

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)

Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING COURSE DESCRIPTION FORM

Course Title	ENVIRONMENTAL ENGINEERING										
Course Code	A60119	A60119									
Regulation	R15-JNTUH		0								
Course Structure	Lectures Tutorials Practicals Credits										
	4	4 - 3									
Course Coordinator	Mr. Srinivas Angadi,	Assistant Professor, D	epartment of Civil E	ngineering							
Team Instructors	Mr. G Anil Kumar, A	Assistant Professor, Dep	partment of Civil Eng	gineering							

I. COURSE OVERVIEW:

This course will cover the study of various waterborne diseases which are very harmful to human beings, population forecasting for designing distribution systems, Designing of water treatment plant and various considerations, to determine the optimum dosage of coagulant, working of filters and troubles in their operation, various disinfection methods, Design principles of distribution system and analysis by hardy cross & equivalent pipe method, methods of conveying sewage to the treatment plant, various valves which are used in distribution system and also the characteristics of sewage and its estimation, various appurtenances in sewers, sewage disposal and farming. This course also cover the study of construction of oxidation pond, sludge digestion tank, skimming tanks, grit chambers, sedimentation tanks and designing of septic tanks and soak pits.

II. PREREQUISITES:

Level	el Credits Periods / Week		Prerequisites
UG	4	5	Water Resource Engineering-I

III. COURSE ASSESSMENT METHODS:

Session Marks	University End Exam Marks	Total Marks
 Mid Semester Test There shall be two midterm examinations. Each midterm examination consists of subjective type and objective type tests. The subjective test is for 10 marks of 60 minutes duration. Subjective test of shall contain 4 questions; the student has to answer 2 questions, each carrying 5 marks. The objective type test is for 10 marks of 20 minutes duration. It consists of 10 Multiple choice and 10 objective type questions, the student has to answer all the questions and each carries half mark. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion. Assignment Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.	75	100

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1	I Mid Examination	80 minutes	20
2	I Assignment	-	5
3	II Mid Examination	80 minutes	20
4	II Assignment	-	5
5	External Examination	3 hours	75

V. COURSE OBJECTIVES:

On completion of this course, students will be able to:

- I. Forecast the population for designing of distribution system.
- II. Calculate the sufficient quantity of water for fire fighting in a town
- III. Design and analysis of distribution system and appurtenances in distribution system
- IV. Design skimming tank, grit chambers, sedimentation tank and trickling filters.
- V. Design sludge digestion tank, oxidation pond and working principles of septic tanks.

VI. COURSE OUTCOMES:

- 1. Ability to design distribution system for future population.
- 2. An ability to suggest the quantity of water required for fire fighting in a town.
- 3. Student can be able to identify the quality of water by analyzing with permissible limits.
- 4. Ability to design intakes and infiltration galleries.
- 5. Student can determinate the optimum coagulant dose in water treatment.
- 6. An ability to design sedimentation tanks and clarifiers.
- 7. Student can be able to design rapid and slow sand filters.
- 8. Ability to analysis a distribution system
- 9. Ability to design skimming tank, grit chambers and sedimentation tanks.
- 10. Student can be able to design septic tank and sludge digestion tank.
- 11. Student can be able to use properly various appurtenances in distribution system.
- 12. Ability to analyze, examine the different physical, chemical and biological properties of water.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignments, Tutorials, Exams
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	-	
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Н	Assignments, Tutorials, Exams

PO4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	S	Assignments
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	Н	Assignments, Tutorials, Exams
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	0	
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	Н	Assignments
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	S	Assignments
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	S	Assignments
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		11
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	7	710
Po12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3	
PO13	An ability to recognize the importance of civil Engineering professional development by pursuing post graduate studies or face competitive examinations that offer challenging and rewarding careers in computing.	0	

N - None

S – Supportive

H - Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program specific outcomes	Level	Proficiency Assessed by
PSO 1	ENGINEERING KNOWLEDGE: Graduates shall demonstrate sound knowledge in analysis, design, laboratory investigations and construction aspects of civil engineering infrastructure, along with good foundation in mathematics, basic sciences and technical communication.	Н	Lectures, Exercises and Assignments
PSO 2	BROADNESS AND DIVERSITY: Graduates will have a broad understanding of economical, environmental, societal, health and safety factors involved in infrastructural development, and shall demonstrate ability to function within multidisciplinary teams with competence in modern tool usage.	Н	Project
PSO 3	SELF-LEARNING AND SERVICE: Graduates will be motivated for continuous self-learning in engineering practice and/ or pursue research in advanced areas of civil engineering in order to offer engineering services to the society, ethically and responsibly.	S	Guest lectures

N - None

S – **Supportive**

H - Highly Related

IX. SYLLABUS:

Unit –I:

Protected Water Supply - Population Forecasts, Design Period - Water Demand - Types Of Demand - Factors Affecting Fluctuations - Fire Demand - Storage Capacity - Water Quality And Testing - Drinking Water Standards. Comparison from Quality and Quantity and Other Considerations – Intakes - Infiltration Galleries, Confined and Unconfined Aquifers, Distribution Systems - Requirements - Methods and Layouts.

