[1+\frac{(z-1)}{2}+\frac{(z-1)^{2}}{2^{2}}+\cdots\right]+\left[1+(z-1)+(z-1)^{2}+\cdots\right]
\end{aligned}
$$

Hence

$$
f(z)=\frac{1}{2}+\frac{3}{4}(z-1)+\frac{7}{8}(z-1)^{2}+\frac{15}{16}(z-1)^{3}+\cdots, \quad 0 \leq|z-1|<1 \quad \text { (Taylor series) }
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

$$
f(z)=\frac{1}{(z-2)(z-3)}
$$

b) For $1<|z-1|<2$:

$$
f(z)=\frac{1}{(z-1)-2}-\frac{1}{(z-1)-1}=\frac{-1}{2[1-(z-1) / 2]}-\frac{1}{(z-1)[1-1 /(z-1)]}
$$

so
$f(z)=-\frac{1}{2}\left[1+\frac{(z-1)}{2}+\frac{(z-1)^{2}}{2^{2}}+\cdots\right]-\frac{1}{(z-1)}\left[1+\frac{1}{(z-1)}+\frac{1}{(z-1)^{2}}+\cdots\right]$
(Laurent series)

$$
f(z)=\frac{1}{(z-2)(z-3)}
$$

c) For $|z-1|>2$:

$$
\begin{aligned}
f(z) & =\frac{1}{(z-1)-2}-\frac{1}{(z-1)-1}=\frac{1}{(z-1)[1-2 /(z-1)]}-\frac{1}{(z-1)[1-1 /(z-1)]} \\
& =\frac{1}{(z-1)}\left[1+\frac{2}{(z-1)}+\frac{2^{2}}{(z-1)^{2}}+\cdots\right]-\frac{1}{(z-1)}\left[1+\frac{1}{(z-1)}+\frac{1}{(z-1)^{2}}+\cdots\right]
\end{aligned}
$$

so

$$
f(z)=\frac{1}{(z-1)^{2}}+\frac{3}{(z-1)^{3}}+\frac{7}{(z-1)^{4}}+\cdots
$$

(Laurent series)

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Summary of results for example

$$
f(z)=\frac{1}{(z-2)(z-3)}
$$

$$
\begin{aligned}
& f(z)=\frac{1}{2}+\frac{3}{4}(z-1)+\frac{7}{8}(z-1)^{2}+\frac{15}{16}(z-1)^{3}+\cdots, \quad 0 \leq|z-1|<1 \\
& f(z)=-\frac{1}{2}\left[1+\frac{(z-1)}{2}+\frac{(z-1)^{2}}{2^{2}}+\cdots\right]-\frac{1}{(z-1)}\left[1+\frac{1}{(z-1)}+\frac{1}{(z-1)^{2}}+\cdots\right], \quad 1<|z-1|<2
\end{aligned}
$$

$$
f(z)=\frac{1}{(z-1)^{2}}+\frac{3}{(z-1)^{3}}+\frac{7}{(z-1)^{4}}+\cdots,|z-1|>2
$$

Problem on the Laurent's series

- Example 3

Find the series expansion about $z=0$:

$$
\begin{aligned}
& f(z)=\left\{\begin{array}{ll}
\frac{1-\cos z}{z^{2}}, & z \neq 0 \\
1 / 2, & z=0
\end{array} \quad(z=0 \text { is a "removable" singularity })\right. \\
& 1-\cos z=4-\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots\right)=\frac{z^{2}}{2!}-\frac{z^{4}}{4!}+\frac{z^{6}}{6!}-\cdots
\end{aligned}
$$

Hence

$$
f(z)=\frac{1}{2!}-\frac{z^{2}}{4!}+\frac{z^{4}}{6!}-\cdots, \quad|z|<\infty
$$

Similarly, we have $f(z)=\frac{\sin z}{z}=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots|z|<\infty$

$$
\text { Note: } \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots \quad|z|<\infty
$$

Problem on the Laurent's series

© Example 4

$$
\text { Note : } \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots \quad|z|<\infty
$$

Find the series for $\sin z$ about $z=\pi$:

$$
\begin{aligned}
& f(z)=\sin z=\sin [(z-\pi)+\pi] \\
&=\sin (z-\pi) \cos \pi+\cos (z-\pi) \sin \pi=-\sin (z-\pi) \\
& f(z)=-(z-\pi)+\frac{(z-\pi)^{3}}{3!}-\frac{(z-\pi)^{5}}{5!}+\cdots,|z|<\infty
\end{aligned}
$$

Alternatively, directly use the derivative form ula for Taylor series :

$$
\begin{array}{lr}
f(\pi)=\sin \pi=0 & \\
f^{\prime}(\pi)=\cos \pi=-1 & f(z)= \\
f^{\prime \prime}(\pi)=-\sin \pi=0 & \\
f^{\prime \prime \prime}(\pi)=-\cos \pi=+1 & a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{}{(z} \\
f^{(i v)}(\pi)=\sin \pi=0 & \\
f^{(v)}(\pi)=\cos \pi=-1 & \\
& \\
f(z)=-(z-\pi)+\frac{(z-\pi)^{3}}{3!}-\frac{(z-\pi)^{5}}{5!}+\cdots, & |z|<\infty
\end{array}
$$

Problem on the Laurent's series

\diamond Example 5

Find the first three terms of the series for $\sin ^{2} z \ln (1-z)$ about $z=0$.

Since $\frac{1}{1-z}=1+z+z^{2}+\cdots,|z|<1$ then

$$
\begin{aligned}
& \int_{0}^{z} \frac{1}{1-z} d z=-\ln (1-z)=z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+\cdots,|z|<1 \\
& \Rightarrow \ln (1-z)=-z-\frac{z^{2}}{2}-\frac{z^{3}}{3}-\frac{z^{4}}{4}-\cdots,|z|<1
\end{aligned}
$$

Also $\sin ^{2} z=\left[z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right]\left[z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right]$

$$
=z^{2}-\frac{z^{4}}{3}+\frac{2}{45} z^{6}+\cdots
$$

The branch cut is chosen away from the yellow region.

Hence

$$
\begin{aligned}
\sin ^{2} z \ln (1-z) & =-\left(z^{2}-\frac{z^{4}}{3}+\frac{2}{45} z^{6}+\cdots\right)\left(z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+\cdots\right) \\
& =-z^{3}-\frac{z^{4}}{2}+0 \cdot z^{5}+\cdots, \quad|z|<1
\end{aligned}
$$

Summary of the methods for generating Taylors and Laurent's Series

Summary of Methods

- Taylor (not Laurent) series, $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, can be generatedusing $a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$
- Taylor and Laurent series, $f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, can be generated using $a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}} d z^{\prime}$
- To expand about $z=z_{0}$, first write $f(z)$ in the form $f\left[\left(z-z_{0}\right)+z_{0}\right]$, rearrange and expand using geometric series or other methods.
- Use partial fraction expansion and geometric series to generate series for rational functions (ratios of polynomials, degree of numerator less than degree of denominator).
- Laurent / Taylor series can be integrated or differentiated term-by-term within their region of convergence.

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Summary of Methods

- Note that for two Taylor or Laurent series,

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad g(z)=\sum_{n=-\infty}^{\infty} b_{n}\left(z-z_{0}\right)^{n}
$$

then $f(z)+g(z)=\sum_{n=-\infty}^{\infty}\left(a_{n}+b_{n}\right)\left(z-z_{0}\right)^{n}$ in their common region of convergence.

- Two Taylor series can be multiplied term -by-term within their common region of convergence :

$$
\begin{aligned}
& f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad g(z)=\sum_{m=0}^{\infty} b_{m}\left(z-z_{0}\right)^{m} \\
& \Rightarrow f(z) g(z)=\left(\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}\right)\left(\sum_{m=0}^{\infty} b_{m}\left(z-z_{0}\right)^{m}\right)=\sum_{p=0}^{\infty} c_{p}\left(z-z_{0}\right)^{p} \text { where } c_{p}=\sum_{n=0}^{p} a_{n} b_{p-n}
\end{aligned}
$$

Some more Examples on Taylor's and Laurent's series

1. Expand $\frac{1}{z-2}$ at $x=1$ in Taylor series

Solution: Given $f(z)=\frac{1}{z-2} \quad$ f(1) $=-1$

$$
\begin{gathered}
f^{\prime}(z)=\frac{-1}{(z-2)^{2}}, f^{\prime}(1)=-1 \\
f^{\prime \prime}(z)=\frac{2}{(z-2)^{3}}, f^{\prime \prime}(1)=-2 \\
f^{\prime \prime \prime}(z)=\frac{-6}{(z-2)^{4}}, f^{\prime \prime \prime}(1)=-6
\end{gathered}
$$

\therefore The Taylor series at $z=1$ is given by

$$
\begin{aligned}
f(z) & =f(a)+(z-a) \frac{f^{\prime}(a)}{1!}+(z-a)^{2} \frac{f^{\prime \prime}(a)}{2!}+\ldots \ldots \ldots \ldots \\
& =-1+(z-1)(-1)+\frac{(z-1)^{2}}{2!}(-2)+\frac{(z-1)^{3}}{3!}(-6)+. \\
& =-\left[1+(z-1)+(z-1)^{2}+(z-1)^{3}+\ldots \ldots \ldots \ldots\right]
\end{aligned}
$$

2. Expand $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ as a Laurent's series if (i) $|z|<2$ (ii) $|z|>3$ (iii) $2<|z|<3$

Solution:

$$
\text { Let } \begin{aligned}
f(z) & =\frac{z^{2}-1}{(z+2)(z+3)} \\
& =1+\frac{-5 z-7}{(z+2)(z+3)}
\end{aligned}
$$

Now $\frac{-5 z-7}{(z+2)(z+3)}=\frac{A}{z+2}+\frac{B}{z+3}$

$$
-5 z-7=A(z+3)+B(z+2)
$$

Put $\mathrm{z}=-3 \Rightarrow 15-7=-B \Rightarrow-B=8 \Rightarrow B=-8$
Put $z=-2 \Rightarrow 10-7=A \Rightarrow A=3$
$\therefore f(z)=1+\frac{3}{z+2}-\frac{8}{z+3}$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

(i) $|z|<2 \Rightarrow \frac{|z|}{2}<1$ also $\frac{|z|}{3}<1$

$$
\begin{aligned}
\therefore f(z) & =1+\frac{3}{2\left(1+\frac{z}{2}\right)}-\frac{8}{3\left(1+\frac{z}{3}\right)} \\
& =1+\frac{3}{2}\left(1+\frac{z}{2}\right)^{-1}-\frac{8}{3}\left(1+\frac{z}{3}\right)^{-1}
\end{aligned}
$$

$$
=1+\frac{3}{2}\left(1-\frac{z}{2}+\left(\frac{z}{2}\right)^{2}-\ldots \ldots\right)-\frac{8}{3}\left(1-\frac{z}{3}+\left(\frac{z}{3}\right)^{2}-\ldots \ldots .\right)
$$

(ii) $|z|>3 \Rightarrow 3<|z| \Rightarrow \frac{3}{|z|}<1,2<3<|z|, \frac{2}{|z|}<1$

$$
\begin{aligned}
f(z) & =1+\frac{3}{z+2}-\frac{8}{z+3} \\
& =1+\frac{3}{z\left(1+\frac{2}{z}\right)}-\frac{8}{z\left(1+\frac{3}{z}\right)} \\
& =1+\frac{3}{z}\left(1+\frac{2}{z}\right)^{-1}-\frac{8}{z}\left(1+\frac{3}{z}\right)^{-1} \\
& =1+\frac{3}{z}\left(1-\frac{2}{z}+\left(\frac{2}{z}\right)^{2}-\ldots \ldots\right)-\frac{8}{z}\left(1-\frac{3}{z}+\left(\frac{3}{z}\right)^{2}-\ldots \ldots .\right)
\end{aligned}
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

(iii) $2<|z|<3$

$$
\begin{aligned}
& \Rightarrow 2<|z|| | z \mid<3 \\
& \Rightarrow \frac{2}{|z|}<1, \frac{|z|}{3}<1
\end{aligned}
$$

$$
\begin{aligned}
f(z) & =1+\frac{3}{z+2}-\frac{8}{z+3} \\
& =1+\frac{3}{z\left(1+\frac{2}{z}\right)}-\frac{8}{3\left(1+\frac{z}{3}\right)} \\
& =1+\frac{3}{z}\left(1+\frac{2}{z}\right)^{-1}-\frac{8}{3}\left(1+\frac{z}{3}\right)^{-1} \\
& =1+\frac{3}{z}\left(1-\frac{2}{z}+\left(\frac{2}{z}\right)^{2}-\ldots \ldots\right)-\frac{8}{3}\left(1-\frac{z}{3}+\left(\frac{z}{3}\right)^{2}-\ldots \ldots .\right)
\end{aligned}
$$

3. Find Laurent's series expansion of $f(z)=\frac{7 z-2}{z(z-2)(z+1)}$ in $1<|z+1|<3$

Solution: Let $f(z)=\frac{7 z-2}{z(z-2)(z+1)}$

$$
\begin{aligned}
& \frac{7 z-2}{z(z-2)(z+1)}=\frac{A}{z}+\frac{B}{z-2}+\frac{C}{z+1} \\
& 7 z-2=A(z-2)(z+1)+B z(z+1)+C z(z-2) \\
& \text { Put } z=0, A=1 \\
& \quad z=2, B=2 \\
& \quad z=-1, C=-3
\end{aligned}
$$

$$
\begin{aligned}
& F(z)=\frac{7 z-2}{z(z-2)(z+1)} \\
& f(z)=\frac{1}{z}+\frac{2}{z-2}-\frac{3}{z+1}
\end{aligned}
$$

Given $1<\| z+1 \mid<3$
Now putt $\mathrm{t}=\mathrm{z}+1$, then $1<|t|<3$

$$
\begin{aligned}
& \Rightarrow 1<|t|| | t \mid<3 \\
& \Rightarrow \frac{1}{|t|}<1, \frac{|t|}{3}<1
\end{aligned}
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

$$
\begin{aligned}
\therefore f(z) & =\frac{1}{t-1}+\frac{2}{t-3}-\frac{3}{t} \\
& =-\frac{3}{t}+\frac{1}{t\left(1-\frac{1}{t}\right)}-\frac{2}{3\left(1-\frac{t}{3}\right)} \\
& =-\frac{3}{t}+\frac{1}{t}\left(1-\frac{1}{t}\right)^{-1}-\frac{2}{3}\left(1-\frac{t}{3}\right)^{-1} \\
& \left.=-\frac{3}{t}+\frac{1}{t}\left(1+\frac{1}{t}+\left(\frac{1}{t}\right)^{2}+\ldots \ldots\right)-\frac{2}{3}\left(1+\frac{t}{3}+\left(\frac{t}{3}\right)^{2}+\ldots \ldots\right)\right) \\
& \left.=-\frac{3}{z+1}+\frac{1}{z+1}\left(1+\frac{1}{z+1}+\left(\frac{1}{z+1}\right)^{2}+\ldots \ldots\right)-\frac{2}{3}\left(1+\frac{z+1}{3}+\left(\frac{z+1}{3}\right)^{2}+\ldots \ldots\right)\right)
\end{aligned}
$$

Definition: Zero of an analytic function

A point $z=a$ is said to be a zero of an analytic function $f(z)$ if $f(z)$ is zero at $\mathrm{z}=\mathrm{a}$.

If $\mathbf{f}(\mathbf{a})=\mathbf{0}$ and $\mathbf{f}^{\prime}(a) \neq 0$ then $z=a$ is called a simple zero of $\mathbf{f}(\mathrm{z})$ (or) a zero of the first order.

$$
\text { If } f(a)=f^{\prime}(a)=\ldots . .=f^{n-1}(a)=0 \& f^{n}(a) \neq 0 \text { then } \mathrm{z}=\mathbf{a} \text { is a zero of }
$$

order n.
Example; Let f(z) $=z^{2}$
Then $f^{\prime}(z)=2 z, f^{\prime \prime}(z)=2$
$f(0), f^{\prime}(0)=0, f^{\prime \prime}(0)=2 \neq 0$
$\therefore z=0$ is a zero of order 2 .

Singular point:

A point $z=a$ is said to be a singular point (or) singularity of $f(z)$ is not analytic at $z=a$.

Types of Singular Point:

Isolated Singular Point:

A point $z=a$ is said to be an isolated singular point of $f(z)$ if
(i) $f(z)$ is not analytic at $z=a$
(ii) $f(z)$ is analytic at all points for some neighbourhood of $z=a$

Example: $f(z)=\frac{z}{(z-1)(z-2)}$
Then $z=1,2$ are isolated points.

Definition

Pole:

A point $z=a$ is said to be a pole of $f(z)$ of order n if we can find a positive integer such that $\lim _{z \rightarrow a}(z-a)^{n} f(z) \neq 0$

Essential singular point:

A singular point $z=a$ is said to be an essential point $f(z)$ if the Laurent's series of $f(z)$ about $z=$ a possesses the infinite number of terms in the principal part (terms containing negative powers).

Example

Let $f(z)=e^{1 / 2}$
Clearly $z=0$ is a singular point
Also $f(z)=e^{y /=}=1+\frac{1 / z}{1!}+\frac{(1 / z)^{2}}{2!}+\ldots \ldots$.

$$
=1+\frac{1}{z}+\frac{1}{2!}\left(\frac{1}{z^{2}}\right)+\ldots \ldots .
$$

$\therefore \mathrm{z}=0$ is an essential singular point

Removable singular point:

A singular point $z=a$ is said to be a removable singular point of $f(z)$ if the Laurent's series of $f(z)$ about $z=$ a does not contain the principal part.

