

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION FORM

Course Title	DISTRIBUTED SY	YSTEMS					
Course Code	A60521						
Regulation	R15 - JNTUH						
Academic Year	2017-2018						
Course Structure	Lectures	Tutorials	Practicals	Credits			
Course Structure	4	-	-	4			
Course Coordinator	Mr. RM Noorullah, Associate Professor, CSE						
Course Coordinator	Mr. N V Krishna Rao, Associate Professor, CSE						
Toom of Instructors	Mr. Ch Srikanth, Assistant Professor, CSE						
ream or mistructors	Mr. Rakesh, Assista	nt Professor, CSE					

I. COURSE OVERVIEW:

The primary objective of this course is to introduce the concept of theoretical, technical and programming aspects of advanced distributed systems and computing and the core elements of such advanced systems. The operation, characteristics and of major computer networks are studied because of their strong influence on programming interfaces (APIs) and application design. Topics include multithreading, network programming, consistency, fault tolerance, consensus, security, and several case studies of distributed systems. Finally, this course also covers issues and solutions related to the design and the implementation of distributed applications using socket programming

II. COURSE PREQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	A50515	Ι	Computer Networks	4
UG	A60522	II	Information security	4
UG	ACS507	II	Network Programming	4
			and Management	

III. MARKS DISTRIBUTION:

Sessional Marks	University End Exam marks	Total marks
There shall be 2 midterm examinations. Each midterm Examination consists of subjective type and Objective type tests. The subjective test is for 10 marks, with duration of 1 hour. Subjective test of each semester shall contain 4 questions, the student has to answer 2 questions, each carrying 5 marks. Objective type test is for 10 marks with duration of 20 minutes. It consists of 10 multiple choice and 10 objective type	75	100

Sessional Marks	University End Exam marks	Total marks
questions, the student has to answer all the questions and each carries half mark.		
First midterm exam shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion. Five marks are marked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1.	I Mid Examination	80 minutes	20
2.	I Assignment	-	5
3.	II Mid Examination	80 minutes	20
4.	II Assignment	-	5
5.	External Examination	3 hours	75

V. COURSE OBJECTIVES:

The course should enable the students to:

- I. Understand basic concepts of a distributed system and sharing of resources in distributed manner.
- II. Describe the theoretical concepts, namely, virtual time, agreement and consensus protocols.
- III. Demonstrate the concepts of IPC, Group communication & RPC.
- IV! Illustrating the methods of the DFS and DSM concepts.
- V. Understand the concepts of transaction in distributed environment and associated concept, namely, concurrency control, deadlocks and error recovery.

VI. COURSE OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

- 1 Implement and describe the structure of distributed systems programs.
- 2 Write programs that can interoperate using well-defined protocols and debug the code on multiple machines of multiple cores.
- ³ Understand about distributed algorithms for locking, synchronization and concurrency, scheduling, and replication and use standard primitives such as UDP and TCP.
- 4 Understand the general properties of networked communication necessary for distributed systems programming in clusters and on the Internet.
- 5 Employ and create common paradigms for easing the task of distributed systems programming and able to clearly elucidate their benefits, drawbacks, and limitations.

- 6 Identify the security challenges faced by distributed systems programs and able to select appropriate security solutions to meet the needs of commonly encountered distributed programming scenarios.
- 7 Comprehend and design a new distributed system with the desired features and able to develop new distributed applications.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignments and Tutorials
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Ν	
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Н	Assignments and Tutorials
PO4	Conduct investigations of complex problems: Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	S	Open ended experiments /
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	Н	Tutorials
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	N	
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	N	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	N	
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	S	Certifications
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	N	

	Program Outcomes	Level	Proficiency assessed by
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	N	
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Н	Assignments

N - None S - Supportive H - Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.	Н	Lectures, Assignments
PSO2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	S	Projects
PSO3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	Н	Guest Lectures

N - None

S - Supportive

H-Highly Related

IX. SYLLABUS:

UNIT – I
Characterization of Distributed Systems: Introduction, Examples of Distributed Systems, Resources Sharing and the Web, Challenges.
System Model: Introduction, Architectural Models, Fundamental Models.
UNIT – II
Time and Global States: Introduction, clocks Events and process states, synchronizing physical clocks, logical time and logical clocks, global states, distributed debugging.
Coordination and agreement: Introduction, Distributed Mutual Exclusion, Elections, Multicast Communications, Consensus and Related Problems.
UNIT – III
Inter Process Communication: Introduction, The API for the internet Protocols, External Data Representation and Marshalling, Client-Server Communication, Group Communication, Case Study: IPC in UNIX.

Distributed Objects and Remote Invocation: Introduction, communication between distributed objects, remote procedure call, Events and Notifications, case study: JAVA RMI.

