MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

I Semester: CSE								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
BCSB01	Core	L	Т	Р	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes:45	Tutorial Classes: Nil	Practical Classes: Nil			es: Nil	Total Classes: 45		

COURSE OBJECTIVES:

The course should enable the students to:

- I. Understand the mathematical fundamentals that is prerequisites for a variety of courses like Data mining, Network protocols, analysis of Web traffic, Computer security, Software engineering, Computer architecture, operating systems, distributed systems, Bioinformatics, Machine learning.
- II. Understand and apply the mathematical logics to many modern techniques in information technology like machine learning, programming language design, and concurrency.
- III. Studying of various sampling and classification problems.

COURSE OUTCOMES (COs):

- CO 1: Describe various concepts of probability theory and Distributions.
- CO 2: Demonstrate sampling distributions of estimators and methods of moments.
- CO 3: Explore statistical inference techniques and apply regression, PCA etc. for classification problems.
- CO 4: Enrich the knowledge on applications of graph theory and combinatorial problem
- CO 5: Identify the applications of mathematical and statistical techniques to emerging areas of Information Technology.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand basic concepts probability theory, mass, density etc.
- 2. Analyze various Distribution Functions and apply to real world problems.
- 3. Identify importance of the Central Limit Theorem, Markov chains
- 4. Apply random sampling theory and distribution of estimators to various computer science applications
- 5. Describe Methods of Moments and Maximum Likelihood to solve problems
- 6. Construct and evaluate Regression models for classification problems
- 7. Analyze importance of Principal component analysis in developing predictive models and exploratory data analysis.
- 8. Understand problem of over fitting model and choose correct model.
- 9. Analyze Euler's and Hamilton rule for a simple connected graph in NP-complete problems
- 10. Solve discrete probability and set problems using permutations and combination
- 11. Identify the solution for various combinatorial enumeration problems
- 12. Apply various graph theory concepts in Network protocol design, web traffic analysis and distributed systems
- 13. Understand the basic concepts of Software Engineering, Computer Architecture
- 14. Analyze applications of Statistics in Data mining, machine learning and Bioinformatics
- 15. Understand operating system and distributed system concepts principles

UNIT-I INTRODUCTION

Classes: 08

Probability mass, density, and cumulative distribution functions, Parametric families of distributions, Expected value, variance, conditional expectation, Applications of the univariate and multivariate Central Limit Theorem, Probabilistic inequalities, Markov chains

UNIT - II	RANDOM SAMPLES	Classes: 09
Random samp	les, sampling distributions of estimators, Methods of Moments and Maximum L	ikelihood
UNIT - III	STATISTICAL INTERFACE	Classes: 09
	erence, Introduction to multivariate statistical models: regression and classificati ponents analysis, The problem of over fitting model assessment.	on problems,
UNIT - IV	GRAPH THEORY	Classes: 10
	: Isomorphism, Planar graphs, graph coloring, Hamilton circuits and Euler cycle ions with and without repetition. Specialized techniques to solve combinatorial	
UNIT - V	COMPUTER SCIENCE AND ENGINEERING APPLICATIONS	Classes: 09
	Network protocols, analysis of Web traffic, Computer security, Software engin- operating systems, distributed systems, Bioinformatics, Machine learning.	eering, Computer
Text Books:		
 K. Trivedi. " M. Mitzenr Analysis". V 	, "Applied Combinatorics", Wiley Publications.	
1. http://www.	tutorialspoint.com/r/	
•	ikipedia.org/wiki/R_programming_language.	
3. http://www.	r-bloggers.com/how-to-learn-r-2/#h.obx6jyuc9j7t.	
E-Text Books	:	
2. https://www	.r-project.org/doc/manuals/r-release/R-intro.pdf w.cs.bris.ac.uk/~flach/mlbook/. velibrabry.com/emylibraryus/free.php?asin=1466583282.	

3. http://mylovelibrabry.com/emylibraryus/free.php?asin=1466583282.