Example

$$
\text { Let } f(z)=\frac{\sin z}{z}
$$

Clearly $z=0$ is a singular point

$$
\begin{aligned}
f(z)=\frac{\sin z}{z} & =\frac{1}{z}\left[z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots \ldots . .\right] \\
& =1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\ldots \ldots \ldots .
\end{aligned}
$$

$Z=0$ is a removable singular point.

Problem on Definitions

1. Classify the nature of the singular point of $\quad \mathbf{f}(z)=\frac{\tan z}{z}$

Solution : $f(z)=\frac{\tan z}{z}$

$$
\begin{aligned}
& =\frac{1}{z}\left(z+\frac{z^{3}}{3}+\ldots \ldots\right) \\
& =\mathbf{1}+\frac{z^{2}}{3}+\ldots
\end{aligned}
$$

This is the Laurent's series of $f(z)$ about $z=0$ and there is no principal part.
$\therefore Z=0$ is a removable singular point.

$$
\text { Also } f(z)=\frac{\tan z}{z}=\frac{\sin z}{z \cos z}
$$

Poles of $f(z)$ are $z \cos z=0$
$\Rightarrow z=0, z=n \pi, n=0, \pm 1, \ldots$.
$\Rightarrow z=0, n \pi$ are simple poles (pole of order 1)

Problem on Definitions

2. Consider the function $f(z)=\frac{\sin z}{z^{4}}$. Find the pole and its order.

Solution: $\quad f(z)=\frac{\sin z}{z^{4}}$

$$
\begin{aligned}
& =\frac{1}{z^{4}}\left[z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots \ldots\right] \\
& =\frac{1}{z^{3}}-\frac{1}{6 z}+\frac{z}{120}-\ldots \ldots
\end{aligned}
$$

$\therefore z=0$ is a pole of order 3 .

Definition

The residue of a function $f(z)$ at a singular point $z=a$ is the coefficien b_{1} of $\frac{1}{z-a}$ in the Laurent's series of $\quad f(z)$ about the point $z=a$

EVALUATION OF RESIDUES

1. Suppose $z=$ a is a pole of order 1

Then $\{\operatorname{Re} \operatorname{sf}(z)\}_{==a}=\operatorname{Lim}_{z \rightarrow a}(z-a) f(z)$
2. Suppose $z=$ a is a pole of order n

Then $\{\operatorname{Resf}(Z)\}_{z=\alpha}=\operatorname{Lim}_{z=\alpha} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}(z-a)^{n} f(z)$
3. Suppose $z=$ a is a pole of order 1 and $f(z)=\frac{P(z)}{Q(z)}$

Then $\{\text { Res } f(z)\}_{==a}=\frac{P(a)}{Q^{\prime}(a)}$

Problems on Residues of a function by definition, Laurent's Series and by formulae method

Ex: Find the Laurent seriesof $f(z)=\frac{1}{z(z-2)^{3}}$ about the singularit ies $z=0$ and $z=2$. Henceverify that $z=0$ is a pole of order 1 and $z=2$ is a pole of order 3 , and find the residue of $f(z)$ at each pole.
(1) point $z=0$

$$
\begin{aligned}
f(z) & =\frac{-1}{8 z(1-z / 2)^{3}}=\frac{-1}{8 z}\left[1+(-3)\left(\frac{-z}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{-z}{2}\right)^{2}+\frac{(-3)(-4)(-5)}{3!}\left(\frac{-z}{2}\right)^{3}+\ldots\right] \\
& =-\frac{1}{8 z}-\frac{3}{16}-\frac{3}{16} z-\frac{5 z^{2}}{32}-\ldots \quad z=0 \text { is a pole of order } 1
\end{aligned}
$$

(2) point $z=2 \Rightarrow$ set $z-2=\xi \Rightarrow z(z-2)^{3}=(2+\xi) \xi^{3}=2 \xi^{3}(1+\xi / 2)$
$f(z)=\frac{1}{2 \xi^{3}(1+\xi / 2)}=\frac{1}{2 \xi^{3}}\left[1-\left(\frac{\xi}{2}\right)+\left(\frac{\xi}{2}\right)^{2}-\left(\frac{\xi}{2}\right)^{3}+\left(\frac{\xi}{2}\right)^{4}-\ldots\right]$

$$
=\frac{1}{2 \xi^{3}}-\frac{1}{4 \xi^{2}}+\frac{1}{8 \xi}-\frac{1}{16}+\frac{\xi}{32}-. .=\frac{1}{2(z-2)^{3}}-\frac{1}{4(z-2)^{2}}+\frac{1}{8(z-2)}-\frac{1}{16}+\frac{z-2}{32}-
$$

$z=2$ is a pole of order 3 , the residue of $f(z)$ at $z=2$ is $1 / 8$.

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Ex : Suppose that $f(z)$ has a pole of order m at the point $z=z_{0}$. By considering the Laurent seriesof $f(z)$ about z_{0}, deriving a general expressionfor the residue $\boldsymbol{R}\left(z_{0}\right)$ of $f(z)$ at $z=z_{0}$. Henceevaluate the residue of the function $f(z)=\frac{\exp i z}{\left(z^{2}+1\right)^{2}}$ at the point $z=i$.
$f(z)=\frac{\operatorname{expiz}}{\left(z^{2}+1\right)^{2}}=\frac{\text { expiz}}{(z+i)^{2}(z-i)^{2}}$ poles of order 2 at $z=i$ and $z=-i$ for poleat $z=i$:

$$
\begin{aligned}
& \frac{d}{d z}\left[(z-i)^{2} f(z)\right]=\frac{d}{d z}\left[\frac{\exp i z}{(z+i)^{2}}\right]=\frac{i}{(z+i)^{2}} \exp i z-\frac{2}{(z+i)^{3}} \exp i z \\
& R(i)=\frac{1}{1!}\left[\frac{i}{(2 i)^{2}} e^{-1}-\frac{2}{(2 i)^{3}} e^{-1}\right]=\frac{-i}{2 e}
\end{aligned}
$$

Example 1 Find the residue of $f(z)=\frac{z+2}{(z-2)(z+1)^{2}}$ about each singularity.
Solution: The poles of $f(z)$ are given by

$$
\begin{aligned}
& (z-2)=0, z+1=0 \\
& \Rightarrow z=2, z=-1
\end{aligned}
$$

\therefore The poles of $f(z)$ are $z=2$ is a simple poles and $z=-1$ is a pole of order 2 .

$$
\begin{aligned}
\therefore & {[\operatorname{Resf}(z)]_{z=2}=\lim _{z \rightarrow 2}(z-2) f(z) } \\
& =\lim _{z \rightarrow 2}(z-2) \frac{z+2}{(z-2)(z+1)^{2}}=\frac{4}{9}
\end{aligned}
$$

$$
\begin{aligned}
\therefore[\operatorname{Re} s f(z)]_{z=-1} & =\lim _{z \rightarrow-1} \frac{d}{d z}\left[(z-2)^{2} f(z)\right] \\
& =\lim _{z \rightarrow-1} \frac{d}{d z}\left[(z-2)^{2} \frac{z+2}{(z-2)(z+1)^{2}}\right] \\
& =\lim _{z \rightarrow-1} \frac{d}{d z}\left[\frac{z+2}{z-2}\right] \\
& =\lim _{z \rightarrow-1}\left[\frac{(z-2)(1)-(z+2)(1)}{(z-2)^{2}}\right]=-\frac{4}{9}
\end{aligned}
$$

Problem: Determine the poles of the function $f(z)=\frac{z+2}{(z+1)^{2}(z-2)}$ and the residue at each pole.

Solution: The poles of $f(z)$ are given by $(z+1)^{2}(z-2)=0$
Here $z=2$ is a simple pole and $z=-1$ is a pole of order 2 .
Residue at $\mathrm{z}=2$ is

$$
\lim _{z \rightarrow 2}(z-2) f(z)=\lim _{z \rightarrow 2}(z-2) \frac{z+2}{(z+1)^{2}(z-2)}=\frac{4}{9}
$$

Residue at $\mathrm{z}=-1$ is

$$
\begin{aligned}
& \lim _{z \rightarrow-1} \frac{d}{d z}(z+1)^{2} f(z)=\lim _{z \rightarrow-1} \frac{d}{d z}(z+1)^{2} \frac{z+2}{(z+1)^{2}(z-2)} \\
& \lim _{z \rightarrow-1} \frac{d}{d z} \frac{(z+2)}{(z-2)}=\lim _{z \rightarrow-1} \frac{-4}{(z-2)^{2}}=\frac{-4}{9}
\end{aligned}
$$

Problem: Find the residue of the function $f(z)=\frac{1-e^{2 z}}{z^{4}}$ at the poles.
Solution: Let $f(z)=\frac{1-e^{2 z}}{z^{4}}$
$z=0$ is a pole of order 4
Residue of $f(z)$ at $z=0$ is

$$
\begin{aligned}
& =\frac{1}{3!} \lim _{z \rightarrow 0} \frac{d^{3}}{d z^{3}}(z-0)^{4} \frac{\left(1-e^{2 z}\right)}{z^{4}} \\
& =\frac{1}{3!} \lim _{z \rightarrow 0} \frac{d^{3}}{d z^{3}}\left(1-e^{2 z}\right) \\
& =\frac{1}{3!} \lim _{z \rightarrow 0} \frac{d^{2}}{d z^{2}}\left(-2 e^{2 z}\right) \\
& =\frac{1}{3!} \lim _{z \rightarrow 0} \frac{d}{d z}\left(-4 e^{2 z}\right) \\
& =\frac{1}{3!} \lim _{z \rightarrow 0}\left(-8 e^{2 z}\right) \\
& =\frac{-8}{3!}=\frac{-4}{3} .
\end{aligned}
$$

Example:

$f(z)=\frac{1}{\sin z}$ has simple poles at $z=n \pi, n=0, \pm 1, \pm 2, \cdots$
$\operatorname{Res} f(n \pi)=\lim _{z \rightarrow n \pi}(z-n \pi) \times \frac{1}{\sin z}$

L'Hospital's

$$
\stackrel{\lim _{z \rightarrow n \pi}}{ } \frac{1}{\cos z}=(-1)^{n}
$$

Alternatively,

$$
\operatorname{Res} f(n \pi)=\lim _{z \rightarrow n \pi}(z-n \pi) \frac{1}{\sin z}=\lim _{z \rightarrow n \pi}(z-n \pi) \frac{1}{\sin (z-n \pi+n \pi)}
$$

$$
=\lim _{z \rightarrow n \pi}(z-n \pi) \frac{1}{\sin (z-n \pi) \cos n \pi+\cos (z-n \pi) \sin n \pi}
$$

$$
=\lim _{z \rightarrow n \pi} \frac{(z-n \pi)}{\sin (z-n \pi) \cos n \pi}=(-1)^{n} \text { since we already know } \lim _{z \rightarrow 0} \frac{z}{\sin z}=1
$$

$$
\operatorname{Res} f(n \pi)=(-1)^{n}
$$

Example: $f(z)=\tan z$

$$
\begin{aligned}
& \tan z=\frac{\sin z}{\cos z} \text { has simple poles at } z=\frac{(2 n+1) \pi}{2}, \\
& \quad \text { for } n=0, \pm 1, \pm 2, \cdots \\
& \Rightarrow \operatorname{Res}(\tan z)=\frac{\sin \frac{(2 n+1) \pi}{2}}{-\sin \frac{(2 n+1) \pi}{2}}=-1
\end{aligned}
$$

$$
\operatorname{Res}(\tan z)=-1, \quad z=\frac{(2 n+1) \pi}{2}
$$

Example:

$$
\begin{aligned}
& f(z)=\frac{1}{\sin ^{2} z} \text { has poles of order 2at } z=n \pi, n=0, \pm 1, \pm 2, \cdots \\
& \Rightarrow \operatorname{Res} f(n \pi)
\end{aligned} \begin{aligned}
& =\left.\frac{d}{d z}\left[\frac{(z-n \pi)^{2}}{\sin ^{2} z}\right]\right|_{z=n \pi}=\left[\frac{2(z-n \pi) \sin ^{2} z-2(z-n \pi)^{2} \sin z \cos z}{\sin ^{4} z}\right]_{z=n \pi} \\
& =\left[\frac{2(z-n \pi) \sin z-2(z-n \pi)^{2} \cos z}{\sin ^{3} z}\right]_{z=n \pi}
\end{aligned}
$$

After three applications of L'Hospital's rule:

$$
\operatorname{Res} f(n \pi)=0
$$

Alternative calculation:

$$
\begin{aligned}
f(z) & =\frac{1}{\sin ^{2} z}=\frac{1}{\sin ^{2}(z-n \pi+n \pi)}=\frac{1}{\sin ^{2}(z-n \pi)}=\frac{1}{\sin ^{2} u} \quad(u=z-n \pi) \\
& =\frac{1}{\left(u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\cdots\right)^{2}}=\frac{1}{u^{2}\left(1-\frac{u^{2}}{3!}+\frac{u^{4}}{5!}-\cdots\right)^{2}} \\
\substack{\text { Geometric } \\
\text { Series }} & \frac{1}{u^{2}}\left[1+\left(\frac{u^{2}}{3!}-\frac{u^{4}}{5!}+\frac{u^{6}}{7!} \cdots\right)+\left(\frac{u^{2}}{3!}-\frac{u^{4}}{5!}+\frac{u^{6}}{7!} \cdots\right)^{2}+\cdots\right]^{2} \\
& =\frac{1}{u^{2}}\left[1+\frac{u^{2}}{3!}+\left(-\frac{1}{5!}+\frac{1}{(3!)^{2}}\right) u^{4}+\cdots\right]^{2}=\frac{1}{u^{2}}+\frac{2}{3!}+\cdots
\end{aligned}
$$

$$
\text { missing } \frac{a_{-1}}{u} \text { term } \Rightarrow \operatorname{Res} f(n \pi)=0
$$

Residue at Infinity

Residue at infinity:

The residue at infinity is given by:
$\operatorname{Res}[f(z)]_{Z=x}=-\frac{1}{2 \pi i_{C}} \int_{c} f(z) d z$
Where f is an analytic function except at finite number of singular points and C is a closed countour so all singular points lie inside it.

Problem: Find the residue of the function $f(z)=z^{3} \cos \left(\frac{1}{z}\right)$ at $z=\infty$.
Solution: Let $f(z)=z^{3} \cos \left(\frac{1}{z}\right)$

$$
\begin{aligned}
g(t) & =f\left(\frac{1}{t}\right)=\frac{1}{t^{3}} \cos t \\
& =\frac{1}{t^{3}}\left[1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\ldots \ldots \ldots . .\right] \\
& =\left[\frac{1}{t^{3}}-\frac{1}{2 t}+\frac{t}{24}-\ldots \ldots \ldots . .\right]
\end{aligned}
$$

There fore $\operatorname{Re} s f(z)=-$ coefficient ot t in the eapansion of $\mathrm{g}(\mathrm{t})$ about $\mathrm{t}=0$

$$
=-1 / 24 \text {. }
$$

Cauchy's Residue Theorem

CAUCHY'S RESIDUE THEOREM

If $f(z)$ is analytic at all point inside and on a simple closed curve C Except at a finite number of point $z_{1,} z_{2}, z_{3} \ldots \ldots z_{\boldsymbol{n}}$ inside \mathbf{C}
Then

$$
\left.\int_{c} f(z) d z=2 \pi i \quad \text { [Sum of residues of } \mathbf{f}(\mathbf{z}) \text { at } z_{1,} z_{2}, z_{3}, \ldots z_{n}\right]
$$

Proof
Given that $f(z)$ is not analytic
Only at $z_{1}, z_{2}, z_{3}, \ldots z_{n}$
Draw the non intersecting small
Circles $c_{1}, c_{2}, c_{3} \ldots c_{n}$ with centre at $z_{1}, z_{2}, z_{3}, \ldots z_{n}$ and radii $\rho_{1}, \rho_{2}, \rho_{3} \ldots \rho_{n}$

Then $f(z)$ is analytic in the region
Between c and $c_{1}, c_{2}, c_{3} \ldots c_{n}$

$$
\begin{equation*}
\int_{c} f(z) d z=\int_{c_{1}} f(z) d z+\int_{c_{2}} f(z) d z+\ldots+\int_{c_{n}} f(z) d z \tag{1}
\end{equation*}
$$

Now $z_{1}, z_{2}, z_{3} \ldots z_{n}$ are the singular points of $f(z)$.
\therefore Res $f(z)_{z=z_{i}}=$ the coefficient of $\frac{1}{z-z_{i}}$ in the Laurent's series of

$$
f(z) \text { about } \quad z=z_{i} \text { (by definition of residues) }
$$

$$
=b_{1}=\frac{1}{2 \pi i} \int_{c_{1}} \frac{f(z)}{\left(z-z_{1}\right)^{1-n}} d z
$$

Since $\left(b_{n}=\frac{1}{2 \pi i} \int_{c_{1}} \frac{f(z)}{\left(z-z_{1}\right)^{z-n}} d z\right)$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

$$
\begin{align*}
& =\frac{1}{2 \pi i} \int_{c_{1}} \frac{f(z)}{\left(z-z_{1}\right)^{0}} d z \\
& =\frac{1}{2 \pi i} \int_{c_{1}} f(z) d z \\
& \Rightarrow \int_{c_{1}} f(z) d z=2 \pi i|\operatorname{Res} f(z)|_{z=z_{i}} \tag{2}
\end{align*}
$$