Unit –II:

Layout and general outline of water treatment units - sedimentation, uniform settling velocity – principles - design factors - surface loading - Jar test- optimum dosage of coagulant – coagulation - flocculation, clarifier design - coagulants - feeding arrangements. Filtration – theory - working of slow and rapid gravity filters - multimedia filters - design of filters - troubles in operation comparison of filters - disinfection - Types of disinfection - theory of chlorination- chlorine demand and other disinfection treatment methods. Distribution systems - types of layouts of distribution systems - Design of distribution systems - Hardy Cross and equivalent pipe methods, Service reservoirs – joints, valves such as sluice valves, air valves, scour valves and check valves water meters - laying and testing of pipe lines- pump house.

Unit –III:

Conservancy and water carriage systems - sewage and storm water estimation - type of concentration - storm water over flows combined flow - characteristics of sewage, cycles of decay - decomposition of sewage, examination of sewage, B.O.D. and C.O.D. equations - design of sewers - shapes and materials - sewer appurtenances manhole - inverted siphon - catch basins - flushing tanks - ejectors, pumps and pump houses- house drainage - components requirements - sanitary fittings - traps- one pipe and two pipe systems of plumbing – ultimate disposal of sewage - sewage farming – dilution

Unit –IV:

Lay out and general outline of various units in a waste water treatment plant –primary treatment design of screens –grit chambers –skimming tanks-sedimentation tanks-principles and design of biological treatment – trickling filters- standard and high rate.

Unit –V:

Construction and design of oxidation ponds –sludge digestion tanks –factors effecting –design of digestion tank – sludge disposal by drying –septic tanks working principles and design-soak pits. Ultimate disposal of waste water-self purification of rivers- sewage farming.

TEXTBOOKS:

- 1. Water Supply And Sanitary Engineering By G .S. Birdi, Dhanpat Rai & Sons Publishers
- 2. Water Supply Engineering , Vol 1 , Waste Water Engineering , Vol II , B. C Punmia, Ashok Jain & Arun Jain, Laxmi Publications Pvt. Ltd .
- 3. Elements of Environmental Engineering by K .N. Duggal, S. Chand Publishers.

Reference Books:

- 1. Water and waste water technology by Mark J Hammar
- 2. Water and waste water technology by steel
- 3. Water and waste water engineering by Fair Geyer and Okun
- 4. Waste water treatment- concepts and design approach by G. L. Karia and R. A. Christian, PHI
- 5. Waste water engineering by Metcalf and eddy
- 6. Unit operations in environmental engineering by R. Elangovan and M.K Saseetharan , New age international.

X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture No.	Learning Objective	Topics to be covered	References
1	Water borne diseases	To learn various water borne diseases	T2:24.6
2	Protected water supply	To learn about protected water supply	T2:24.8
3-4	Population forecasting	To forecast the population by various methods	T2:24.7
5-6	Design period, water demand, types of demand	To know the design period and water demand, types of demand	T7:12.14
7	Factors affecting fluctuations	To understand the fluctuations	T4:3.10
8-9	Fire demand, storage capacity	To determine the amount of water required for fire fighting	T2:24.6
10	Water quality and testing, and drinking water standards.	To learn about water quality and testing	T7:12.14
11	Drinking water standards	To know about drinking water standards	T4:3.10
12	Sources of water	To know about sources of water	T1:16.2
13-14	Comparison from quality and quantity of water standards	To know about Comparison from quality and quantity standards and other considerations	T1:16.5
15	Intakes	To know about intakes	T1:16.6.2
16	Infiltration galleries	To know about infiltration galleries	T2:26.9
17	Confined and unconfined aquifers	To know about confined and unconfined aquifers	T2:26.11
18-19	Distribution systems, requirements	To know about distribution systems, requirements,	T1:16.7
20	Methods and layouts.	To know about methods and lay outs of water distribution system	T2:26
21	Lay out and general outline of water treatment units	To know about Lay out and general outline of water treatment units	T2:20.4
22	Sedimentation	To know about the sedimentation	T2:23.4
23	Uniform settling velocity	To know about uniform settling velocity	T2:20.9
24-25	principles , design factors , jar test , optimum dosage of	To know about principles , design factors , jar test , optimum dosage of coagulant	T2:20.10