UNIT-IV

Distributed file system: Introduction, file service architecture, case study1:sun network file system, case study2:the Andrew file system.

Name services: Introduction, Name service and the domain name system, directory services, case study of the global name services.

Distributed shared memory: Introduction, design and implementation issues, sequential consistency and IVY case study release consistency, MUNIN case study, and other consistency models.

UNIT –V

Transactions and Concurrency Control: Introduction, Transactions, Nested Transactions, Locks, Optimistic Concurrency Control, Timestamp Ordering, Comparison of Methods for Concurrency Control.

Distributed Transactions: Introduction, Flat and Nested Distributed transactions, Atomic Commit Protocols, Concurrency Control in Distributed transactions, distributed deadlocks, Transaction Recovery

TEXT BOOKS:

 George Coulouris, J Dollimore and Tim Kindberg, "Distributed System, Concepts and Design", Pearson Education, 4th Edition, 2009.

REFERENCES:

1	Andrew S. Tanenbaum, Maarten Van Steen, "Distributed Systems, Principles and Paradigms", 2nd
	Edition, PHI 2007.
2	Sukumar Ghosh, Chapaman & Hall/ CRC, Taylor & Fransis Group, "Distributed Systems, An Algorithm
	Approach , 2007.

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture	Topics to be covered	Course Learning Outcomes	Reference
No			
1-5	Characterization of Distributed Systems: Introduction, Examples of Distributed	Explain the importance of Distributed Systems Distributed Systems distributed	T1:1-7
	Systems, Resources Sharing and the Web, Challenges.	Demonstrate the challenges in the distributed systems	T1:8-16
6-8	System Model: Introduction, Architectural Models.	Illustrate the models in distributed systems with their examples.	T1:29-30
9-10	Fundamental Models.	Demonstrate different fundamental models	T1:31-47
11-15	Time and Global States: Introduction, clocks Events and process states,	Explain event and process States.	T1:385-387
16-17	Global states, distributed debugging	Define the difference between the physical clocks and logical clocks	T1:389-397
		Explain the debugging process in the distributed systems	T1:400-409
		Explain the mutual exclusion	T1:419-423
18-20	Coordination and agreement: Introduction, Distributed Mutual	Explain the election procedure and their algorithms	T1:436-462
	Exclusion, Elections, Multicast Communications, Consensus and	Define IPC.	T1:125-127

	Related Problems.		
21-24	Inter Process Communication:	Define data marshalling	T1:138-145
	Protocols, External Data Representation and Marshalling.	Explain client server communication	T1:146-158
25-27	Client-Server Communication, Group Communication, Case Study: IPC in UNIX.	Explain RPC and RPI	T1:165-169
28-31	Distributed Objects and Remote Invocation: introduction, communication between distributed objects.	Define file services and their procedures.	T1:183-323
32-36	Remote procedure call, Events and Notifications, case study: JAVA RMI. Distributed file system: Introduction, file service architecture, case study1:sun network file system	Explain name services and their instances	T1:335-374
37-40	Case study2: the Andrew file system, Name services: Introduction, Name service and the domain name system, directory services, case study of the global name services.	Define shared memory in distributed systems	T1:635-640
41-44	Distributed shared memory: Introduction, design and implementation	Explain types of consistency in distributed systems	T1:649-663
45-48	Sequential consistency and IVY case study release consistency, MUNIN case study, and other consistency models.	Explain concurrency execution of transactions in the distributed systems	T1:465-480
49-52	Transactions and Concurrency Control: Introduction, Transactions, Nested	Demonstrate the locks and time stamp ordering methods	T1:482-508
53-58	Nested Transactions, Locks, Optimistic Concurrency Control, Timestamp Ordering, Comparison of Methods for Concurrency Control.	Explain types of transactions and their properties	T1:515-539
59-65	Distributed Transactions: Introduction, Flat and Nested Distributed transactions, Atomic Commit Protocols, Concurrency Control in Distributed transactions, distributed deadlocks, Transaction		

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course	Program Outcomes										Program Specific Outcomes				
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι		S	Η										Н	S	Н
II		Н			S								S		Н
III										Н	S		Н	S	S
IV			S		Н								Н	S	S
V											S	Н	S		Н

S – Supportive

H - Highly Related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes	Program Outcomes												Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	Н					S							Н		Н
2		S									Н		S	Н	
3		Н	S											Н	Н
4			Н		S								S	Н	
5					Н						S		Н		S
6					S			Н					Н	Н	S
7		Н									S		Н		S

S – Supportive

H - Highly Related

Prepared by: Mr. RM Noorullah, Associate Professor, CSE

Mr. N V Krishna Rao, Associate Professor, CSE

Mr. Ch Srikanth, Assistant Professor, CSE

Mr. M Rakesh Assistant Professor, CSE

HOD, COMPUTER SCIENCE AND ENGINEERING