From (1) and (2)

$$
\begin{aligned}
& \int_{c_{1}} f(z) d z=2 \pi|\operatorname{Re} s f(z)|_{z=z_{1}}+2 \pi|\operatorname{Re} s f(z)|_{z=z_{2}}+2 \pi|\operatorname{Re} s f(z)|_{z=z_{n}} \\
& =2 \pi|\operatorname{Re} s f(z)|_{z=z_{1}}+|\operatorname{Re} s f(z)|_{z=z_{2}}+\ldots+|\operatorname{Re} s f(z)|_{z=z_{n}}
\end{aligned}
$$

$$
\left.=2 \pi i \text { \{Sum of residues of } f(z) \text { at } z=z_{1}, z_{2}, z_{3} \ldots z_{n}\right\}
$$

Example 1 Find the residue of $f(z)=\frac{z+2}{(z-2)(z+1)^{2}}$ about each singularity.
Solution: The poles of $f(z)$ are given by

$$
\begin{aligned}
& (z-2)=0, z+1=0 \\
& \Rightarrow z=2, z=-1
\end{aligned}
$$

\therefore The poles of $f(z)$ are $z=2$ is a simple poles and $z=-1$ is a pole of order 2 .

$$
\begin{aligned}
\therefore & {[\operatorname{Resf}(z)]_{z=2}=\lim _{z \rightarrow 2}(z-2) f(z) } \\
& =\lim _{z \rightarrow 2}(z-2) \frac{z+2}{(z-2)(z+1)^{2}}=\frac{4}{9}
\end{aligned}
$$

$$
\begin{aligned}
\therefore[\operatorname{Re} s f(z)]_{=--1} & =\lim _{z \rightarrow-1} \frac{d}{d z}\left[(z-2)^{2} f(z)\right] \\
& =\lim _{z \rightarrow-1} \frac{d}{d z}\left[(z-2)^{2} \frac{z+2}{(z-2)(z+1)^{2}}\right] \\
& =\lim _{z \rightarrow-1} \frac{d}{d z}\left[\frac{z+2}{z-2}\right] \\
& =\lim _{z \rightarrow-1}\left[\frac{(z-2)(1)-(z+2)(1)}{(z-2)^{2}}\right]=-\frac{4}{9}
\end{aligned}
$$

Example 2. Evaluate $\int_{c} \frac{d z}{\left(z^{2}+4\right)^{2}}$ where \mathbf{c} is the circle $|z-i|=2$
Solution: Given $f(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$
$z= \pm 2 i$ is a pole of order 2
Here $z=2 i$ lies inside the circle $|z-i|=2$
And $z=-2 i$ lies outside the circle and is of order 2 .
$\therefore[\operatorname{Resf}(z)]_{z==i}=\lim _{z \rightarrow 2 i} \frac{d}{d z}(z-2 i)^{2} f(z)$

$$
=\lim _{=\rightarrow 2 i} \frac{d}{d z}(z-2 i)^{2} \frac{1}{(z-2 i)^{2}(z+2 i)^{2}}
$$

$$
\begin{aligned}
& =\lim _{=\rightarrow 2 i} \frac{d}{d z}(z-2 i)^{2} \\
& =\lim _{z \rightarrow 2 i} \frac{(z+2 i)^{2}(0)-2(z+2 i)}{(z+2 i)^{4}} \\
& =-\frac{8 i}{256}
\end{aligned}
$$

\therefore By Residue theorem

$$
\int_{c} \frac{d z}{\left(z^{2}+4\right)^{4}}=2 \pi i\left(\frac{-8 i}{256}\right)=\frac{\pi}{6}
$$

Problem: Evaluate $\int_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$ where c is the circle $|z|=\frac{3}{2}$. Using Residue theorem.
Solution: Let $\int_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$
The poles of $f(z)$ are $z(z-1)(z-2)=0$

$$
\mathrm{z}=0, \mathrm{z}=1, \mathrm{z}=2
$$

These poles are simple poles.
The poles $\mathrm{z}=0$ and $\mathrm{z}=1$ lie within the circle $\mathrm{c}:|z|=\frac{3}{2}$
Residue of $\mathrm{f}(\mathrm{z})$ at $\mathrm{z}=0$ is $R_{1}=\lim _{z \rightarrow 0}(z-0) f(z)=\lim _{z \rightarrow 0} z \frac{4-3 z}{z(z-1)(z-2)}=\frac{4}{2}=2$
Residue of $\mathrm{f}(\mathrm{z})$ at $\mathrm{z}=1$ is $R_{2}=\lim _{z \rightarrow 1}(z-1) f(z)=\lim _{z \rightarrow 1}(z-1) \frac{4-3 z}{z(z-1)(z-2)}=\frac{4-3}{1-2}=-1$
By Residue theorem, $\int_{c} \frac{4-3 z}{z(z-1)(z-2)} d z=2 \pi i\left(R_{1}+R_{2}\right)=2 \pi i(2-1)=2 \pi i$.

Evaluate $\int_{C} \frac{z \sec z}{\left(1-z^{2}\right)} d z$ where C is the ellipse $4 x^{2}+9 y^{2}=9$, using
Cauchy's residue theorem.
Solution:
Equation of ellipse is

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}=9 \\
& \frac{x^{2}}{9 / 4}+\frac{y^{2}}{1}=1 \\
& \text { i.e., } \frac{x^{2}}{(3 / 2)^{2}}+\frac{y^{2}}{1}=1
\end{aligned}
$$

\therefore Major axis is $\frac{3}{2}$, Minor axis is 1 .
The ellipse meets the x axis at $\pm \frac{3}{2}$ and the y axis at ± 1

Given $f(z)=\frac{z \sec z}{1-z^{2}}$

$$
=\frac{z}{(1+z)(1-z) \cos z}
$$

The poles are the solutions of $(1+z)(1-z) \cos z=0$
i.e., $z=-1, z=1$ are simple poles and $z=(2 n+1) \frac{\pi}{2}$

Out of these poles $z \pm 1$ lies inside the ellipse
$z= \pm \frac{\pi}{4}, \pm 3 \frac{\pi}{4}$ lies outside the ellipse

$$
\begin{gathered}
{[\operatorname{Res} f(z)]_{z=1}={\underset{z t}{L t}(z-1) \frac{z}{(1+z)(1-z) \cos z}}_{\quad L t} \frac{-z}{(1+z) \cos z}=\frac{-1}{2 \cos 1}}
\end{gathered}
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

$$
\begin{aligned}
& {[\operatorname{Re} s f(z)]_{z=-1}={\underset{z \rightarrow}{ }}_{L t}(z+1) \frac{z}{(1+z)(1-z) \cos z}} \\
& =\quad L t{ }_{z \rightarrow-1} \frac{z}{(1-z) \cos z} \\
& =\frac{-1}{2 \cos 1}=\frac{-1}{2 \cos 1} \\
& \therefore \int_{C} \frac{z \sec z}{1-z^{2}} d z=2 \pi i[\operatorname{sum} \text { of the residues }] \\
& =2 \pi i\left[\frac{-1}{2 \cos 1}-\frac{1}{2 \cos 1}\right] \\
& =-2 \pi i[\sec 1] .
\end{aligned}
$$

Contour Integration

TYPE: I

Integrals of the type $\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d \theta$ where $f(\cos \theta, \sin \theta)$ is
A rational function of $\sin \theta \& \cos \theta$. In this case we take unit circle $|z|=1$ as the contour. On $|z|=1$.
$z=e^{i \theta}, \cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)=\frac{1}{2}\left(z+\frac{1}{z}\right)$
$d z=i e^{i \theta} d \theta, \sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)=\frac{1}{2 i}\left(z-\frac{1}{z}\right)$
$\Rightarrow d \boldsymbol{\theta}=\frac{d z}{i z}$
Also θ various from 0 to 2π
$\therefore \int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d \theta=\int_{c} f\left(\frac{z^{2}+1}{2 z}, \frac{z^{2}-1}{2 i z}\right) \frac{d z}{i z}$
Now applying Cauchy's residue theorem, we can evaluate the Integral on the right side.

Example 1. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{13+5 \sin \theta}$ by using contour Integration.
Solution: $I=\int_{0}^{2 \pi} \frac{d \theta}{13+5 \sin \theta}$

limit : 0 to 2π

$$
\text { Contour: }|z|=1
$$

$$
\begin{aligned}
& \text { Put } z=e^{i \theta} \\
& d z=i e^{i \theta} d \theta, \sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)=\frac{1}{2 i}\left(z-\frac{1}{z}\right) \\
& \Rightarrow d \theta=\frac{d z}{i z} \\
& \mathbf{I}=\int_{c} \frac{d z}{i z\left(13+5\left(\frac{z^{2}-1}{2 i z}\right)\right)} \\
& =2 \int_{c} \frac{d z}{5 z^{2}+26 i z-5}
\end{aligned}
$$

Where $f(z)=\frac{1}{5 z^{2}+26 i z-5}$

$$
\begin{equation*}
\therefore I=2 \int_{0} f(z) d z \tag{1}
\end{equation*}
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

To find Residue
The poles off (z) are $5 z^{2}+26 i z-5$

$$
\begin{aligned}
Z & =\frac{-26 \pm \sqrt{(26 i)^{2}+100}}{10} \\
& =\frac{-26 \pm 24}{10}=\frac{-i}{5},-5 i
\end{aligned}
$$

The pole $z=\frac{-i}{5}$ lies inside the circle $|z|=1$ and $z=-5 i$ lies outside the circle $|=|=1$

$$
\begin{aligned}
\text { Now } \therefore[\operatorname{Resf}(z)]_{z=-i / 5} & =\lim _{z \rightarrow-i / 5}\left(z+\frac{i}{5}\right) f(z) \\
& =\lim _{z \rightarrow-i / 5}\left(z+\frac{i}{5}\right) \frac{1}{5\left(z+\frac{i}{5}\right)(z+5 i)} \\
& =\frac{1}{5\left(\frac{-i}{5}+5 i\right)}=\frac{1}{24 i}
\end{aligned}
$$

\therefore By Cauchy's Residue theorem

$$
\begin{aligned}
\int_{0} f(z) d z & =2 \pi i \sum R \\
& =2 \pi i \frac{1}{24 i}=\frac{\pi}{12}
\end{aligned}
$$

(1) becomes

$$
I=\frac{2 \pi}{12}=\frac{\pi}{6}
$$

Example 2: Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \boldsymbol{\theta}}{a+b \cos \boldsymbol{\theta}} d \boldsymbol{\theta}, a>b>0$ using contour integration.
Solution: Let $I=\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{a+b \cos \theta} d \boldsymbol{\theta}$,

$$
=\int_{0}^{2 \pi} \frac{1-\cos 2 \boldsymbol{\theta}}{2 a+2 b \cos \theta} d \boldsymbol{\theta}
$$

We can write $\cos 2 \boldsymbol{\theta}=$ Real part of $e^{2 i \theta}, \because e^{2 i \theta}=\cos 2 \boldsymbol{\theta}+i \sin 2 \boldsymbol{\theta}$

$$
\begin{gathered}
\therefore I=R \cdot P \int_{0}^{2 \pi} \frac{1-e^{2 i \theta}}{2 a+2 b \cos \theta} d \theta \\
\text { Put } z=e^{i \theta} \\
d \theta=\frac{d z}{i z}, \cos \theta=\frac{z^{2}+1}{z} \\
\therefore I=R \cdot P \int_{0}^{2 \pi} \frac{1-z^{2}}{2 a+b\left(\frac{z^{2}+1}{z}\right)} \frac{d z}{i z} \\
=R \cdot P \frac{1}{i} \int_{0}^{2 \pi} \frac{1-z^{2}}{b z^{2}+2 a z+b} d z \\
=R \cdot P \frac{1}{i} \int_{0}^{2 \pi} f(z) d z \ldots \ldots(1)
\end{gathered}
$$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

Where $f(z)=\frac{1-z^{2}}{b z^{2}+2 a z+b}$
To find Residues:
Poles of $\mathbf{f}(\mathbf{z})$ are given by $b z^{2}+2 a z+b=0$

$$
\begin{aligned}
\mathbf{Z} & =\frac{-2 a \pm \sqrt{4 a^{2}-4 b^{2}}}{2 b} \\
& =\frac{-a \pm \sqrt{a^{2}-b^{2}}}{b}
\end{aligned}
$$

Let $\alpha=\frac{-a+\sqrt{a^{2}-b^{2}}}{b}$ and $\beta=\frac{-a-\sqrt{a^{2}-b^{2}}}{b}$, since $\mathbf{a}>\mathbf{b}$,

$$
|\alpha|<1 \&|\beta|>1
$$

\therefore The simple pole $z=\alpha$ lies inside \mathbf{C},

$$
\begin{aligned}
& \therefore[\operatorname{Re} s f(z)]_{z=\alpha}=\lim _{z \rightarrow \alpha}(z-\alpha) f(z) \\
& =\lim _{z \rightarrow \alpha}(z-\alpha) \frac{1-z^{2}}{b(z-\alpha)(z-\beta)} \\
& =\frac{1-\alpha^{2}}{b(\alpha-\beta)}=\frac{a-\sqrt{a^{2}-b^{2}}}{b^{2}} \\
& \therefore \sum R=\frac{a-\sqrt{a^{2}-b^{2}}}{b^{2}}
\end{aligned}
$$

\therefore By Cauchy's Residue theorem

$$
\begin{aligned}
\int_{c} f(z) d z & =2 \pi i \sum R \\
& =2 \pi i\left(\frac{a-\sqrt{a^{2}-b^{2}}}{b^{2}}\right)
\end{aligned}
$$

(1) becomes

$$
\begin{aligned}
\mathbf{I} & =R \cdot P \frac{1}{i} \int_{0}^{2 \pi} f(z) d z \\
& =R \cdot P 2 \pi\left(\frac{a-\sqrt{a^{2}-b^{2}}}{b^{2}}\right) \\
& =\frac{2 \pi}{b^{2}}\left(a-\sqrt{a^{2}-b^{2}}\right)
\end{aligned}
$$

Problem on Type-1

Prove that $\int_{0}^{2 \pi} \frac{d \theta}{a^{2}-2 a \cos \theta+1}=\frac{2 \pi}{1-\mathrm{a}^{2}}$, given $\mathrm{a}^{2}<1$.
Solution: Let $\mathrm{I}=\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{\mathrm{a}^{2}-2 \mathrm{a} \cos \theta+1}$
Put $z=e^{i \theta}$
Then $\mathrm{d} \theta=\frac{\mathrm{dz}}{\mathrm{iz}}$ and $\cos \theta=\frac{1}{2}\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)$
$\therefore I=\int_{C} \frac{d z / i z}{a^{2}-a\left(z+\frac{1}{z}\right)+1}$ where C is $|z|=1$.
$=\frac{1}{\mathrm{ai}} \int_{\mathrm{C}} \frac{\mathrm{dz}}{\left(\mathrm{a}+\frac{1}{\mathrm{a}}\right) \mathrm{z}-\mathrm{z}^{2}-1}$
$=\frac{i}{a} \int_{C} \frac{d z}{z^{2}-\left(a+\frac{1}{a}\right) z+1}$

$$
\begin{aligned}
=\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{d} \mathrm{z} \text { where } \mathrm{f}(\mathrm{z}) & =\left(\frac{\mathrm{i}}{\mathrm{a}}\right) \frac{1}{\mathrm{z}^{2}-\left(\mathrm{a}+\frac{1}{a}\right) \mathrm{z}+1} \\
& =\left(\frac{i}{\mathrm{a}}\right) \frac{1}{(z-a)\left(z-\frac{1}{a}\right)}
\end{aligned}
$$

The singularities of $\mathrm{f}(\mathrm{z})$ are simple poles at a and $\frac{1}{\mathrm{a}} \cdot \mathrm{a}^{2}<1$ implies $|\mathrm{a}|<1$ and $\frac{1}{|\mathrm{a}|}>1$
\therefore The pole that lies inside C is $\mathrm{z}=\mathrm{a}$.
$\operatorname{Res}[f(z) ; a]=\operatorname{Lim}_{z \rightarrow a}(z-a) \cdot\left(\frac{i}{a}\right) \frac{1}{(z-a)\left(z-\frac{1}{a}\right)}$

$$
\begin{aligned}
& =\left(\frac{i}{a}\right) \frac{1}{\left(a-\frac{1}{a}\right)} \\
& =\frac{i}{a^{2}-1}
\end{aligned}
$$

Hence $\mathrm{I}=2 \pi \mathrm{i} \cdot \frac{\mathrm{i}}{\mathrm{a}^{2}-1}=\frac{2 \pi}{1-\mathrm{a}^{2}}$

Contour Integration and Problem on Type-2

Type II Integration around semi-circular contour
Consider the integral
Improper integrals of the form $\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} d x$, where $P(x)$ and $Q(x)$
Are polynomials in x such that the degree of Q exceeds that of P atleast by two and $Q(x)$ does not vanish for any x.

