INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTION

Course Name	:	FPGA ARCHITECURE AND APPLICATION											
Course Code	:	BES005	3ES005										
Regulation	:	R16	16										
Course		Lectures	Lectures Tutorials Practicals Credits										
Structure	•	3	3 3										
Branch	:	Electronics and Con	mmunication Engin	eering									
Academic Year	:	2017-2018											
Course Faculty	:	Dr. V. Vijay, Profes	sor, E.C.E										

I. COURSE OVERVIEW:

2000

This course starts by introducing some basic ideas of FPGA architectures and its requirements. Subsequently the course covers architectural design of CPLD architectures. As we progress with the course students will be familiarized with the programming models as well as protocols which govern the sensor network and its applications in real world.

II. PREREQUISITES:

Level	Credits	Periods/Week	Prerequisites
PG	3	3	Embedded WSN

III. MARKS DISTRIBUTION:

Sessional Marks	University End Exam Marks	Total Marks
Midterm Test	70	100
There shall be two midterm examinations. Each midterm examination consists		
of essay paper and assignment.		
The essay paper is for 25 marks of 60 minutes duration and shall contain 4		
questions. The student has to answer 2 questions, each carrying 5 marks.		
First midterm examination shall be conducted for the first two and half units of		
syllabus and second midterm examination shall be conducted for the remaining		
portion.		
Five marks are marked for assignments. There shall be two assignments in every		
theory course. Assignments are usually issued at the time of commencement of		
the semester. These are of problem solving in nature with critical thinking. Marks		
shall be awarded considering the average of two midterm tests in each course.		

IV. EVALUATION SCHEME:

S.NO.	Component	Duration	Marks
1	I Mid Examination	120 minutes	25
2	I Assignment	-	05
3	II Mid Examination	120 minutes	25
4	II Assignment	2 0	05
5	External Examination	180 minutes	70

V. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

- I. Understand the architecture of various FPGA and CPLD.
- II. Design and implementation ASIC targeting to FPGA/CPLD.
- III. Understand different types of programming technologies and logic devices.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

1. Understand the concept of programming logic devices and its applications.

- 2. Acquire knowledge of various programming methods in FPGA.
- 3. Design antifuse FPGA based architectures.
- 4. Familiarize with SRAM based FPGA architectures.
- 5. Design CPLD and FPGA architectures for real time applications.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program outcomes	Level	Proficiency assessed by
PO1	Engineering Knowledge Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	Н	Assignments, Tutorials
PO2	Problem Analysis Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	S	Assignments

PO3	Design/Development of Solutions	Н	Mini projects
	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations		
PO4	Conduct Investigations of Complex Problems	Н	Projects
	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions		
PO5	Modern Tool Usage	S	Projects
	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations		
PO6	The Engineer And Society	N	
	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice		
PO7	Environment and sustainability	S	Assignments
	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development		
PO8	Ethics	S	Oral
	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice	2	Discussions
PO9	Individual and Team Work	Ν	
	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	1	
PO10	Communication	S	PresentationS
	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions		
PO11	Project management and finance	S	Seminars
	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments		Discussions
PO12	Life-long learning	Н	Development

Recognize the need for, and have the preparation and ability to engage	of Prototype,
in independent and life-long learning in the broadest context of	Mini Projects
technological change	

N=None S=Supportive H=Highly Related

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	Н	Lectures and Assignments
PSO2	Problem-solving skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	S	Tutorials
PSO3	Successful career and Entrepreneurship: An understanding of social- awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.	S	Seminars and Projects

IX. SYLLABUS:

UNIT – I

INTRODUCTION TO PROGRAMMABLE LOGIC DEVICES:- Introduction, simple programmable logic devices: Read only memories; Programmable logic arrays, Programmable array logic, Programmable logic devices/Generic array logic; Complex programmable logic devices: Architecture of Xilinx cool runner XCR3064XL CPLD, CPLD implementation of a parallel adder with accumulation.

UNIT – II

FIELD PROGRAMMABLE GATE ARRAYS:- Organization of FPGAs, FPGA programming technologies and Programmable logic block architectures, programmable interconnects, programmable I/O blocks in FPGAs, dedicated specialized components of FPGAs and applications of FPGAs.

UNIT – III

SRAM PROGRAMMABLE FPGAS:- Introduction, programming technology, device architecture, the Xilinx XC2000, XC3000 and XC4000 architectures.

$\mathbf{UNIT}-\mathbf{IV}$

ANTIFUSE PROGRAMMED FPGAS:- Introduction, programming technology, device architecture, the Actel ACT1, ACT2 and ACT3 architectures.

$\mathbf{UNIT}-\mathbf{V}$

DESIGN APPLICATIONS:- General design issues, counter examples, fast video controller and position tracker for a robot manipulator, fast DMA controller, designing counters with ACT devices, designing adders and accumulators with the ACT architecture.

Text Books:

- 1. Stephen M. Trimberger, "Field Programmable Gate Array Technology", Springer International Edition, 1stEditon, 1994.
- 2. Charles H. Roth Jr, Lizy Kurian John, "Digital Systems Design", Cengage Learning, 2ndEdition, 2012.