	coagulant		
26-27	Coagulation ,Flocculation , clarifier design	To know about coagulation, flocculation, clarifier design	T4:5.13
	Coagulants and feeding	To know about coagulants , feeding	14.3.13
28	arrangements.	arrangements	T2:34.2
	Theory of filtration, working of	To know about theory of filtration, working of	12.57.2
29-30	slow and rapid gravity filters,	slow and rapid gravity filters, multi media filters	
27 30	multi media filters	slow and rapid gravity inters, mutil media inters	T2:21.1-21.2
31	Design of filters	To know about design of filters	T:21.3-
	Troubles in operation ,	To know about design of mens	1.21.3-
32-33	comparison of filters	comparison of filters	T:21.4
	The process of disinfection ,types	To know about the process of disinfection ,types	1.21.7
34	of disinfection	of disinfection	T2:21.5-21.6
	Theory of chlorination, chlorine	To know about theory of chlorination, chlorine	12.21.0 21.0
35-36	demand, disinfection treatment	demand, disinfection treatment methods.	
55 50	methods	demand, distinction dedunient methods.	T4:7.1-7.3
37	Distribution systems	To know about distribution systems and types	T3:27.2
38	Design of distribution system	To know about distribution systems and types	T3:27.9
50	Hardy cross, equivalent pipe	To know about the methods of distribution	1.0.001.07
39-40	method	system	T3:27.9
59-40	Service reservoirs	To know about service reservoirs	15.21.7
		TO KNOW about service reservoirs	
41			T3:27.10
42	Sluice, air, scour, check valves	To know about types of valves	T3:27.11
43	about laying and testing of pipe	To know about laying and testing of pipe lines,	T 4 10 C
	lines, pump house	pump house	T4:10.6
44	Conservancy and water carriage	To know about conservancy and water carriage	TE 11.0
	systems	systems	T5:11.2
45	Estimation of sewage and storm	To know about estimation of sewage and storm	
	water	water	T5:11.3
46	Time of concentration, storm	To know about time of concentration, storm	TE 11 4
	water flows and combined flow	water ,over flows	T5:11.4
17	Characteristics of sewage, cycles	To know about characteristics of sewage, cycles	0
47	of sewage, decomposition of	of sewage, decomposition of sewage	TE.11 E
	sewage	To have about an amination of annual DOD	T5:11.5
48	BOD, COD equations	To learn about examination of sewage – BOD,	T5.11.1
	Design of some shares and	COD equations	T5:11.1
49	Design of sewers ,shapes and	To know about design of sewers , shapes and	T5.11.0
50	materials Man holes	materials	T5:11.2 T5:11.3
30		To know sewer appurtenances , man holes	15:11.5
51	Inverted siphon , catch basins , flushing tanks , ejectors	To know about inverted siphon, catch basins, flushing tanks, ejectors.	T5:11.5
	Pumps , pump houses , house	To know about pumps , pump houses , house	15:11.5
52	drainage	drainage and component requirements	T5.11 7
	Sanitary fittings , traps	To know about sanitary fittings, traps, one pipe	T5:11.7
53	Samary mulligs, uaps	and two pipe systems of plumbing	T5:11.8
	Ultimate disposal of sewage,	To know about ultimate disposal of sewage ,	15:11.0
54	sewage farming, dilution	sewage farming, dilution	T5.11 10
	Lay out of various units in a	To know about lay out and general outline of	T5:11.10
55	-	various units in a waste water treatment plant	T5.11 11
	waste water treatment plant		T5:11.11
56	Primary treatment, design of	To know about primary treatment ,design of	T5.11 15
57	screens Crit chambors	screens	T5:11.15
57	Grit chambers	To know about grit chambers	T5:11.19
58	Skimming tanks, sedimentation	To know about skimming tanks, sedimentation	TE.11 00
	tanks	tanks,	T5:11.22

59	Trickling filters	To know about principles and design of	
39		biological treatment units – trickling filters	T5:11.3
60	Oxidation ponds	To know about construction and design of	
00		oxidation ponds	T5:11.5
61	Sludge digestion tanks	To know about sludge digestion tanks	T5:11.7
62	Digestion tanks	To know about design of digestion tanks	T5:11.8
63	Sludge disposal	To know about sludge disposal by drying	T5:11.10
64	Septic tanks	To know about septic tanks	T5:11.11
65	Soak pits.	To know about working principles and design of	
05		soak pits	T5:11.15

MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM XI. OUTCOMES:

Course		Program Outcomes											Program Specific Outcomes		
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н												Н	S	
II	Н		S				Н						Н	S	
III	Н		S	S					Н				S	Н	
IV	Н							Н					Н	S	
V					S								Н		
	S <mark>= Supportive</mark>								_	H = H	ighly R	elated (-	•	

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM **OUTCOMES:**

Course		Program Outcomes											Program Specific Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	Н		Н		Н		Н						Н		
2			Н	S				Н	S					Н	
3			Н		Н				S					Н	S
4				S			Н	Н	S				Н	Н	S
5	Н				Н				S				Н		
6				S	Н			Н	S				Н	Н	S
7	Н		Н		Н		Н		S						
8	Н		Н					S						Н	0
9	Н			S	Н		Н	S					Н		
10								S					Н		S
11	Н		Н	S	Н		Н	S					Н		
12				S	Н		Н						Н		
	S= Supportive H = Highly Related												•		

Prepared By: Srinivas Angadi, Assistant Professor

H = Highly Related

HOD CIVIL ENGINEERING