Example 1: Prove that $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x=\frac{5 \pi}{12}$ using contour integration.
Solution: Let $f(z)=\frac{z^{2}-z+2}{z^{4}+10 z^{2}+9}$
Consider $\int_{C} f(z) d z$ where \mathbf{C} is the closed contour consisting of Γ, semi- large circle of radius R and the real axis from $-R$ to R.
Then $\int f(z) d z=\int_{-} f(z) d z+\int_{-}^{R} f(x) d x$

Now $f(z)=\frac{z^{2}-z+2}{z^{4}+10 z^{2}+9} \rightarrow 0$ as $z \rightarrow \infty$

$$
\therefore \lim _{z \rightarrow \infty} z f(z)=0
$$

Hence from (1) $\int_{-\infty}^{\infty} f(x) d x=\int_{C} f(z) d z$
By using residue theorem, $\int_{C} f(z) d z=2 \pi i \sum R$

$$
\therefore \int_{-\infty}^{\infty} f(x) d x=2 \pi i \operatorname{Re} s f(z)
$$

The poles of $f(z)$ are given by

$$
\begin{aligned}
& z^{4}+10 z^{2}+9=0 \\
& \left(z^{2}+9\right)\left(z^{2}+1\right)=0 \\
& z= \pm i, z= \pm 3 i
\end{aligned}
$$

The poles $z=3 i, z=i$ lies in the upper half of the z - plane

POWER SERIES EXPANSION OF COMPLEX FUNCTION

$$
\begin{aligned}
& {[\text { Resf }(z)]_{z=i}=} \lim _{z \rightarrow i}(z-i) f(z) \\
&=\lim _{=\rightarrow i}(z-i) \frac{z^{2}-z+2}{(z+i)(z-i)\left(z^{2}+9\right)} \\
&=\frac{1-i}{8(2 i)}=\frac{1-i}{16 i} \\
& {[\text { Resf }(z)]_{z=3 i} }=\lim _{z \rightarrow 3 i}(z-3 i) f(z) \\
&=\lim _{=\rightarrow 3 i}(z-3 i) \frac{z^{2}-z+2}{(z-3 i)(z+3 i)\left(z^{2}+9\right)} \\
&=\lim _{=\rightarrow 3 i} \frac{z^{2}-z+2}{(z+3 i)\left(z^{2}+9\right)} \\
&=\frac{-7-3 i}{(6 i)(-8)}=\frac{7+3 i}{48 i} \\
& \therefore \sum \operatorname{Resf(z)}=\frac{1-i}{16 i}+\frac{7+3 i}{48 i} \\
&=\frac{10}{48 i} \\
&=\frac{5}{24 i} \\
& \int_{-\infty}^{\infty} f(x) d x=2 \pi i\left(\frac{5}{24 i}\right)=\frac{5 \pi}{12}
\end{aligned}
$$

Problem on Type-2

Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x$ by using contour
Solution: Consider the integral $\int_{C} f(z) d z$ where

$$
f(z)=\frac{z^{2}}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)}
$$

And C is the closed contour consisting of Γ, the upper semi large
Circle $|z|=R$ and the real axis from $-\mathbf{R}$ to \mathbf{R}
$\int_{c} f(z) d z=\int_{\Gamma} f(z) d z+\int_{-R}^{R} f(x) d x$
When $\mathbf{R} \rightarrow \infty, \int_{\Gamma} f(z) d z$
Hence $\int_{-\infty}^{\infty} f(x) d x=\int_{C} f(z) d z$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

By using residue theorem, $\int_{C} f(z) d z=2 \pi i \sum R$
Poles of $\mathbf{f}(\mathbf{z})$ are given by $z^{2}+a^{2}=0, z^{2}+b^{2}=0$

$$
z= \pm a i, z= \pm b i
$$

The pole $z=$ ai and $z=$ bi lies in the upper half plane

$$
\begin{aligned}
{[\operatorname{Resf}(z)]_{z=a i} } & =\lim _{z \rightarrow a i}(z-a i) f(z) \\
& =\lim _{z \rightarrow a i}(z-a i) \frac{z^{2}}{(z+a i)(z-a i)\left(z^{2}+b^{2}\right)} \\
& =\lim _{z \rightarrow a i} \frac{z^{2}}{(z+a i)\left(z^{2}+b^{2}\right)} \\
& =\frac{(a i)^{2}}{2 a i\left(-a^{2}+b^{2}\right)} \\
& =\frac{a}{2 i\left(a^{2}-b^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
{[\operatorname{Re} s f(z)]_{z=b i} } & =\lim _{z \rightarrow b i}(z-b i) f(z) \\
& =\lim _{z \rightarrow b i}(z-b i) \frac{z^{2}}{(z+b i)(z-b i)\left(z^{2}+a^{2}\right)} \\
& =\frac{-b^{2}}{2 b i\left(-b^{2}+a^{2}\right)} \\
& =\frac{-b}{2 i\left(a^{2}-b^{2}\right)} \\
\therefore \int_{-\infty}^{\infty} f(z) d z & =\frac{2 \pi i}{2 i}\left[\frac{a}{a^{2}-b^{2}}-\frac{b}{a^{2}-b^{2}}\right] \\
& =\pi\left[\frac{a-b}{(a+b)(a-b)}\right] \\
& =\pi\left[\frac{1}{(a+b)}\right]
\end{aligned}
$$

Problem on Type-2

Problem Prove that $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{4}$

Solution:

Let $\int_{C} \phi(z) d z=\int_{C} \frac{d z}{\left(z^{2}+1\right)^{2}}$
Where $\phi(z)=\frac{1}{\left(z^{2}+1\right)^{2}}$
Here C is the semicircle Γ bounded by the diameter $[-R, R]$

By Cauchy residue theorem,
$\int_{C} \phi(z) d z=\int_{-R}^{R} \phi(x) d x+\int_{\Gamma} \phi(z) d z \ldots \ldots$.
To evaluate of $\int_{C} \phi(z) d z$
The poles of $\phi(z)=\frac{1}{\left(z^{2}+1\right)^{2}}$ is the solution of $\left(z^{2}+1\right)^{2}=0$
i.e., $(z+i)^{2}(z-i)^{2}=0$
i.e., the poles are $z=i, z=-i$
$z=i$ lies with inside the semi circle
$z=-i$ lies outside the semi circle
$\operatorname{Now}[\operatorname{Res} \phi(z)]_{z=i}=\begin{gathered}L t \\ z \rightarrow i \\ i\end{gathered} \frac{d}{1!} \frac{d}{d z}(z-i)^{2} \phi(z)$

POWER SERIES EXPANSION OF COMPLEX FUNCTION

$$
\begin{aligned}
& =\operatorname{Lt}_{z \rightarrow i} \frac{1}{1!}\left[(z-i)^{2} \frac{1}{\left(z^{2}+1\right)^{2}}\right] \\
& =\operatorname{Lt}_{z \rightarrow i} \frac{1}{1!} \frac{d}{d z}\left[\frac{1}{(z+i)^{2}}\right] \quad \because z^{2}+1=(z+i)(z-i) \\
& ={ }_{z \rightarrow i} \frac{-2}{(z+i)^{3}} \\
& =\frac{-2}{i+i}=\frac{-2}{(2 i)^{3}}=\frac{1}{4 i}
\end{aligned}
$$

$\therefore \int_{C} \phi(z) d z=2 \pi i[$ Sum of residues of $\phi(z)$ at its poles which liesin $C]$

$$
\begin{equation*}
=2 \pi i\left[\frac{1}{4 i}\right]=\frac{\pi}{2} . \tag{2}
\end{equation*}
$$

Let $R \rightarrow \infty$, then $|z| \rightarrow \infty$ so that $\phi(z)=0$
$\therefore \quad L t \int_{\Gamma} \phi(z) d z=0$.
Sub (2) and (3) in (1)
$\int_{C} \phi(z) d z=\int_{-\infty}^{\infty} \phi(x) d x$
$\Rightarrow \int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{2}$
$\Rightarrow 2 \int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{2}$
$\Rightarrow \int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{4}$.

MODULE IV- SPECIAL FUNCTIONS-

MODULE - IV SPECIAL FUNCTIONS-I

MODULE IV- SPECIAL FUNCTIONS-

- Beta and Gamma functions:
- Improper Integrals: Beta and Gamma functions
- Definitions
- Properties of Beta and Gamma functions
- Standard forms of Beta functions
- Relationship between Beta and Gamma function

IMPROPER INTEGRAL:

The integral $\int_{a}^{b} f(x) d x$ for which
i) Either the interval of integration is not finite i. e. $a=-\infty$ orb $=\infty$ or both
ii) The function $f(x)$ is unbounded at one or more point in [a, b] is called das improper integral.

NOTE: Integral of (i) and (ii) are called the improper integrals of first and second kinds respectively.

Examples:

1. $\int_{0}^{0} \frac{1}{1+x^{4}} d x$ And $\int_{-x}^{\infty} \frac{1}{1+x^{2}} d x$ are improper integrals of the first kind.
2. $\int_{0} \frac{1}{1-x^{2}} d x$ is an improper integral of the second kind.

Beta functions

DEFINITION:

BETA FUNCTION:

The definite integral $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ is called the Beta function and is denoted by $\beta_{\beta(m, n)}$. The integral converges for $\mathrm{m}=\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$
NOTE:
Beta function is also called as Eulerian integral of first kind

Beta functions

PROPERTIES OF BETA FUNCTION:

i) SYMMETRY PROPERTY OF BETA FUNCTION

$$
\text { i.e., } \beta(m, n)=\beta(n, m)
$$

Proof:
By definition, we have

$$
\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

Put 1-x=y so that $\mathrm{dx}=-\mathrm{dy}$
$\therefore \beta(m, n)=\int_{1}^{0}(1-y)^{m-1} y^{n-1}(-d y)$

Beta functions

$$
\begin{aligned}
& =\int_{0}^{1} y^{n-1}(1-y)^{m-1} d y \\
& =\int_{0}^{1} x^{n-1}(1-x)^{m-1} d x \\
& \beta(n, m)\left[\because \int_{a}^{b} f(t) d t=\int_{a}^{b} f(x) d x\right]
\end{aligned}
$$

Hence ${ }_{\beta(m, n)}={ }_{\beta(n, m)}$

ii)

Prove that

$$
\beta(m, n)=\int_{1}^{0} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta
$$

Proof:
By definition, we have
$\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$
put $x=\sin ^{2} \theta$ SO that $d x=\sin 2 \theta d \theta$
$\therefore \beta(m, n)=\int_{0}^{\pi / 2}\left(\sin ^{2} \theta\right)^{m-1}\left(1-\sin ^{2} \theta\right)^{n-1} \sin 2 \theta d \theta$

Beta and Gamma functions

$$
=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta
$$

Hence proved
i) $\quad \beta(m, n)=\beta(m+1, n)+\beta(m, n+1)$

Proof:

By definition, we have

$$
\begin{aligned}
\beta(m & +1, n)+\beta(m, n+1)=\int_{0}^{1} x^{m}(1-x)^{n-1} d x+\int_{0}^{1} x^{m-1}(1-x)^{n} d x \\
& =\int_{0}^{1} x^{m}(1-x)^{n-1} d x+\int_{0}^{1} x^{m-1}(1-x)^{n} d x \\
& =\int_{0}^{1} x^{m-1}(1-x)^{n-1}[x+(1-x)] d x \\
& =\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
\end{aligned}
$$

$$
=\beta(m, n)
$$

Hence $\beta(m, n)=\beta(m+1, n)+\beta(m, n+1)$

Beta functions

Iv)

If m and n are positive integers, then $\beta(m, n)=\frac{(m-1)!(n-1)!}{(m+n-1)!}$

Proof:

We have $\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$
Integrating by parts
$\left[x^{m-1} \frac{(1-x)^{m}}{n(-1)}\right]_{0}^{1}-\int_{0}^{1} \frac{(1-x)^{n}}{n(-1)}(m-1) x^{m-2} d x$
$=\frac{m-1^{1}}{n}{ }_{0}-\int_{0}^{1} x^{m-2}(1-x)^{n} d x=\frac{m-1}{n} \beta(m-1, n+1)$
Now we have to find ${ }_{\beta(m-1, n+1)}$.
To obtain this put $m=m-1$ and $n=n+1$ in (1). Then, we have

Beta and Gamma functions

$\beta(m, n)=\frac{m-1}{n} \cdot \frac{m-2}{n+1} \beta(m-2, n+2)$
Changing m to $m-2$ and n to $n-2$ from (1) we have $\beta(m-2, n+2)=\frac{m-3}{n+2} \cdot \frac{m-2}{n+1} \beta(m-3, n+3)$

From (2)

$$
\beta(m, n)=\frac{m-1}{n} \cdot \frac{m-2}{n+1} \cdot \frac{m-3}{n+2} \beta(m-3, n+3)
$$

Proceeding like this we get

$$
\begin{align*}
& \beta(m, n)=\frac{m-1}{n} \cdot \frac{m-2}{n+1} \cdot \frac{m-3}{n+2} \ldots \ldots \ldots \ldots \cdot \frac{[m-(m-1)]}{[n+(m-2)]} \beta(m-(m-1), n+(m-1)) \\
& =\frac{m-1}{n} \cdot \frac{m-2}{n+1} \cdot \frac{m-3}{n+2} \ldots \ldots \ldots \ldots \frac{1}{(n+m-2)} \beta(1, n+m-1) \ldots \ldots \text { (3) } \tag{3}
\end{align*}
$$

From (3)
$\beta(m, n)=\frac{m-1}{n} \cdot \frac{m-2}{n+1} \cdot \frac{m-3}{n+2} \cdots \cdots \cdots \cdots \frac{1}{(n+m-2)} \cdot \cdot \frac{1}{(n+m-1)}$

Beta functions

$=\frac{(m-1)!}{(n+m-1)(n+m-2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+2)(n+1) n}$
Multiplying the numerator and denominator by (n1)!, we have
$\beta(m, n)=\frac{(m-1)!(n-1)!}{(n+m-1)!}$

STANDARD FORMS OFBETA FUNCTIONS

FORMI:

To show
$\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x$
Proof:
We have

$$
\begin{equation*}
\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x \tag{1}
\end{equation*}
$$

$$
\text { put } x=\frac{1}{1+y} \text { so that } d x=\frac{d y}{(1+y)^{2}}
$$

From (1)
We have
$\beta(m, n)=\int_{\infty}^{0}\left(\frac{1}{1+y}\right)^{m-1}\left(1-\frac{1}{1+y}\right)^{n-1} \cdot-\frac{d y}{(1+y)^{2}}$

Beta and Gamma functions

$=\int_{0}^{\infty} \frac{y^{n-1} d y}{(1+y)^{m+n}}$
$\therefore \beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x$
Hence proved.

FORM II:

To show that
$\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x$

Proof:

From form we have
$\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x$
$=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x+\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x$
Now putting $x=\frac{1}{y}$ and $d x=-\frac{1}{y^{2}} d y$ in the second integral,
we get

Beta and Gamma functions

$\int_{1}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x=\int_{\infty}^{0} \frac{\left(\frac{1}{y}\right)^{m-1}}{\left(1+\frac{1}{y}\right)^{m+n}} \cdot \frac{-1}{y^{2}} d y$
$\int_{0}^{1} \frac{y^{m+n}}{(1+y)^{m+n}} \cdot \frac{-1}{y^{m+1}} d y$
$=\int_{0}^{1} \frac{y^{n-1}}{(1+y)^{m+n}} d y$
$\int_{0}^{1} \frac{x^{n-1}}{(1+x)^{m+n}} d x$

Hence
$\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x$

Beta functions

FORM III:

$$
\beta(m, n)=a^{m} b^{n} \int_{0}^{\infty} \frac{x^{m-1}}{(a x+b)^{m+n}} d x
$$

Proof:

We have
$a^{m} b^{n} \int_{0}^{\infty} \frac{x^{m-1}}{(a x+b)^{m+n}} d x=a^{m} b^{n} \int_{0}^{\infty} \frac{x^{m-1}}{b^{m+n}\left(\frac{a x}{b}+1\right)^{m+n}} d x$
Put
$\frac{a x}{b}=\mathrm{t}$ then $\frac{a d x}{b}=d t$
$\frac{a^{m} b^{n}}{b^{m+n}} \int_{0}^{\frac{b^{m-1}}{a^{m-1}}(t+1)^{m+n}} \frac{b}{a} d t$
$=\int_{0}^{\infty} \frac{t^{m-1}}{(1+t)^{m+n}} d t=\beta(m, n)$
Hence proved.