References:

- 1. John V. Oldfield, Richard C. Dorf, "Field Programmable Gate Arrays", Wiley India, 1stEdition, 2008.
- 2. Pak K. Chan/Samiha Mourad, "Digital Design Using Field Programmable Gate Arrays", Pearson Low

Price Edition, 1999.

- 3. Ian Grout, "Digital Systems Design with FPGAs and CPLDs, Elsevier, Newnes, 1st Edition, 2008.
- 4. Wayne Wolf, "FPGA based System Design", Prentice Hall, Modern Semiconductor Design Series, 2004.

X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes (CLO):

Lecture	CLO	UNIT	Learning Objective	Topics to be covered	Reference			
No.								
			I Spell					
1-2	1	1	Understanding the basic concept of logic devices	Introduction, simple programmable logic devices	Textbook 1			
3-4	2		Familiarization to architecture of read only memories and logic arrays	Read only memories; Programmable logic arrays	Textbook 1			
5-6	3	2	Design the programmable logic devices	Programmable array logic, Programmable logic devices/Generic array logic	Textbook 1			
7-8	4	1	Study of complex programmable logic device and its features	Complex programmable logic devices: Architecture of Xilinx cool runner XCR3064XL CPLD	Textbook 1			
9	5		Design the parallel adder using CPLD architectures	CPLD implementation of a parallel adder with accumulation.	Textbook 1			
10-11	6	II	Examine the various function blocks in FPGA	Organization of FPGAs	Textbook 1			
12-13	7		List the programming technology and its features	FPGA programmingTextbook 1technologies				

1.4	0	1		D 111 111	m 1 1 1
14	8		Discuss the various principles	Programmable logic block	Textbook I
			involved in the design of	architectures	
			programmable logic block		
			architectures		
15-16	9		Understand the needs of	programmable	Textbook 1
			programmable interconnects	interconnects	
17-18	10		Describe the functions of	programmable I/O blocks	Textbook 1
			programmable I/O blocks in	in FPGAs	
			FPGA		
19	11		Describe the programming of	Introduction	Textbook 1
17	11		SR AM FPGA	indoddetion	I CAROOOK I
20.21	12		Define the programming	programming technology	Taythook 1
20-21	12		technology and Analyze	and davias anabitaature	TEXIDOOK I
			device analite sture	and device architecture	
	10	III		Will MC2000	T (1 1 1
22-23	13		Study the features of Xilinx	Xilinx XC2000	Textbook I
			XC2000 architecture	architecture	
24-25	14		Understand the concepts of	Xilinx XC3000	Textbook 1
			Xilinx XC3000 architecture	architecture	
26-27	15		Study the features of Xilinx	Xilinx XC4000	Textbook 1
			XC4000 architecture	architecture	
Lecture	CLO	UNIT	Learning Objective	Topics to be covered	Reference
No.					
			II Spell		•
20	16		Describe the programming of	Introduction	Taythool: 1
20	10		antifuce EDC A	muoduction	I CALUOUK I
20.20	17	-		Provide the last	T
29-30	1/		Define the programming	Programming technology	Textbook I
			technology and Analyze device		
	100	IV	architecture		
31-32	18	1,	Study the features of ACTEL act1	ACTEL ACT 1	Textbook 1
	\odot		architecture	architecture	
33-34	19	e	Understand the concepts of	ACTEL ACT 2	Textbook 1
	- C.	10 C	ACTEL ACT2 architecture	architecture	
35-36	20	\sim	Study the features of ACTEL act3	ACTEL ACT 3	Textbook 1
		·	architecture	architecture	
37-38	21	1	Study the design issues and	General design issues,	Textbook 1
		1.1	design of counter	counter examples	
39-41	22		Implement robot for position	fast video controller and	Textbook 1
			tracking and analyze the features	position tracker for a robot	
			of DMA controller	manipulator	
		V		Fast DMA controller	
42-43	23	-	Analyze the performance of	Designing counters with	Textbook 1
72-43			Analyze the performance of	Designing counters with	I CALOUUK I
	23		counters using ACT devices	ACT devices	
11 15	23	-	counters using ACT devices	ACT devices	Toythools 1
44-45	23	-	counters using ACT devices Design of data path units using	ACT devices Designing adders and	Textbook 1
44-45	23	-	counters using ACT devices Design of data path units using ACT architecture	ACT devices Designing adders and accumulators with the	Textbook 1
44-45	23	-	counters using ACT devices Design of data path units using ACT architecture	ACT devices Designing adders and accumulators with the ACT	Textbook 1

XI. MAPPING OF COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Objectives			Program Specific Outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	Н							S				Н		S	S
2		S					S			S			Н	S	
3				Н				S			S		Н	S	

S=Supportive

H=Highly Related

XII. MAPPING COURSE OUTCOMES LEADING TO ACHIEVEMENT OF PROGRAM **OUTCOMES:**

Course Outcome s		Program Outcomes													Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
1	Н		Н					S			S	Η		S	S			
2	Н				S	Ń	S			1	S		Н	S				
3		S		1	S			S				Н	Н	S				
4	Н			Н		1	S	S	-	S	S			S				
5	Н	S	Н		S	1	8			<		-7	Н	S				

S=Supportive

H=Highly Related

HEAD OF THE DEPARTMENT,

TON F ELECTRONICS AND COMMUNICATION ENGINEERING.