INTEGRATED CIRCUITS APPLICATIONS

V Semester: ECE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AEC008	Core	L	Т	Р	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 60		

OBJECTIVES:

The course should enable the students to:

- I. Be acquainted to principles and characteristics of op-amp and apply the techniques for the design of comparators, instrumentation amplifier, integrator, differentiator, multivibrators, waveform generators, log and anti-log amplifiers.
- II. Analyze and design filters, timer, analog to digital and digital to analog Converters.
- III. Understand the functionality and characteristics of commercially available digital integrated circuits.

COURSE OUTCOMES(COs):

CO1: Discuss the analysis of Op-Amp for different configurations and its properties.

CO2 : Analyze and design the linear and non linear applications of Op-Amp

CO3 : Design the various filters using Op-Amp and analysis of Multivibrators using 555 Time

CO4 : Describe the various ADC and DAC techniques

CO5: Explore the concepts of Combinational and sequential logic circuits using digital IC's

COURSE LEARNING OUTCOMES (CLOs):

- 1. Illustrate the block diagram, classifications, package types, temperature range, specifications and characteristics of Op-Amp.
- 2. Discuss various types of configurations in differential amplifier with balanced and unbalanced outputs.
- 3. Evaluate DC and AC analysis of dual input balanced output configuration and discuss the properties of differential amplifier and discuss the operation of cascaded differential amplifier.
- 4. Analyze and design linear applications like inverting amplifier, non-inverting amplifier, instrumentation amplifier and etc. using Op-Amp.
- 5. Analyze and design non linear applications like multiplier, comparator, log and anti log amplifiers, waveform generators and etc, using Op-Amp.
- 6. Discuss various active filter configurations based on frequency response and construct using 741 Op-Amp.
- 7. Design bistable, monostable and astable multivibrators operation by using IC 555 timer and study their applications.
- 8. Determine the lock range and capture range of PLL and use in various applications of communications.
- 9. Understand the classifications, characteristics and need of data converters such as ADC and DAC.
- 10. Analyze the digital to analog converter technique such as weighted resistor DAC, R-2R ladder DAC, inverted R-2R ladder DAC and IC 1408 DAC.
- 11. Analyze the analog to digital converter technique such as integrating, successive approximation and flash converters.
- 12. Design adders, multiplexers, demultiplexers, decoders, encoders by using TTL/CMOS integrated circuits and study the TTL and CMOS logic families.

13. Design semico 14. Unders	input/output interfacing with transistor – transistor logic or complementary m nductor integrated circuits. tand the operation of SR, JK, T and D flip-flops with their truth tables and char	etal oxide acteristic				
equations. Design TTL/CMOS sequential circuits 15. Design synchronous, asynchronous and decade counter circuits and also design registers like shift						
16. Apply 17. Acquir examin	rs and universal shift registers. the concept of Integrated circuits to understand and analyze the real time applic e the knowledge and develop capability to succeed national and international le ations.	eations. evel competitive				
Unit-I	INTEGRATED CIRCUITS	Classes: 08				
Integrated Circuits: Classification of integrated circuits, Package types and temperature ranges; Differential Amplifier: DC and AC analysis of Dual input Balanced output Configuration; Properties of differential amplifier configuration: Dual Input Unbalanced Output, Single Ended Input, Balanced/Unbalanced Output; DC Coupling and Cascade Differential Amplifier Stages, Level translator. Characteristics of OP-Amps: Op-amp Block Diagram, ideal and practical Op-amp specifications, DC and AC characteristics, 741 op-amp & its features; Op-Amp parameters & Measurement: Input & Out put Off set voltages & currents, slew rate, CMRR, PSRR, drift.						
Unit -II	APPLICATIONS OF OP- AMPS	Classes: 09				
Linear applications of Op- Amps: Inverting and non-inverting amplifier, integrator, differentiator, instrumentation amplifier, AC amplifier; Non-linear applications of Op-Amps: Comparators, multivibrators, triangular and square wave generators, non-linear function generation, log and anti log amplifiers.						
Unit -III	ACTIVE FILTERS AND TIMERS	Classes: 09				
Active Filters: Classification of filters, 1st order low pass and high pass filters, 2nd order low pass, high pass, band pass, band reject and all pass filters.						
Timers: Introduction to 555 timer, functional diagram, monostable, astable operations and applications, Schmitt Trigger; PLL: Introduction, block schematic, principles and description of individual blocks, 565 PLL.						
Unit -IV	DATA CONVERTERS	Classes: 10				
Data converters: Introduction, classification, need of data converters; DAC techniques: Weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, DAC characteristics; ADC techniques: Integrating, successive approximation, flash converters, A/D characteristics.						
Unit -V	DIGITAL IC APPLICATIONS	Classes: 09				
Combinational Design Using TTL/ CMOS ICs: Logic delays, TTL/CMOS interfacing, adders, multiplexer, demultiplexer, decoder, encoder; Sequential design using TTL/ CMOS ICs: SR, JK, T, and D flip-flops; Counters: Synchronous and asynchronous counters, decade counter; Registers: Shift registers, universal shift register, Ring counters and Johnson counters.						
Text Books:						
 D. Roy Chowdhury, —Linear Integrated Circuits, New age international (p) Ltd, 2nd Edition, 2003. Ramakanth A. Gayakwad, —Op-Amps & linear ICs, PHI, 3rd Edition, 2003. John F. Wakerly, —Digital Design Principles and Practices, Prentice Hall, 3rd Edition, 2005. 						

Reference Books:

1. Salivahanan, -Linear Integrated Circuits and Applications^{II}, TMH, 1st Edition, 2008.

Web References:

- 1. https://www.nptel.ac.in
- 2. https://www.svecw.edu.in
- 3. https://www.smartzworld.com
- 4. https://www.crectirupati.com

E-Text Books:

- 1. https://books.google.co.in/books?isbn=8122414702
- 2. https://books.google.co.in/books?isbn=013186389