FORM IV:

To show $\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(x+a)^{m+n}} d x=\frac{\beta(m, n)}{a^{n}(1+a)^{m}}$

PROOF:

$$
\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

Put $x=\frac{(1+a) t}{t+a}$ then $d x=(1+a)\left[\frac{(t+a) 1-t(1+0)}{(t+a)^{2}}\right]$
$=\frac{a(1+a)}{(t+a)^{2}}$
$d x=\frac{a(1+a)}{(t+a)^{2}} d t$
Also when $x=0, t=0$ and $x=1, t=1$.
Now (1) become
$\beta(m, n)=\int_{0}^{1} \frac{(1+a)^{m-1} t^{n-1}}{(t+a)^{m-1}}\left(1-\frac{(1+a) t^{1}}{(t+a)^{1}}\right)^{n-1} \frac{a(1+a)}{(t+a)^{2}} d t$

Beta functions

$$
\beta(m, n)=\int_{0}^{1} \frac{(1+a)^{m-1} t^{n-1}}{(t+a)^{m-1}}\left(\frac{a-a t}{t+a}\right)^{n-1} a d t
$$

Also we have $\beta(m, n)=\frac{\gamma(m) \gamma(n)}{\gamma(m+n)}$

$$
\therefore \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x=\frac{\gamma(m) \gamma(n)}{\gamma(m+n)}
$$

Taking $m+n=1$ so that $m=n-1$, we get
$\therefore \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x=\frac{\gamma(1-n) \gamma(n)}{\gamma(1)}$
Or
$\therefore \gamma(1-n) \gamma(n)=\int_{0}^{\infty} \frac{x^{n-1}}{1+x} d x \ldots \ldots$ (1)
We have
$\therefore \int_{0}^{\infty} \frac{x^{2 n}}{1+x^{2 n}} d x=\frac{\pi}{2 n} \operatorname{cosec} \frac{(2 m+1) \pi}{2 n}$ Where $\mathrm{m}>0, \mathrm{n}>0$ and $\mathrm{m}>\mathrm{n}$
Put $x^{2 n}=t$ and $\frac{(2 m+1)}{2 n}=s$, we have
$\therefore \int_{0}^{\infty} \frac{\left.t^{(2 m / 2 n}\right)^{1 / 2 n}}{(2 n)(1+t) t} d t=\frac{\pi}{2 n} \operatorname{cosecs} \pi$
$\therefore \int_{0}^{\infty} \frac{\left.t^{(2 m / 2 n)}\right)^{\frac{1}{2 n}-1}}{(1+t)} d t=\frac{\pi}{2 n} \operatorname{cosecs} \pi$

Or. $: \int_{0}^{\pi} \frac{\left[t^{[2 n+1)} \frac{1 / 2-1-1}{} \frac{1}{t^{2 \pi}-1}\right.}{(1+t)} d t=\frac{\pi}{2 n} \operatorname{cosecs} \pi$
$\therefore \int_{0}^{\infty} \frac{t^{s-1}}{(1+t)} d t=\frac{\pi}{2 n \sin s \pi}$
$\therefore \int_{0}^{\infty} \frac{x^{s-1}}{(1+x)} d t=\frac{\pi}{2 n \sin s \pi}$.
From (1) and (2) we have
$\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(x+a)^{m+n}} d x=\frac{\beta(m, n)}{a^{n}(1+a)^{m}}$
Hence Proved

PROBLEMS:

1. Show that

$\int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{n} \theta d \theta=\frac{1}{2} \beta\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$

Solution:

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{n} \theta d \theta=\int_{0}^{\pi / 2} \sin ^{m-1} \theta \cos ^{n-1} \theta(\sin \theta \cos \theta) d \theta \\
= & \int_{0}^{\pi / 2}\left(\sin ^{2} \theta\right)^{\frac{m-1}{2}}\left(\cos ^{2} \theta\right)^{\frac{n-1}{2}}(\sin \theta \cos \theta) d \theta
\end{aligned}
$$

Put $\sin ^{2} \theta=X$ SO that $(\sin \theta \cos \theta) d \theta=\frac{d x}{2}$

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{n} \theta d \theta=\int_{0}^{1} x^{\frac{m-1}{2}}(1-x)^{\frac{n-1}{2}} d x \\
& =\int_{0}^{1} x^{\left(\frac{m+1}{2}\right)-1}(1-x)^{\left(\frac{n-1}{2}\right)-1} d x \\
& \quad=\frac{1}{2} \beta\left(\frac{m+1}{2}, \frac{n+1}{2}\right)
\end{aligned}
$$

Beta functions

$$
\therefore \int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{n} \theta d \theta=\frac{1}{2} \beta\left(\frac{m+1}{2}, \frac{n+1}{2}\right)
$$

Hence proved

1. Express the following integrals in terms of Beta function:
2. $\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} d x$
3. $\int_{0}^{4} \frac{x}{\sqrt{9-x^{2}}} d x$

Answer: $\quad \frac{1}{2} \beta\left(\frac{1}{2}, \frac{1}{2}\right)$
Solution: Put $x^{2}=y$ so that $d x=\frac{1}{2} y^{-1 / 2} d y$
When $x=0, y=0$ when $x=1, y=1$.
$\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} d x=\int_{0}^{1} \frac{y^{1 / 2}}{\sqrt{1-y}} \frac{1}{2} y^{-1 / 2} d y$

Gamma functions

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{1}(1-y)^{-1 / 2} d y \\
& =\frac{1}{2} \int_{0}^{1} y^{1-1}(1-y)^{\frac{1}{2}-1} d y \\
& =\frac{1}{2} \beta\left(1, \frac{1}{2}\right)
\end{aligned}
$$

Exercise Problems:

1. Prove that $\int_{0}^{a}(a-x)^{m-1} x^{n-1} d x=a^{m+n-1} \beta(m, n)$

Hint: put $x=a y$
2. Show that $\int_{0}^{a} x^{m-1}\left(1-x^{n}\right)^{p} d x=\frac{1}{n} \beta\left(\frac{m+1}{n}, p+1\right)$

Hint: put $x^{n}=y$
3. Show that $\int_{0}^{a}(1+x)^{m-1}(1-x)^{n-1} d x=2^{m+n-1} \beta(m, n)$

Hint: put $x=\frac{1+y}{2}$

Gamma functions

1. Show that
i. $\quad \int_{0}^{\infty} \frac{x^{m-1}-x^{n-1}}{(1+x)^{m+n}} d x=0$
ii. $\quad \int_{0}^{\infty} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x=2 \beta(m, n)$
2. Prove that $\frac{\beta(p, q+1)}{q}=\frac{\beta(p+1, q)}{p}=\frac{\beta(p, q)}{p+q}$, where $\mathrm{p}>0, \mathrm{q}>0$.

Show that $\int_{a}^{b}(x-a)^{m}(b-x)^{n} d x=(b-a)^{m+n+1} \beta(m+1, n+1)$

Gamma functions

GAMMA FUNCTION:

* The Gamma function and Beta functions belong to the category of the special transcendental functions and are defined in terms of improper definite integrals.

Definition:

The definite integral $\int_{0}^{\infty} e^{-x} x^{n-1} d x$ is called the Gamma function and is denoted by
$\Gamma(n)=\int_{0}^{\infty} e^{-x} x^{n-1} d x$ And read as "gamma n ".

NOTE:

1. The integral converges for $n>0$.
2. Gamma function is also called Eulerian integral of the second kind.
3. The integral Gamma function does not converges if $\mathrm{n} \leq 0$.

Gamma functions

PROPERTIES OF GAMMA FUNCTIONS:

I. To show that $\Gamma(1)=1$

Proof: By definition of Gamma function, we have
$\Gamma(n)=\int_{0}^{\infty} e^{-x} x^{n-1} d x$
$\therefore \Gamma(n)=\int_{0}^{\infty} e^{-x} x^{0} d x=\int_{0}^{\infty} e^{-x} d x=\left(e^{-x}\right)_{0}^{\infty}=1$
II. To show that $\Gamma(n)=(n-1) \Gamma(n-1)$ where $\mathrm{n}>1$.

Proof: By definition of Gamma function, we have
$\Gamma(n)=\int_{0}^{\infty} e^{-x} x^{n-1} d x=\left[x^{n-1}\left(\frac{e^{-x}}{(-1)}\right]_{0}^{\infty}-\int_{0}^{\infty}(n-1) x^{n-2} \cdot\left(\frac{e^{-x}}{-1}\right) d x\right.$ Integrate by parts
$=(n-1) \int_{0}^{\infty} e^{-x} x^{n-2} d x=(n-1) \Gamma(n-1)$

Gamma functions

Note:

1. $\Gamma(n+1)=(n) \Gamma(n)$
2. If n is a positive fraction, then we write
$\Gamma(n)=(n-1)(n-2)(n-3)(n-4)$. .$\Gamma(n-r)$
Where $(n-r)>0$
3. If \mathbf{n} is a non-negative integer, then $\Gamma(n+1)=(n)$!

Properties of Gamma function :

1) $\Gamma(m+1)=m \Gamma m$
2) $\Gamma(m+1)=m$! When m is a positive integer.
3) $\Gamma(m+a)=(m+a-1)(m+a-2) \ldots \ldots \ldots . a \Gamma a$, when n is a positive integer.
4) $\Gamma m=2 \int_{0}^{\infty} e^{-x^{2}} x^{2 m-1} d x \quad(m>0)$
5) $\frac{\Gamma m}{t^{m}}=\int_{0}^{\infty} e^{-t x} x^{m-1} d x \quad(m>0)$
6) $\Gamma \frac{1}{2}=\sqrt{\pi}$
7) $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
8) $\int_{0}^{1} x^{n}(\log x)^{m} d x=\frac{(-1)^{m}}{(n+1)^{m+1}} \Gamma(m+1)$

Gamma functions

Example 1: Evaluate $\Gamma\left(-\frac{1}{2}\right)$.
Solution: We know that $\Gamma(m+1)=m \Gamma m$

$$
\begin{aligned}
& \Rightarrow \Gamma\left(-\frac{1}{2}+1\right)=-\frac{1}{2} \Gamma\left(-\frac{1}{2}\right) \\
& \Rightarrow \Gamma\left(\frac{1}{2}\right)=-\frac{1}{2} \Gamma\left(-\frac{1}{2}\right) \\
& \Rightarrow \sqrt{\pi}=-\frac{1}{2} \Gamma\left(-\frac{1}{2}\right) \\
& \quad \therefore \quad \Gamma\left(-\frac{1}{2}\right)=-2 \sqrt{\pi} .
\end{aligned}
$$

RELATION BETWEEN BETA AND GAMMA FUNCTIONS

1. $\beta(m, n)=\frac{\gamma(m) \gamma(n)}{\gamma(m+n)}$ Where $m>0, \mathrm{n}>0$

Proof:
: By definition of Gamma function, we have
$\Gamma(m)=\int_{0}^{\infty} e^{-x} x^{m-1} d x$
Put $x=y t$ so that $d x=y d t$ then (1) gives

$$
\begin{equation*}
\Gamma(m)=\int_{0}^{\infty} e^{-y t} y t^{m-1} t^{m-1} y d t=\int_{0}^{\infty} e^{-y t} y^{m} t^{m-1} d t=\int_{0}^{\infty} e^{-y x} y^{m} x^{m-1} d x . \tag{2}
\end{equation*}
$$

Or $\quad \frac{\Gamma(m)}{y^{m}}=\int_{0}^{\infty} e^{-y x} x^{m-1} d x$

Gamma functions

Multiplying both sides of (3)

$$
\begin{equation*}
\Gamma(m) \int_{0}^{\infty} e^{-y} y^{n-1} d y=\int_{0}^{\infty}\left\{\int_{0}^{\infty} e^{-y(x+1)} y^{m+n-1} x^{m-1} d x\right\} d y \tag{4}
\end{equation*}
$$

$\Gamma(m) \Gamma(n)=\int_{0}^{\infty}\left\{\int_{0}^{\infty} e^{-y(x+1)} y^{m+n-1} d y\right\}^{x^{m-1}} d x$, by interchanging the order of integration
$\Gamma(m) \Gamma(n)=\int_{0}^{\infty} \frac{\Gamma(m+n)}{(1+x)^{m+n}} x^{m-1} d x$
$\Gamma(m) \Gamma(n)=d x \int_{0}^{\infty} \frac{\Gamma(m+n)}{(1+x)^{m+n}} x^{m-1} d x=\Gamma(m+n) \beta(m, n)$

$$
\therefore \beta(m, n)=\frac{\gamma(m) \gamma(n)}{\gamma(m+n)}
$$

Hence proved

1. To prove that $\Gamma(n) \Gamma(1-n)=\frac{\pi}{\sin n \pi}$

Proof:

By Form I of Beta function

$$
\beta(m, n)==\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x
$$

Also we have $\therefore \beta(m, n)=\frac{\gamma(m) \gamma(n)}{\gamma(m+n)}$

Gamma functions

$\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x=\frac{\gamma(m) \gamma(n)}{\gamma(m+n)}$

Taking $m+n=1$ so that $m=1-n$, we get
$\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)} d x=\frac{\gamma(1-n) \gamma(n)}{\gamma(1)}$
$\gamma(1-n) \gamma(n)=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)} d x$
We have
$\int_{0}^{\infty} \frac{x^{2 m}}{\left(1+x^{2 n}\right)} d x=\frac{\pi}{2 n} \operatorname{cosec} \frac{(2 m+1) \pi}{2 n}$, where $\mathrm{m}>0, \mathrm{n}>0$ and $\mathrm{n}>\mathrm{m}$
Put $x^{2 m}=t$ and $\frac{(2 m+1)}{2 n}=s$, we have

Gamma functions

$\int_{0}^{\infty} \frac{\left.t^{(2 m / 2 n}\right)^{1 / 2 n}}{(2 n)(1+t) t} d t=\frac{\pi}{2 n} \operatorname{cosec} s \pi$
Or $\int_{0}^{\infty} \frac{\left.t^{(2 m / 2 n}\right) t^{\frac{1}{2 n}-1}}{(1+t)} d t=\frac{\pi}{2 n} \operatorname{cosec} s \pi$
$\int_{0}^{\infty} \frac{t^{(2 m+1 / 2 n)-1}}{(1+t)} d t=\pi \operatorname{cosec} s \pi$
Or $\int_{0}^{\infty} \frac{t^{s-1}}{(1+t)} d t=\frac{\pi}{\sin n \pi}$
$\therefore \Gamma(n) \Gamma(1-n)=\frac{\pi}{\sin n \pi}$
Hence proved

1. To show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

Proof: we know that $\beta(m, n)=\frac{\gamma(m) \gamma(n)}{\gamma(m+n)}$
Taking $\mathrm{m}=\mathrm{n}=\frac{1}{2}$, we have

Gamma functions

$$
\begin{aligned}
& \beta\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{\gamma\left(\frac{1}{2}\right) \gamma\left(\frac{1}{2}\right)}{\gamma\left(\frac{1}{2}+\frac{1}{2}\right)}=\left[\Gamma\left(\frac{1}{2}\right)\right]^{2}[\because \gamma(1)=1] \\
& \beta\left(\frac{1}{2}, \frac{1}{2}\right)=\int_{0}^{1} x^{\frac{1}{2}-1}(1-x)^{\frac{1}{2}-1} d x=\int_{0}^{1} x^{-\frac{1}{2}}(1-x)^{-\frac{1}{2}} d x
\end{aligned}
$$

$$
x=\sin ^{2} \theta \text { so that } d x=2 \sin \theta \cos \theta d \theta
$$

Also when $\mathrm{X}=0, \theta=0$: when $\mathrm{X}=1, \theta=\pi / 2$
$\therefore \beta\left(\frac{1}{2}, \frac{1}{2}\right)=\int_{0}^{\pi / 2} d x=\int_{0}^{1} \frac{1}{\sin \theta} \frac{1}{\cos \theta} 2 \sin \theta \cos \theta d \theta$

$$
\begin{equation*}
=2 \int_{0}^{\pi / 2} d \theta=\pi \tag{2}
\end{equation*}
$$

Gamma functions

From (1) and (2) we have
$\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

1. To show that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$

Proof: we have

$$
\Gamma(n)=\int_{0}^{\infty} e^{-x} x^{n-1} d x
$$

Taking $\mathrm{n}=\frac{1}{2}$, we have $\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} e^{-x} x^{-1 / 2} d x$
Put $x=t^{2}$ so that $d x=2 t d t$
Also when $\mathrm{x}=0, \mathrm{t}=0$: when $x \rightarrow \infty, t \rightarrow \infty$

$$
\therefore \Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} e^{-t^{7}}\left(t^{2}\right)^{-1 / 2} 2 d t=2 \int_{0}^{\infty} e^{-t^{2}} d t
$$

Or $2 \int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$
$\therefore \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$

Gamma functions

PROBLEMS

1. Compute

i) $\Gamma\left(\frac{11}{2}\right)$
ii) $\Gamma\left(-\frac{1}{2}\right)$
iii) $\quad \Gamma\left(-\frac{7}{2}\right)$

Solutions: i)
We have $\Gamma(n+1)=(n) \Gamma(n)$
Taking $n=\frac{7}{2}$

$$
\begin{aligned}
& \quad \Gamma\left(\frac{11}{2}\right)=\frac{9}{2} \Gamma\left(\frac{9}{2}\right) \\
& =\frac{9}{2} \frac{7}{2} \Gamma\left(\frac{7}{2}\right) \\
& = \\
& =\frac{9}{2} \frac{7}{2} \frac{5}{2} \Gamma\left(\frac{5}{2}\right) \\
& =\frac{9}{2} \frac{7}{2} \frac{5}{2} \frac{3}{2} \Gamma\left(\frac{3}{2}\right) \\
& =
\end{aligned}
$$

Gamma functions

$$
=\frac{9}{2} \frac{7}{2} \frac{5}{2} \frac{3}{2} \frac{1}{2} \sqrt{\pi}
$$

Solution: ii)

We have $\Gamma(n+1)=(n) \Gamma(n)$

$$
\Gamma(n)=\frac{\Gamma(n+1)}{n}
$$

Taking $n=-\frac{1}{2}$

$$
\Gamma\left(-\frac{1}{2}\right)=\frac{\Gamma\left(-\frac{1}{2}+1\right)}{-\frac{1}{2}}=-2 \Gamma\left(\frac{1}{2}\right)=-2 \sqrt{\pi}
$$

Gamma functions

Evaluate each of the following:
(a) $\frac{\Gamma(6)}{2 \Gamma(3)}=\frac{5!}{2 \cdot 2!}=\frac{5 \cdot 4 \cdot 3 \cdot 2}{2 \cdot 2}=30$
(b) $\frac{\Gamma\left(\frac{5}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}=\frac{\frac{3}{2} \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}=\frac{\frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}=\frac{3}{4}$
(c) $\frac{\Gamma(3) \Gamma(2.5)}{\Gamma(5.5)}=\frac{2!(1.5)(0.5) \Gamma(0.5)}{(4.5)(3.5)(2.5)(1.5)(0.5) \Gamma(0.5)}=\frac{16}{315}$
(d) $\frac{6 \Gamma\left(\frac{8}{3}\right)}{5 \Gamma\left(\frac{2}{3}\right)}=\frac{6\left(\frac{5}{3}\right)\left(\frac{2}{3}\right) \Gamma\left(\frac{2}{3}\right)}{5 \Gamma\left(\frac{2}{3}\right)}=\frac{4}{3}$

Gamma functions

1. Evaluate

i. $\quad \int_{0}^{1} x^{5}(1-x)^{3} d x$
ii. $\int_{0}^{1} x^{4}(1-x)^{2} d x$

Answer: 1/105
iii. $\int_{0}^{1} x(1-x)^{1 / 3} d x$

Answer: $\frac{16 \sqrt{\pi}}{9 \sqrt{3}}$
iv. $\int_{0}^{1} x^{5 / 2}\left(1-x^{2}\right)^{3 / 2} d x$

Answer: $\frac{8}{65} \frac{\Gamma\left(\frac{3}{4}\right) \sqrt{\pi}}{\Gamma\left(\frac{1}{4}\right)}$

