DIGITAL SIGNAL PROCESSING

VI Semester: ECE								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
AEC012	Core	L	Т	Р	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 60		

OBJECTIVES:

- I Provide background and fundamental material for the analysis and processing of digital signals and to familiarize the relationships between continuous-time and discrete-time signals and systems.
- II Study fundamentals of time, frequency and z-plane analysis and to discuss the inter-relationships of these analytic method and to study the designs and structures of digital (IIR and FIR) filters from analysis to synthesis for a given specifications.
- III Introduce a few real-world signal processing applications.
- IV Acquaint in FFT algorithm, multi-rate signal processing techniques and finite word length effects.

COURSE OUTCOMES:

- CO1 Interpret, represent and process discrete/digital signals and systems
- CO2 Understanding of time domain and frequency domain analysis of discrete time signals and systems.
- CO3 Understand DFT for the analysis of digital signals & systems
- CO4 Demonstrate and analyze DSP systems like FIR and IIR Filter
- CO5 Understand multi rate signal processing of signals through systems.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand how digital to analog (D/A) and analog to digital (A/D) converters operate on a signal and be able to model these operations mathematically.
- 2. Define simple non-periodic discrete-time sequences such as the impulse and unit step, and perform time shifting and time-reversal operations on such sequences.
- 3. Given the difference equation of a discrete-time system to demonstrate linearity, time-invariance, causality and stability, and hence show whether or not a given system belongs to the important class of causal, LTI (linear time-invariant) systems.
- 4. Given the impulse response of a causal LTI system, show whether or not the system is bounded-input/bounded-output (BIBO) stable.
- 5. Perform time, frequency and Z-transform analysis on signals.
- 6. From a linear difference equation of a causal LTI system, draw the Direct Form I and Direct Form II filter realizations.
- 7. Knowing the poles and zeros of a transfer function, make a rough sketch of the gain response.
- 8. Define the Discrete Fourier Transform (DFT) and the inverse DFT (IDFT) of length N.
- 9. Understand the inter-relationship between DFT and various transforms.
- 10. Understand the significance of various filter structures and effects of round-off errors.
- 11. Understand the fast computation of DFT and appreciate the FFT Processing.
- 12. Design of infinite impulse response (IIR) filters for a given specification.
- 13. Design of finite impulse response (FIR) filters for a given specification.
- 14. Compare the characteristics of IIR and FIR filters.
- 15. Understand the tradeoffs between normal and multi rate DSP techniques and finite length word effects.
- 16. Understand the signal interpolation and decimation, and explain their operation
- 17. Explain the cause of limit cycles in the implementation of IIR filters.

UNIT-I	REVIEW OF DISCRETE TIME SIGNALS AND SYSTEMS	Classes: 10				
Discrete time signal definition; Signal classification; Elementary signals; Transformation of elementary signals; Concept of digital frequency; Discrete time system definition; System classification; Linear time invariant (LTI) system; Properties of the LTI system; Time domain analysis of discrete time systems; Impulse response; The convolution sum; Methods of evaluating the convolution sum; Filtering using overlap-save and overlap-add method; Realization of digital filters: Concept of IIR and FIR filters; Realization structures for IIR and FIR filters using direct form-II, cascade, lattice and parallel.						
UNIT -II	DISCRETE FOURIER TRANSFORM AND EFFICIENT COMPUTATION	Classes: 09				
Introduction to discrete time Fourier transform (DTFT); Discrete Fourier transform (DFT) definition; Properties of DFT; Linear and circular convolution using DFT; Fast-Fourier-transform (FFT): Direct computation of DFT; Need for efficient computation of the DFT (FFT algorithms); Radix-2 FFT algorithm for the computation of DFT and IDFT using decimation-in-time and decimation-in-frequency algorithms; General Radix-N FFT.						
UNIT -III	STRUCUTRE OF IIR FILTERS	Classes: 09				
Analog filters: Butterworth filters; Chebyshev type-1 & type-2 filters; Analog transformation of prototype LPF to HPF/BPF/BSF. Transformation of analog filters into equivalent digital filters using impulse invariant method and bilinear transform method; Matlab programs of IIR filters.						
UNIT -IV	SYMMETRIC AND ANTISYMMETRIC FIR FILTERS	Classes: 09				
Design of linear phase FIR filters windowing and frequency sampling methods; Equiripple linear phase FIR filters; Parks-McClellan algorithm and remez algorithm; Least-mean-square error filter design; Design of FIR differentiators; Matlab programs of FIR filters; Comparison of FIR & IIR.						
UNIT -V	APPLICATIONS OF DSP	Classes: 09				
Multirate signal processing; Decimation; Interpolation; Polyphase structures for decimation and interpolation filters; Structures for rational sampling rate conversion; Applications of multirate signal processing for design of phase shifters, interfacing of digital systems with different sampling rates, sub band coding of speech signals. Analysis of finite word length effects: Representation of numbers; ADC quantization noise, coefficient quantization error, product quantization error, truncation & rounding errors; Limit cycle due to product round-off error; Round-off noise power; Limit cycle oscillations due to overflow in digital filters; Principle of scaling; Dead band effects.						
Text Books:						
 John G. Proakis, Dimitris G. Manolakis, Digital signal processing, Principles, Algorithms and Applications, Prentice Hall, 4th Edition, 2007. Sanjit K Mitra, Digital signal processing, A computer base approach, McGraw-Hill Higher Education, 4th Edition, 2011. Emmanuel C, Ifeacher, Barrie. W. Jervis, DSP-A Practical Approach, Pearson Education, 2nd Edition, 2002. A.V. Oppenheim, R.W. Schaffer, Discrete Time Signal Processing, PHI, 2nd Edition, 2006. 						
Reference Books:						
1. Li tan, Digital signal processing: fundamentals and applications, Elsevier Science &. Technology Books, 2 nd						

- Edition, 2008.
 2. Robert J.schilling, Sandra. L.harris, Fundamentals of Digital signal processing using Matlab, Thomson Engineering, 2nd Edition, 2005.
- Salivahanan, Vallavaraj, Gnanapriya, Digital signal processing^{||}, McGraw-Hill Higher Education, 2nd Edition, 2009.