Gamma functions

Solution: i)

$$
\begin{aligned}
& \int_{0}^{1} x^{5}(1-x)^{3} d x=\int_{0}^{1} x^{6-1}(1-x)^{4-1} d x \\
& \beta(6,4)=\frac{\Gamma(6) \Gamma(4)}{\Gamma(6+4)} \\
& \frac{5!3!}{9!}=\frac{1}{504}
\end{aligned}
$$

Evaluate $\int_{0}^{\infty} \sqrt[4]{x} e^{-\sqrt{x}} d x$
Solution: Let $\quad I=\int_{0}^{\infty} x^{\frac{1}{4}} e^{-\sqrt{x}} d x$
Putting $\sqrt{x}=t \Rightarrow x=t^{2}$ so that $d x=2 t$ in (i), we get

$$
\begin{aligned}
I= & \int_{0}^{\infty} t^{1 / 2} e^{-t} 2 t d t \\
& =2 \int_{0}^{\infty} t^{3 / 2} e^{-t} d t \\
& =2 \int_{0}^{\infty} t^{\frac{5}{2}-1} e^{-t} d t \\
= & 2 \Gamma\left(\frac{5}{2}\right) \\
& =\left(2 \times \frac{3}{2}\right) \Gamma\left(\frac{3}{2}\right) \\
& =\left(2 \times \frac{3}{2} \times \frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)
\end{aligned}
$$

Gamma functions

1. Evaluate

i) $\int_{0}^{\infty} x^{6} e^{-2 x} d x$
ii) $\int_{0}^{\infty} x^{3 / 2} e^{-4 x} d x$
iii) $\quad \int_{0}^{\infty} x^{2} e^{-x^{2}} d x$
iv) $\quad \int_{0}^{\infty} \sqrt{x} e^{-x^{2}} d x$

Solution: Put $2 x=y$ SO that $d x=\frac{1}{2} d y$

$$
\int_{0}^{\infty} x^{6} e^{-2 x} d x=\int_{0}^{\infty}\left(\frac{y}{2}\right)^{6} e^{-y} \frac{1}{2} d y
$$

$$
\begin{array}{r}
\quad=\frac{3}{2} \sqrt{\pi} \\
\therefore \quad \int_{0}^{\infty} \sqrt[4]{x} e^{-\sqrt{x}} d x=\frac{3}{2} \sqrt{\pi}
\end{array}
$$

Gamma functions

$$
=\frac{1}{2} \int_{0}^{\infty} y^{0} e^{-v} \frac{1}{2} d y
$$

$=\frac{1}{2} \int_{0}^{\infty} y^{7-1} e^{-y} \frac{1}{2} d y=\frac{1}{2^{7}} 6!$

Evaluate

i. $\quad \int_{0}^{\pi / 2} \sin ^{5} \theta \cos ^{7 / 2} \theta d \theta$
ii. $\quad \int_{0}^{\pi / 2} \sin ^{7} \theta d \theta$
iii. $\quad \int_{0}^{\pi / 2} \cos ^{11} \theta d \theta$
iv. $\int_{0}^{\pi / 2} \sqrt{\cot \theta} d \theta$

Solution: i) we have $\int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta=\frac{1}{2} \beta(m, n)$
Put $2 m-1=5$ and $2 n-1=1 / 2$ so that $m=3, n=9 / 4$
Therefore $\int_{0}^{\pi / 2} \sin ^{5} \theta \cos ^{7 / 2} \theta d \theta=\frac{1}{2} \beta(3,9 / 4)$
$\frac{1}{2} \frac{\Gamma(3)}{\Gamma\left(3+\frac{9}{4}\right)}=\frac{\Gamma\left(\frac{9}{4}\right)}{\Gamma(21 / 4)}=\frac{64}{1989}$

Gamma functions

Solution: We know that,

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{p} \theta \cos ^{p} \theta d \theta & =\frac{r\left(\frac{p+1}{2}\right) \cdot\left(\frac{q+1}{2}\right)}{2 r\left(\frac{p+q+2}{2}\right)} \\
\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta} d \theta & =\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{1 / 2} \theta}{\sin ^{1 / 2} \theta} d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \sin ^{-1 / 2} \theta \cos ^{1 / 2} \theta d \theta
\end{aligned}
$$

On applying formula (1), we have

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta} d \theta & =\frac{\Gamma\left(\frac{-\frac{1}{2}+1}{2}\right) r\left(\frac{\frac{1}{2}+1}{2}\right)}{2 \Gamma\left(\frac{-\frac{1}{2}+\frac{1}{2}+2}{2}\right)} \\
& =\frac{\Gamma\left(\frac{2}{6}\right) \Gamma\left(\frac{3}{4}\right)}{2 \Gamma(1)} \\
& =\frac{1}{2} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)
\end{aligned}
$$

Gamma functions

EXERCISE:

1) Evaluate $\int_{0}^{1}\left(1-x^{3}\right)^{-1 / 2} d x$
2) Evaluate $\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x$
3) Evaluate $\int_{0}^{1}\left(\frac{x^{3}}{1-x^{3}}\right)^{\frac{1}{2}} d x$
4) Prove that $\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)=\pi \sqrt{2}$
5) Show that $\beta(p, q)=\beta(p+1, q)+(p, q+1)$

1. Evaluate

1. $\int_{0}^{\infty} 3^{-4 x^{2}} d x$
2. $\int_{0}^{\infty} a^{-b x^{2}} d x$
3. $\int_{0}^{\infty} x^{4}\left(\log \frac{1}{x}\right)^{3} d x$

Prove that $\int_{0}^{1}(x \log x)^{4} d x=\frac{4!}{5^{5}}$
4.

Gamma functions

$\int_{0}^{\infty} x^{2}\left(\log \frac{1}{x}\right)^{3} d x$
Example 4: Prove that $\int_{0}^{1}(x \log x)^{4} d x=\frac{4!}{5^{5}}$
Solution: We know that

$$
\int_{0}^{1} x^{n}(\log x)^{m} d x=\frac{(-1)^{m}}{(n+1)^{m+1}} \Gamma(m+1)
$$

Now,

$$
\int_{0}^{1}(x \log x)^{4} d x=\int_{0}^{1} x^{4}(\log x)^{4} d x
$$

Putting $n=m=4$ in (i), we get

$$
\begin{aligned}
\int_{0}^{1} x^{4}(\log x)^{4} d x & =\frac{(-1)^{4}}{(4+1)^{4+1}} \Gamma(4+1) \\
& =\frac{\Gamma 5}{5^{5}} \\
& =\frac{4!}{5^{5}}
\end{aligned}
$$

MODULE - V
SPECIAL FUNCTIONS-II

SPECIAL FUNCTIONS-II Bessel's equation

Bessel's equation

$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0$ is called Bessel's equation.

Solution of Bessel's Equation:

Because $\mathrm{x}=0$ is a regular singular point of Bessel's equation we know that there exists at least one solution of the form $y=\sum_{n=o}^{\infty} c_{n} x^{n+r}$

Substituting the last expression into

Solution of Bessel's Equation:

$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=\sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1) x^{n+r}+\sum_{n=0}^{\infty} c_{n}(n+r) x^{n+r}+\sum_{n=0}^{\infty} c_{n} x^{n+r+2}$
$-V^{2} \sum_{n=0}^{\infty} c_{n} x^{n+r}=c_{0}\left(r^{2}-r+r-v^{2}\right) x^{r}$
$+x^{r} \sum_{n=1}^{\infty} c_{n}\left[(n+r)(n+r-1)+(n+r)-v^{2}\right] x^{n}+x^{r} \sum_{n=0}^{\infty} c_{n} n^{n+2}$
$\left.=c_{0}\left(r^{2}-v^{2}\right) x^{r}+x^{r} \sum_{n=1}^{\infty} c_{n}\left[(n+r)^{2}\right]-v^{2}\right] x^{n}+x^{r} \sum_{n=0}^{\infty} c_{n} x^{n+2}$
From, we see that the indicial equation is $r^{2}-v^{2}=0$, so the indicial roots are $r_{1}=v$ and $r_{2}=-v$. When $r_{1}=v$, becomes
$x^{v} \sum_{n=1}^{\infty} c_{n} n(n+2 v) x^{n}+x^{v} \sum_{n=0}^{\infty} c_{n} x^{n+2}$
$=x v\left[(1+2 v) c_{1} x+\sum_{n=2}^{\infty} c_{n} n(n+2 v) x^{n}+\sum_{n=0}^{\infty} c_{n} x^{n+2}\right]$
$=X^{v}\left[(1+2 v) c_{1} x+\sum_{k=0}^{\infty}\left[(k+2)(k+2+2 v) c_{k+2}+c_{k}\right] x^{k+2}\right]=0$

SPECIAL FUNCTIONS-II

Therefore by the usual argument we can write $(1+2 v) c_{1}=0$ and $(k+2)(k+2+2 v) c_{k+2}+c_{k}=0$
or $\mathrm{C}_{\mathrm{K}+2}=\frac{-C_{k}}{(k+2)(k+2+2 v)}, k=0,1,2, \cdots$
The choice $c_{1}=0$ in implies $c_{3}=c_{5}=c_{7}=-\cdots=0$, so for $k=0,2,4, \cdots$ we find, after letting $k+2=2 n$,
n = 1,2,3, - - - that

$$
C_{2 n}=-\frac{c_{2 n-2}}{2^{2} n(n+v)}
$$

Thus $\quad C_{2}=-\frac{c_{0}}{2^{2} .1(1+v)}$

$$
C_{4}=-\frac{c_{2}}{2^{2} 2(2+v)}=\frac{c_{0}}{2^{4} \cdot 2 \cdot 1(1+v)(2+v)}
$$

SPECIAL FUNCTIONS-II

$$
C_{6}=-\frac{C_{4}}{2^{2} \cdot 3(3+v)}=-\frac{C_{0}}{2^{6} \cdot 1 \cdot 2 \cdot 3(1+v)(2+v)(3+v)}
$$

$$
C_{2 n}=\frac{(-1)^{n} c_{0}}{2^{2} n!(1+v)(2+v) \ldots . .(n+v)}, n=1,2,3,-\cdots
$$

It is standard practice to choose c_{0} to be specific value - namely.

$$
C_{0}=\frac{1}{2^{v} \Gamma(1+v)}
$$

where $\Gamma(1+v)$ is the gamma function. (See Appendix) Since this latter function possesses the convenient property $\Gamma(1+\alpha)=\alpha \Gamma(\alpha)$, we can reduce the indicated product in the denominator of to one term.

SPECIAL FUNCTIONS-II

For example:
$\Gamma(1+v+1)=(1+v) \Gamma(1+v)$
$\Gamma(1+v+2)=(2+v) \Gamma(2+v)=(2+v)(1+v) \Gamma(1+v)$.
Hence we can write as
$c_{2 n}=\frac{(-1)^{n}}{2^{2 n+v} n!(1+v)(2+v) \ldots(n+v) \Gamma(1+v)}=\frac{(-1)^{n}}{2^{2 n+v} n!\Gamma(1+v+n)}$
for $n=0,1,2, \cdots-$

SPECIAL FUNCTIONS-II

Bessel Function of the First Kind:

Using the coefficients $c_{2 n}$ just obtained and $r=v$, a series solution of (6.10) is $y=$ $\sum_{n=0}^{\infty} c_{2 n} x^{2 n+v}$ This solution is usually denoted by $J_{v}(x)$:

$$
J_{v}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v} .
$$

If $\mathrm{v} \geq 0$, the series converges at least on the interval $[0, \infty)$. Also, for the second exponent $r_{2}=-v$ we obtain, in exactly the same manner,

$$
J_{-v}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1-v+n)}\left(\frac{x}{2}\right)^{2 n-v} .
$$

The functions $J_{v}(x)$ and $J_{-v}(x)$ are called Bessel functions of the first kind of order v and $-v$, respectively. Depending on the value of v, (6.16) may contain negative powers of x and hence converge on $(0, \infty)$.

SPECIAL FUNCTIONS-II

Bessel Function of the First Kind:

Using the coefficients $\mathrm{c}_{2 n}$ just obtained and $\mathrm{r}=\mathrm{v}$, a series solution of $Y=\sum_{n=0}^{\infty} c_{2 n} x^{2 n+v}$ This solution is usually denoted by $J_{v}(x)$:

$$
J_{v}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+v+n)}\left(\frac{x}{2}\right)^{2 n+v}
$$

If $v \geq 0$, the series converges at least on the interval $[0, \infty)$. Also, for the second exponent $r_{2}=-v$ we obtain, in exactly the same manner,

$$
J_{-v}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1-v+n)}\left(\frac{x}{2}\right)^{2 n-v} .
$$

The functions $J_{v}(x)$ and $J_{-v}(x)$ are called Bessel functions of the first kind of order v and $-v$, respectively. Depending on the value of v, (6.16) may contain negative powers of x and hence converge on $(0, \infty)$.*

SPECIAL FUNCTIONS

Introduction

Many Differential equations arising from physical problems are linear but have variable coefficients and do not permit a general analytical solution in terms of known functions. Such equations can be solved by numerical methods (Unit - I), but in many cases it is easier to find a solution in the form of an infinite convergent series. The series solution of certain differential equations give rise to special functions such as Bessel's function, Legendre's polynomial. These special functions have many applications in engineering.

Series solution of the Bessel Differential Equation

Consider the Bessel Differential equation of order n in the form
$x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$
where n is a non negative real constant or parameter.
We assume the series solution of (i) in the form
$y=\sum_{r=0}^{\infty} a_{r} x^{k+r}$ where $\mathrm{a}_{0} \neq 0$
Hence, $\quad \frac{d y}{d x}=\sum_{r=0}^{\infty} a_{r}(k+r) x^{k+r-1}$

$$
\frac{d^{2} y}{d x^{2}}=\sum_{r=0}^{\infty} a_{r}(k+r)(k+r-1) x^{k+r-2}
$$

Substituting these in (i) we get,

SPECIAL FUNCTIONS-II

$$
x^{2} \sum_{r=0}^{\infty} a_{r}(k+r)(k+r-1) x^{k+r-2}+x \sum_{r=0}^{\infty} a_{r}(k+r) x^{k+r-1}+\left(x^{2}-n^{2}\right) \sum_{r=0}^{\infty} a_{r} x^{k+r}=
$$

i.e.,

$$
\sum_{r=0}^{\infty} a_{r}(k+r)(k+r-1) x^{k+r}+\sum_{r=0}^{\infty} a_{r}(k+r) x^{k+r}+\sum_{r=0}^{\infty} a_{r} x^{k+r+2}-n^{2} \sum_{r=0}^{\infty} a_{r} x^{k+r}
$$

Grouping the like powers, we get
$\sum_{r=0}^{\infty} a_{r}\left[(k+r)(k+r-1)+(k+r)-n^{2}\right] x^{k+r}+\sum_{r=0}^{\infty} a_{r} x^{k+r+2}=0$
$\sum_{r=0}^{\infty} a_{r}\left[(k+r)^{2}-n^{2}\right] x^{k+r}+\sum_{r=0}^{\infty} a_{r} x^{k+r+2}=0$

Now we shall equate the coefficient of various powers of x to 0

SPECIAL FUNCTIONS-II

Equating the coefficient of x^{k} from the first term and equating it to zero, we get
$a_{0}\left[k^{2}-n^{2}\right]=0$. Since $a_{0} \neq 0$, we get $k^{2}-n^{2}=0, \quad \therefore k= \pm n$
Coefficient of x^{k+1} is got by putting $r=1$ in the first term and equating it to zero, we get
$a_{1}\left[(k+1)^{2}-n^{2}\right]=0$.
This gives $a_{1}=0$,
i.e., since $(k+1)^{2}-n^{2}=0$ gives, $k+1= \pm n$
which is a contradiction to $k= \pm n$.
Let us consider the coefficient of x^{k+r} from (iii) and equate it to zero.
i.e, $a_{r}\left[(k+r)^{2}-n^{2}\right]+a_{r-2}=0$.

$$
\begin{equation*}
\therefore a_{r}=\frac{-a_{r-2}}{\left[(k+r)^{2}-n^{2}\right]} \tag{iv}
\end{equation*}
$$

If $k=+n$, (iv) becomes
$a_{r}=\frac{-a_{r-2}}{\left[(n+r)^{2}-n^{2}\right]}=\frac{-a_{r-2}}{\left[r^{2}+2 n r\right]}$
Now putting $r=1,3,5, \ldots .$. , (odd vales of n) we obtain,

$$
a_{3}=\frac{-a_{1}}{6 n+9}=0, \quad \because a_{1}=0
$$

Similarly $a_{5}, a_{7}, \ldots .$. are equal to zero.
i.e., $a_{1}=a_{5}=a_{7}=$ \qquad = 0
Now, putting $r=2,4,6, \ldots .$. . even values of n) we get,

$$
a_{2}=\frac{-a_{0}}{4 n+4}=\frac{-a_{0}}{4(n+1)} ; \quad a_{4}=\frac{-a_{2}}{8 n+16}=\frac{a_{0}}{32(n+1)(n+2)} ;
$$

Similarly we can obtain $\mathrm{a}_{6}, \mathrm{a}_{8}, \ldots$
We shall substitute the values of $a_{1}, a_{2}, a_{3}, a_{4}, \cdots . .$. in the assumed series solution, we get

SPECIAL FUNCTIONS-II

$y=\sum_{r=0}^{\infty} a_{r} x^{k+r}=x^{k}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots \ldots.\right)$
Let y_{1} be the solution for $k=+n$
$\therefore \quad y_{1}=x^{n}\left[a_{0}-\frac{a_{0}}{4(n+1)} x^{2}+\frac{a_{0}}{32(n+1)(n+2)} x^{4}-\cdots \cdots\right]$
i.e., $y_{1}=a_{0} x^{n}\left[1-\frac{x^{2}}{2^{2}(n+1)}+\frac{x^{4}}{2^{5}(n+1)(n+2)}-\cdots . ..\right]$

This is a solution of the Bessel's equation.
Let y_{2} be the solution corresponding to $\mathrm{k}=-\mathrm{n}$. Replacing n be -n in (v) we get
$y_{2}=a_{0} x^{-n}\left[1-\frac{x^{2}}{2^{2}(-n+1)}+\frac{x^{4}}{2^{5}(-n+1)(-n+2)}-\cdots \cdots \cdot\right]$
The complete or general solution of the Bessel's differential equation is $y=c_{1} y_{1}$ $+c_{2} y_{2}$, where c_{1}, c_{2} are arbitrary constants.
Now we will proceed to find the solution in terms of Bessel's function by choosing $a_{0}=\frac{1}{\left.2^{n}\right)(n+1)}$ and let us denote it as Y_{1}.

SPECIAL FUNCTIONS-II

i.e., $Y_{1}=\frac{x^{n}}{\left.2^{n}\right)}\left[1-\left(\frac{x}{2}\right)^{2} \frac{1}{(n+1)}+\left(\frac{x}{2}\right)^{4} \frac{1}{(n+1)(n+2) \cdot 2}-\cdots . ..\right]$

$$
=\left(\frac{x}{2}\right)^{n}\left[\frac{1}{\sqrt[(n+1)]{ }}-\left(\frac{x}{2}\right)^{2} \frac{1}{(n+1)(n+1)}+\left(\frac{x}{2}\right)^{4} \frac{1}{(n+1)(n+2)(n+1)} \cdot 2-\cdots \cdots .\right]
$$

We have the result $\Gamma(n)=(n-1) \Gamma(n-1)$ from Gamma function Hence, $\Gamma(n+2)=(n+1) \Gamma(n+1)$ and

$$
\Gamma(n+3)=(n+2) \Gamma(n+2)=(n+2)(n+1) \Gamma(n+1)
$$

Using the above results in Y_{1}, we get

$$
Y_{1}=\left(\frac{x}{2}\right)^{n}\left[\frac{1}{\sqrt{(n+1)}}-\left(\frac{x}{2}\right)^{2} \frac{1}{\sqrt{(n+2)}}+\left(\frac{x}{2}\right)^{4} \frac{1}{\sqrt{(n+3)} \cdot 2}-\cdots \cdots\right]
$$

which can be further put in the following form
$Y_{1}=\left(\frac{x}{2}\right)^{n}\left[\frac{(-1)^{0}}{\sqrt{(n+1)} \cdot 0!}\left(\frac{x}{2}\right)^{0}+\frac{(-1)^{1}}{\sqrt{(n+2)} \cdot 1!}\left(\frac{x}{2}\right)^{2}+\frac{(-1)^{2}}{\sqrt{(n+3)} \cdot 2!}\left(\frac{x}{2}\right)^{4}+\cdots \cdots\right]$

SPECIAL FUNCTIONS-II

$$
\begin{aligned}
& =\left(\frac{x}{2}\right)^{n} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{\sqrt{(n+r+1)} \cdot r!}\left(\frac{x}{2}\right)^{2 r} \\
& =\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!}
\end{aligned}
$$

This function is called the Bessel function of the first kind of order n and is denoted by $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$.
Thus $J_{n}(x)=\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!}$

Further the particular solution for $k=-n$ (replacing n by $-n$) be denoted as J. ${ }_{n}(x)$. Hence the general solution of the Bessel's equation is given by $y=A J_{n}(x)$ $+B J_{-n}(x)$, where A and B are arbitrary constants

SPECIAL FUNCTIONS-II

Properties of Bessel's function

1. $J_{-n}(x)=(-1)^{n} J_{n}(x)$, where n is a positive integer.

Proof: By definition of Bessel's function, we have

$$
\begin{equation*}
J_{n}(x)=\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!} \tag{1}
\end{equation*}
$$

Hence, $J_{-n}(x)=\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{-n+2 r} \cdot \frac{1}{\sqrt[(-n+r+1)]{ } \cdot r!}$
But gamma function is defined only for a positive real number. Thus we write (2) in the following from

SPECIAL FUNCTIONS-II

But gamma function is defined only for a positive real number. Thus we write (2) in the following from

$$
\begin{equation*}
J_{-n}(x)=\sum_{r=n}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{-n+2 r} \cdot \frac{1}{\sqrt{(-n+r+1)} \cdot r!} \tag{3}
\end{equation*}
$$

Let $\mathrm{r}-\mathrm{n}=\mathrm{s}$ or $\mathrm{r}=\mathrm{s}+\mathrm{n}$. Then (3) becomes

$$
J_{-n}(x)=\sum_{s=0}^{\infty}(-1)^{s+n} \cdot\left(\frac{x}{2}\right)^{-n+2 s+2 n} \cdot \frac{1}{\sqrt{(s+1)} \cdot(s+n)!}
$$

We know that $\Gamma(\mathrm{s}+1)=\mathrm{s}!$ and $(\mathrm{s}+\mathrm{n})!=\Gamma(\mathrm{s}+\mathrm{n}+1)$

$$
\begin{array}{r}
=\sum_{s=0}^{\infty}(-1)^{s+n} \cdot\left(\frac{x}{2}\right)^{n+2 s} \cdot \frac{1}{\sqrt{(s+n+1)} \cdot s!} \\
=(-1)^{n} \sum_{s=0}^{\infty}(-1)^{s} \cdot\left(\frac{x}{2}\right)^{n+2 s} \cdot \frac{1}{\sqrt{(s+n+1)} \cdot s!}
\end{array}
$$

Comparing the above summation with (1), we note that the RHS is $J_{n}(x)$.
Thus,

$$
J_{-n}(x)=(-1)^{n} J_{n}(x)
$$

2)

$J_{n}(-x)=(-1)^{n} J_{n}(x)=J_{-n}(x)$, where n is a positive integer
Proof: By definition,

$$
\begin{aligned}
J_{n}(x)= & \sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!} \\
\therefore \quad J_{n}(-x) & =\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(-\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!} \\
\text { i.e., } & =\sum_{r=0}^{\infty}(-1)^{r} \cdot(-1)^{n+2 r}\left(\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!} \\
& =(-1)^{n} \sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!}
\end{aligned}
$$

Thus, $\left.\quad \boldsymbol{J}_{\boldsymbol{n}}(\boldsymbol{- x})=\mathbf{(- 1}\right)^{\boldsymbol{n}} \boldsymbol{J}_{\boldsymbol{n}}(\boldsymbol{x})$
Since, $(-1)^{n} J_{n}(x)=J_{-n}(x)$, we have $\left.\boldsymbol{J}_{\boldsymbol{n}}(-\boldsymbol{x})=\mathbf{(- 1}\right)^{\boldsymbol{n}} \boldsymbol{J}_{\boldsymbol{n}}(\boldsymbol{x})=\boldsymbol{J}_{-\boldsymbol{n}}(\boldsymbol{x})$

SPECIAL FUNCTIONS-II

Recurrence Relations:

Recurrence Relations are relations between Bessel's functions of different order.
Recurrence Relations 1: $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$ From definition,

$$
\begin{gathered}
x^{n} J_{n}(x)=x^{n} \sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!}=\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{2(n+r)} \cdot \frac{1}{\sqrt{(n+r+1)}} \\
\therefore \frac{d}{d x}\left[x^{n} J_{n}(x)\right]=\sum_{r=0}^{\infty}(-1)^{r} \cdot \frac{2(n+r) x^{2(n+r)-1}}{\left.2^{n+2 r}\right)}
\end{gathered}
$$

SPECIAL FUNCTIONS-II

$$
\begin{gather*}
=x^{n} \sum_{r=0}^{\infty}(-1)^{r} \cdot \frac{(n+r) x^{n+2 r-1}}{\left.2^{n+2 r-1}(n+r)\right)} \\
=x^{n} \sum_{r=0}^{\infty}(-1)^{r} \cdot \frac{\left.(x / 2)^{(n-1)+2 r}\right)}{\sqrt{(n-1+r+1)} \cdot r!}=x^{n} J_{n-1}(x) \\
\text { Thus, } \quad \frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x) \tag{1}
\end{gather*}
$$

SPECIAL FUNCTIONS-II

Recurrence Relations 2: $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$ From definition,

$$
\begin{gathered}
x^{-n} J_{n}(x)=x^{-n} \sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!} \\
=\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!} \\
\therefore \quad \frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=\sum_{r=0}^{\infty}(-1)^{r} \cdot \frac{2 r x^{2 r-1}}{\left.2^{n+2 r}\right)(n+r+1) \cdot r!} \\
=-x^{-n} \sum_{r=1}^{\infty}(-1)^{r-1} \cdot \frac{x^{n+1+2(r-1)}}{\left.2^{n+1+2(r-1)}\right) \sqrt{(n+r+1)} \cdot(r-1)!}
\end{gathered}
$$

Let $k=r-1$

$$
=-x^{-n} \sum_{k=0}^{\infty}(-1)^{k} \cdot \frac{x^{n+1+2 k}}{\left.2^{n+1+2 k}\right) \sqrt{(n+1+k+1)} \cdot k!}=-x^{-n} J_{n+1}(x)
$$

Thus,

$$
\begin{equation*}
\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x) \tag{2}
\end{equation*}
$$

SPECIAL FUNCTIONS-II

Recurrence

Relations

$J_{n}(x)=\frac{x}{2 n}\left[J_{n-1}(x)+J_{n+1}(x)\right]$
We know that $\quad \frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$
Applying product rule on LHS, we get

$$
x^{n} J_{n}^{\prime}(x)+n x^{n-1} J_{n}(x)=x^{n} J_{n-1}(x)
$$

Dividing by x^{n} we get $J_{n}^{\prime}(x)+(n / x) J_{n}(x)=J_{n-1}(x)$
Also differentiating LHS of $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$, we get

$$
x^{-n} J_{n}^{\prime}(x)-n x^{-n-1} J_{n}(x)=-x^{-n} J_{n+1}(x)
$$

Dividing by $-x^{-n}$ we get $-J_{n}^{/}(x)+(n / x) J_{n}(x)=J_{n+1}(x)$
Adding (3) and (4), we obtain $2 n J_{n}(x)=x\left[J_{n-1}(x)+J_{n+1}(x)\right]$
i.e., $J_{n}(x)=\frac{x}{2 n}\left[J_{n-1}(x)+J_{n+1}(x)\right]$

Recurrence Relations 4:

$$
J_{n}^{\prime}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]
$$

Subtracting (4) from (3), we obtain

$$
\begin{aligned}
& 2 J_{n}^{\prime}(x)=\left[J_{n-1}(x)-J_{n+1}(x)\right] \\
& \text { i.e., } J_{n}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]
\end{aligned}
$$

Recurrence Relations 5:

$$
J_{n}^{\prime}(x)=\frac{n}{x} J_{n}(x)-J_{n+1}(x)
$$

This recurrence relation is another way of writing the Recurrence relation 2.

Recurrence Relations 7: $J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)-J_{n-1}(x)$
This recurrence relation is another way of writing the Recurrence relation 3.

SPECIAL FUNCTIONS-II

Prove that $\quad(a) \quad J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$
(b) $J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$ By definition,

$$
J_{n}(x)=\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{n+2 r} \cdot \frac{1}{\sqrt{(n+r+1)} \cdot r!}
$$

Putting $\mathrm{n}=1 / 2$, we get
$J_{1 / 2}(x)=\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{1 / 2+2 r} \cdot \frac{1}{\sqrt{(r+3 / 2)} \cdot r!}$
$J_{1 / 2}(x)=\sqrt{\frac{x}{2}}\left[\frac{1}{\Gamma(3 / 2)}-\left(\frac{x}{2}\right)^{2} \frac{1}{\Gamma(5 / 2)!!}+\left(\frac{x}{2}\right)^{4} \frac{1}{\Gamma(7 / 2) 2!}-\cdots \cdots\right]$
Using the results $\Gamma(1 / 2)=\sqrt{ } \pi$ and $\Gamma(n)=(n-1) \Gamma(n-1)$, we get
$\Gamma(3 / 2)=\frac{\sqrt{\pi}}{2}, \Gamma(5 / 2)=\frac{3 \sqrt{\pi}}{4}, \Gamma(7 / 2)=\frac{15 \sqrt{\pi}}{8}$ and so on.
Using these values in (1), we get
$\Gamma(3 / 2)=\frac{\sqrt{\pi}}{2}, \Gamma(5 / 2)=\frac{3 \sqrt{\pi}}{4}, \Gamma(7 / 2)=\frac{15 \sqrt{\pi}}{8}$ and so on.
Using these values in (1), we get
$J_{1 / 2}(x)=\sqrt{\frac{x}{2}}\left[\frac{2}{\sqrt{\pi}}-\frac{x^{2}}{4} \frac{4}{3 \sqrt{\pi}}+\frac{x^{4}}{16} \frac{8}{15 \sqrt{\pi} \cdot 2}-\cdots . ..\right]$

$$
=\sqrt{\frac{x}{2 \pi}} \cdot \frac{2}{x}\left[x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots \cdots\right]=\sqrt{\frac{2}{x \pi}}\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \cdots . .\right]
$$

$J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$
Putting $\mathrm{n}=-1 / 2$, we get
$J_{-1 / 2}(x)=\sum_{r=0}^{\infty}(-1)^{r} \cdot\left(\frac{x}{2}\right)^{-1 / 2+2 r} \cdot \frac{1}{\sqrt{(r+1 / 2)} \cdot r!}$
$J_{-1 / 2}(x)=\sqrt{\frac{x}{2}}\left[\frac{1}{\Gamma(1 / 2)}-\left(\frac{x}{2}\right)^{2} \frac{1}{\Gamma(3 / 2)!!}+\left(\frac{x}{2}\right)^{4} \frac{1}{\Gamma(5 / 2)!!} \cdots \cdots\right]$
Using the results $\Gamma(1 / 2)=\sqrt{ } \pi$ and $\Gamma(n)=(n-1) \Gamma(n-1)$ in (2), we get $J_{-1 / 2}(x)=\sqrt{\frac{2}{x}}\left[\frac{1}{\sqrt{\pi}}-\frac{x^{2}}{4} \frac{2}{\sqrt{\pi}}+\frac{x^{4}}{16} \frac{4}{3 \sqrt{\pi} \cdot 2}-\cdots . ..\right]$ $=\sqrt{\frac{2}{x \pi}}\left[1-\frac{x}{2!}^{2!}+\frac{x^{4}}{4!}-\cdots \cdots\right]$
$J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$

SPECIAL FUNCTIONS-II

3. Show that $\frac{d}{d x}\left[J_{n}^{2}(x)+J_{n+1}^{2}(x)\right]=\frac{2}{x}\left[n J_{n}^{2}(x)-(n+l) J_{n+1}^{2}(x)\right]$

Solution:

L.H.S $=\frac{d}{d x}\left[J_{n}^{2}(x)+J_{n+1}^{2}(x)\right]=2 J_{n}(x) J_{n}^{\prime}(x)+2 J_{n+1}(x) J_{n+1}^{\prime}(x)$

We know the recurrence relations

$$
\begin{align*}
& x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x) \tag{2}\\
& x J_{n+1}^{\prime}(x)=x J_{n}(x)-(n+1) J_{n+1}(x)
\end{align*}
$$

Relation (3) is obtained by replacing \boldsymbol{n} by $\boldsymbol{n}+\boldsymbol{1}$ in $x J_{n}^{\prime}(x)=x J_{n-1}(x)-n J_{n}(x)$
Now using (2) and (3) in (1), we get
L.H.S $=\frac{d}{d x}\left[J_{n}^{2}(x)+J_{n+1}^{2}(x)\right]=2 J_{n}(x)\left[\frac{n}{x} J_{n}(x)-J_{n+1}(x)\right]+2 J_{n+1}(x)\left[J_{n}(x)-\frac{n+1}{x} J_{n+1}(x)\right]$

$$
=\frac{2 n}{x} J_{n}^{2}(x)-2 J_{n}(x) J_{n+1}(x)+2 J_{n+1}(x) J_{n}(x)-2 \frac{n+1}{x} J_{n+1}^{2}(x)
$$

Hence, $\frac{d}{d x}\left[J_{n}^{2}(x)+J_{n+1}^{2}(x)\right]=\frac{2}{x}\left[n J_{n}^{2}(x)-(n+1) J_{n+1}^{2}(x)\right]$
4. Prove that $\operatorname{Jo}(x)=\frac{1}{2}\left[\operatorname{J}_{2}(x)-\operatorname{Io}(x)\right]$ Solution:
We have the recurrence relation $J_{n}^{\prime}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]-\cdots-\cdots(1)$
Putting $\mathrm{n}=0$ in (1), we get $J_{o}^{\prime}(x)=\frac{1}{2}\left[J_{-l}(x)-J_{l}(x)\right]=\frac{1}{2}\left[-J_{l}(x)-J_{I}(x)\right]=-J_{l}(x)$
Thus, $J_{o ́}^{\prime}(x)=-J_{I}(x)$. Differentiating this w.r.t. \mathbf{x} we get, $J_{0}^{\prime \prime}(x)=-J_{1}^{\prime}(x)$
Now, from (1), for $\mathrm{n}=1$, we get $J_{l}^{\prime}(x)=\frac{1}{2}\left[J_{0}(x)-J_{2}(x)\right]$.
Using (2), the above equation becomes

$$
-J_{0}^{\prime \prime}(x)=\frac{1}{2}\left[J_{0}(x)-J_{2}(x)\right] \operatorname{cr} J_{0}^{\prime \prime}(x)=\frac{1}{2}\left[J_{2}(x)-J_{0}(x)\right] .
$$

Thus we have proved that, $J_{0}^{\prime \prime}(x)=\frac{1}{2}\left[J_{2}(x)-J_{0}(x)\right]$

SPECIAL FUNCTIONS-II

5. Show that (a) $\int J_{3}(x) d x=c-J_{2}(x)-\frac{2}{x} J_{1}(x)$

$$
\text { (b) } \int x_{0}^{2}(x) d x=\frac{1}{2} x^{2}\left[J_{O}^{2}(x)+J_{1}^{2}(x)\right]
$$

Solution :
(a) We know that $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$ or $\int x^{-n} J_{n+1}(x) d x=-x^{-n} J_{n}(x)$

Now, $\int J_{3}(x) d x=\int x^{2} \cdot x^{-2} J_{3}(x) d x+c=x^{2} \cdot \int x^{-2} J_{3}(x) d x-\int 2 x \mid \int x^{-2} J_{3}(x) d x d d x+c$

$$
\begin{aligned}
& =x^{2} \cdot\left[-x^{-2} J_{2}(x)\right]-\int 2 x\left[-x^{-2} J_{2}(x)\right] d x+c(\text { from (1) when } \mathrm{n}=2) \\
& =c-J_{2}(x)-\int \frac{2}{x} J_{2}(x) d x=c-J_{2}(x)-\frac{2}{x} J_{1}(x)(\text { from (1) when } \mathrm{n}=1)
\end{aligned}
$$

Hence, $\int J_{3}(x) d x=c-J_{2}(x)-\frac{2}{x} J_{1}(x)$
(b) $\int x J_{0}^{2}(x) d x=J_{0}^{2}(x) \cdot \frac{1}{2} x^{2}-\int 2 J_{0}(x) \cdot J_{0}^{\prime}(x) \cdot \frac{1}{2} x^{2} d x \quad$ (Integrate by parts)

$$
\begin{aligned}
& \left.=\frac{1}{2} x^{2} J_{O}^{2}(x)+\int x^{2} J_{O}(x) \cdot J_{l}(x) d x \quad \text { (From (1) for } \mathrm{n}=0\right) \\
& =\frac{1}{2} x^{2} J_{O}^{2}(x)+\int x J_{l}(x) \cdot \frac{d}{d x}\left[x J_{l}(x)\right] d x\left[\because \frac { d } { d x } \left[x J_{\left.l(x)]=x J_{O}(x) \text { from recurrence relation (1) }\right]}\right.\right. \\
& =\frac{1}{2} x^{2} J_{0}^{2}(x)+\frac{1}{2}\left[x J_{l}(x)\right]^{2}=\frac{1}{2} x^{2}\left[J_{0}^{2}(x)+J_{l}^{2}(x)\right]
\end{aligned}
$$

SPECIAL FUNCTIONS-II

Generating Function for $\mathrm{J}_{\mathbf{n}}(\mathbf{x})$

To prove that $e^{\frac{x}{2}(t-1 / t)}=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)$
or
If n is an integer then $J_{n}(x)$ is the coefficient of t^{n} in the expansion of $e^{\frac{x}{2}(t-1<t)}$.
Proof:
We have $e^{\frac{x}{2}(t-1 / t)}=e^{x t / 2} \times e^{-x / 2 t}$

$$
=\left[1+\frac{(x t / 2)}{1!}+\frac{(x t / 2)^{2}}{2!}+\frac{(x t / 2)^{3}}{3!}+\cdots \cdots \cdot\right] \cdot\left[1+\frac{(-x t / 2)}{1!}+\frac{(-x t / 2)^{2}}{2!}+\frac{(-x t / 2)^{3}}{3!}+\cdots \cdots\right]
$$

(using the expansion of exponential function)
$=\left[1+\frac{x t}{2 \cdot l!}+\frac{x^{2} t^{2}}{2^{2} 2!}+\cdots+\frac{x^{n} t^{n}}{2^{n} n!}+\frac{x^{n+1} t^{n+1}}{2^{n+1}(n+1)!}+\cdots \cdots \cdot\right] \cdot\left[1-\frac{x}{2 t \cdot l!}+\frac{x^{2}}{2^{2} t^{2} 2!}-\cdots+\frac{(-1)^{n} x^{n}}{2^{n} t^{n} n!}+\frac{(-1)^{n+1} x^{n+1}}{2^{n+1} t^{n+1}(n+1)!}+\cdots \cdot\right]$

SPECIAL FUNCTIONS-II

If we collect the coefficient of $\boldsymbol{t}^{\boldsymbol{n}}$ in the product, they are

$$
\begin{aligned}
& =\frac{x^{n}}{2^{n} n!}-\frac{x^{n+2}}{2^{n+2}(n+1)!1!}+\frac{x^{n+4}}{2^{n+4}(n+2)!2!}-\cdots \cdot \\
& =\frac{1}{n!}\left(\frac{x}{2}\right)^{n}-\frac{1}{(n+1)!1!}\left(\frac{x}{2}\right)^{n+2}+\frac{1}{(n+2)!2!}\left(\frac{x}{2}\right)^{n+4}-\cdots \cdots=\sum_{r=0}^{\infty}(-1)^{r}\left(\frac{x}{2}\right)^{n+2 r} \frac{1}{\Gamma(n+r+1) r!}=J_{n}(x)
\end{aligned}
$$

Similarly, if we collect the coefficients of \boldsymbol{t}^{-n} in the product, we get $J_{-n}(x)$.
Thus, $e^{\frac{x}{2}(t-1 / t)}=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)$
Result: $e^{\frac{x}{2}(t-1 / t)}=J_{o}(x)+\sum_{n=1}^{\infty}\left[t^{n}+(-1)^{n} t^{-n}\right] J_{n}(x)$

Proof:

$$
\begin{aligned}
& e^{\frac{x}{2}(t-1 / t)}=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)=\sum_{n=-\infty}^{-1} t^{n} J_{n}(x)+\sum_{n=0}^{\infty} t^{n} J_{n}(x) \\
& =\sum_{n=1}^{\infty} t^{-n} J_{-n}(x)+J_{0}(x)+\sum_{n=1}^{\infty} t^{n} J_{n}(x)=J_{0}(x)+\sum_{n=1}^{\infty} t^{-n}(-1)^{n} J_{n}(x)+\sum_{n=1}^{\infty} t^{n} J_{n}(x) \quad\left\{\because J_{-n}(x)=(-1)^{n} J_{n}(x)\right\} \text { Thus, } \\
& e^{\frac{x}{2}(t-1 / t)}=J_{o}(x)+\sum_{n=1}^{\infty}\left[t^{n}+(-1)^{n} t^{-n}\right] J_{n}(x)
\end{aligned}
$$

SPECIAL FUNCTIONS-II

Problem 6: Show that
(a) $J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta, n$ being an integer
(b) $J_{o}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \cos \theta) d \theta$
(c) $J_{O}^{2}+2 J_{1}^{2}+2 J_{2}^{2}+J_{3}^{2}+\cdots \cdots=1$

Solution :

We know that $e^{\frac{x}{2}(t-1 / t)}=J_{o}(x)+\sum_{n=1}^{\infty}\left[t^{n}+(-1)^{n} t^{-n}\right] J_{n}(x)$
$=J_{0}(x)+t J_{1}(x)+t^{2} J_{2}(x)+t^{3} J_{3}(x)+\cdots \cdots \cdot t^{-1} J_{-1}(x)+t^{-2} J_{-2}(x)+t^{-3} J_{-3}(x)+\cdots \cdots \cdot$
Since $J_{-n}(x)=(-I)^{m_{n}(x)}$, we have
$e^{\frac{x}{2}(t-1 / t)}=J_{0}(x)+J_{1}(x)(t-1 / t)+J_{2}(x)\left(t^{2}+1 / t^{2}\right)+J_{3}(x)\left(t^{3}-1 / t^{3}\right)+$.
Let $\mathrm{t}=\cos \theta+\mathrm{i} \sin \theta$ so that $\mathrm{t}^{\mathrm{p}}=\cos p \theta+\mathrm{i} \sin p \theta$ and $1 / \mathrm{t}^{\mathrm{p}}=\operatorname{cosp} \theta-\mathrm{i} \sin p \theta$.
From this we get, $t^{p}+1 / t^{p}=2 \operatorname{cosp} \theta$ and $t^{p}-1 / t^{p}=2 i \sin p \theta$
Using these results in (1), we get

SPECIAL FUNCTIONS-II

$e^{\frac{x}{2}(2 i \sin \theta)}=e^{i x \sin \theta}=J_{0}(x)+2\left[J_{2}(x) \cos 2 \theta+J_{4}(x) \cos 4 \theta+\cdots\right]+2 i\left[J_{I}(x) \sin \theta+J_{3}(x) \sin 3 \theta+\cdots\right]$
Since $e^{i x \sin \theta}=\cos (x \sin \theta)+i \sin (x \sin \theta)$, equating real and imaginary parts in (2) we get,

$$
\begin{equation*}
\cos (x \sin \theta)=J_{O}(x)+2\left[J_{2}(x) \cos 2 \theta+J_{4}(x) \cos 4 \theta+\cdots\right] \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sin (x \sin \theta)=2\left[J_{1}(x) \sin \theta+J_{3}(x) \sin 3 \theta+\cdots\right] \tag{4}
\end{equation*}
$$

These series are known as Jacobi Series.
Now multiplying both sides of (3) by $\cos n \theta$ and both sides of (4) by \sin $n \theta$ and integrating each of the resulting expression between O and π, we obtain

$$
\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta) \cos n \theta d \theta=\left\{\begin{aligned}
J_{n}(x), & \mathrm{n} \text { is even or zero } \\
O, & \mathrm{n} \text { is odd }
\end{aligned}\right.
$$

and $\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin \theta) \sin n \theta d \theta=\left\{\begin{array}{cc}O, & \mathrm{n} \text { is even } \\ J_{n}(x), & \mathrm{n} \text { is odd }\end{array}\right.$
Here we used the standard result $\int_{0}^{\pi} \cos p \theta \cos q \theta d \theta=\int_{0}^{\pi} \sin p \theta \sin q \theta d \theta= \begin{cases}\frac{\pi}{2}, & \text { if } p=q \\ 0, & \text { if } p \neq q\end{cases}$

SPECIAL FUNCTIONS-II

From the above two expression, in general, if n is a positive integer, we get
$J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi}[\cos (x \sin \theta) \cos n \theta+\sin (x \sin \theta) \sin n \theta] d \theta=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta$
(b) Changing θ to ($\pi / 2$) θ in (3), we get

```
cos(x\operatorname{cos}0)=\mp@subsup{J}{O}{\prime}(x)+2[\mp@subsup{J}{2}{}(x)\operatorname{cos}(\pi-20)+\mp@subsup{J}{4}{}(x)\operatorname{cos}(\pi-40)+\cdots]
cos(x\operatorname{cos}0)=\mp@subsup{J}{O}{\prime}(x)-2\mp@subsup{J}{2}{}(x)\operatorname{cos}20+2\mp@subsup{J}{4}{}(x)\operatorname{cos}40-\cdots
```

Integrating the above equation w.r.t θ from 0 to π, we get
$\int_{0}^{\pi} \cos (x \cos \theta) d \theta=\int_{0}^{\pi}\left[J_{0}(x)-2 J_{2}(x) \cos 2 \theta+2 J_{4}(x) \cos 4 \theta-\cdots\right]$
$\int_{0}^{\pi} \cos (x \cos \theta) d \theta=\left|J_{0}(x) \cdot \theta-2 J_{2}(x) \frac{\sin 2 \theta}{2}+2 J_{4}(x) \frac{\sin 4 \theta}{4}-\cdots\right|_{0}^{\pi}=J_{o}(x) \cdot \pi$
Thus, $J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \cos \theta) d \theta$
(c) Squaring (3) and (4) and integrating w.r.t. θ from 0 to π and noting that m and n being integers
$\int_{0}^{\pi} \cos ^{2}(x \sin \theta) d \theta=\left[J_{0}(x)\right]^{2} \cdot \pi+4\left[J_{2}(x)\right]^{2} \frac{\pi}{2}+4\left[J_{4}(x)\right]^{2} \frac{\pi}{2}+\cdots$ $\int_{0}^{\pi} \sin ^{2}(x \sin \theta) d \theta=4\left[J_{1}(x)\right]^{2} \frac{\pi}{2}+4\left[J_{3}(x)\right]^{2} \frac{\pi}{2}+\cdots$
Adding, $\int_{0}^{\pi} d \theta=\pi=\pi\left[J_{0}^{2}(x)+2 J_{1}^{2}(x)+2 J_{2}^{2}(x)+J_{3}^{2}(x)+\cdots \cdots\right]$

Hence,

$$
J_{0}^{2}+2 J_{1}^{2}+2 J_{2}^{2}+J_{3}^{2}+\cdots \cdots \cdot=1
$$

Orthogonality of Bessel Functions

If α and β are the two distinct roots of $\boldsymbol{J}_{\boldsymbol{n}}(\boldsymbol{x})=\mathbf{0}$, then
$\int_{0}^{\pi} J_{J_{n}(\alpha)}(\alpha) J_{n}(\beta x) d x=\left\{\begin{array}{l}\left.\frac{1}{2} J_{n}^{\prime}(\alpha)\right]^{2}=\frac{1}{2}\left[J_{n+1}(\alpha)\right]^{i f}, \text { if } \alpha=\beta\end{array}\right.$
Proof:
We know that the solution of the equation

$$
\begin{align*}
& x^{2} u^{\prime \prime}+x u^{\prime}+\left(\alpha^{2} x^{2}-n^{2}\right) u=0 \tag{1}\\
& x^{2} v^{\prime \prime}+x v^{\prime}+\left(\beta^{2} x^{2}-n^{2}\right) v=0 \tag{2}
\end{align*}
$$

are $u=J_{n}(\alpha x)$ and $v=J_{n}(\beta x)$ respectively.
Multiplying (1) by $\boldsymbol{v} / \boldsymbol{x}$ and (2) by $\boldsymbol{u} / \boldsymbol{x}$ and subtracting, we get
$x\left(u^{\prime \prime} v-u v^{\prime \prime}\right)+\left(u^{\prime} v-u v^{\prime}\right)+\left(\beta^{2}-\alpha^{2}\right) x u v=0$
or $\frac{d}{d x}\left\{x\left(u^{\prime} v-u v^{\prime}\right)\right\}=\left(\beta^{2}-\alpha^{2}\right) x u v$
Now integrating both sides from 0 to 1 , we get

$$
\begin{equation*}
\left(\beta^{2}-\alpha^{2} \int_{0}^{l} x u v d x=\left[x\left(u^{\prime} v-u v^{\prime}\right)\right]_{0}^{l}=\left(u^{\prime} v-u v^{\prime}\right)_{x=1}\right. \tag{3}
\end{equation*}
$$

Since $u=J_{n}(\alpha x), u^{\prime}=\frac{d}{d x}\left[J_{n}(\alpha x)\right]=\frac{d}{d(\alpha x)}\left[J_{n}(\alpha x) \cdot \frac{d(\alpha x)}{d x}=\alpha J_{n}^{\prime}(\alpha x)\right.$
Similarly $v=J_{n}(\beta x)$ gives $v^{\prime}=\frac{d}{d x}\left[J_{n}(\beta x)\right]=\beta J_{n}^{\prime}(\beta x)$. Substituting these values in (3), we get

$$
\begin{equation*}
\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=\frac{\alpha J_{n}^{\prime}(\alpha) J_{n}(\beta)-\beta J_{n}(\alpha) J_{n}^{\prime}(\beta)}{\beta^{2}-\alpha^{2}} \tag{4}
\end{equation*}
$$

If α and β are the two distinct roots of $\mathrm{J}_{\mathrm{n}}(\mathbf{x})=\mathbf{0}$, then $\mathrm{J}_{\mathrm{n}}(\alpha)=0$ and $\mathrm{J}_{\mathrm{n}}(\beta)=0$,

This is known as Orthogonality relation of Bessel functions.
When $\beta=\alpha$, the RHS of (4) takes $0 / 0$ form. Its value can be found by considering α as a root of $J_{n}(x)=0$ and β as a variable approaching to α. Then (4) gives

$$
\operatorname{Lt}_{\beta \rightarrow \alpha}^{L t} \int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=\operatorname{Lt}_{\beta \rightarrow \alpha} \frac{\alpha J_{n}^{\prime}(\alpha) J_{n}(\beta)}{\beta^{2}-\alpha^{2}}
$$

Applying L'Hospital rule, we get

$$
\begin{equation*}
\operatorname{Lt}_{\beta \rightarrow \alpha} \int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=\underset{\beta \rightarrow \alpha}{L t} \frac{\alpha J_{n}^{\prime}(\alpha) J_{n}^{\prime}(\beta)}{2 \beta}=\frac{1}{2}\left\{J_{n}^{\prime}(\alpha)\right\}^{2} . \tag{5}
\end{equation*}
$$

We have the recurrence relation $J_{n}^{\prime}(x)=\frac{n}{x} J_{n}(x)-J_{n+1}(x)$.
$\therefore \quad J_{n}^{\prime}(\alpha)=\frac{n}{\alpha} J_{n}(\alpha)-J_{n+1}(\alpha)$. Since $J_{n}(\alpha)=0$, we have $J_{n}^{\prime}(\alpha)=-J_{n+1}(\alpha)$
Thus, (5) becomes $\underset{\beta \rightarrow \alpha}{\operatorname{Lt}} \int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=\frac{1}{2}\left\{J_{n}^{\prime}(\alpha)\right\}^{2}=\frac{1}{2}\left\{J_{n+1}(\alpha)\right\}^{2}$

