

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal, Hyderabad - 500 043

# **COMPUTER SCIENCE AND ENGINEERING**

# **COURSE DESCRIPTION FORM**

| Course Title         | OBJECT ORIENTEI                           | DBJECT ORIENTED ANALYSIS AND DESIGN |             |        |  |  |  |  |  |  |
|----------------------|-------------------------------------------|-------------------------------------|-------------|--------|--|--|--|--|--|--|
| Course Code          | A60524                                    | 60524                               |             |        |  |  |  |  |  |  |
| Regulation           | R15 - JNTUH                               |                                     |             |        |  |  |  |  |  |  |
| Commo Streetuno      | Lectures Tutorials                        |                                     | Practical's | Credit |  |  |  |  |  |  |
| Course Structure     | 4                                         | -                                   | -           | 4      |  |  |  |  |  |  |
| Course Coordinator   | Ms. K Mayuri, Assistar                    | nt Professor, CSE                   |             |        |  |  |  |  |  |  |
| Team of Instructors  | Ms. B Ramyasree, Assistant Professor, CSE |                                     |             |        |  |  |  |  |  |  |
| reall of motifictors | Mr. M Rakesh, Assistar                    | nt Professor, CSE                   |             |        |  |  |  |  |  |  |

# I. COURSEOVERVIEW:

The Unified Modeling Language is a graphical language for visualizing, specifying, constructing and documenting the artifacts of a software intensive system. The UML gives you a standard way to write systems blueprints covering conceptual things such as business processes and system functions as well as concrete things such as classes written in a specific programming language database schemas and reusable software components. Learn what the UML is what it is not and why the UML is relevant to the process of developing software intensive systems.

### II. **PREREQUISITE(S):**

| Level | Credits | Periods/ Week | Prerequisites                                        |
|-------|---------|---------------|------------------------------------------------------|
| UG    | 4       | 6             | Object Oriented Programming,<br>Software Engineering |

## **III.** MARKSDISTRIBUTION:

| Sessional Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | University<br>End Exam<br>Marks | Total<br>Marks |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|
| <ul> <li>Midterm Test</li> <li>There shall be two midterm examinations. Each midterm examination consists of essay paper, objective paper and assignment.</li> <li>The essay paper is for 10 marks of 60 minutes duration and shall contain 4 questions. The student has to answer 2 questions, each carrying 5 marks.</li> <li>The objective paper is for 10 marks of 20 minutes duration. It consists of 10 multiple choice and 10 fill-in-the blank questions, the student has to answer all the questions and each carries half mark. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.</li> <li>Five marks are earmarked for assignments. There shall be two assignments in every theory course. Assignments are usually issued at the time of commencement of the semester. These are of problem solving in nature with critical thinking. Marks shall be awarded considering the average of two midterm tests in each course.</li> </ul> | 75                              | 100            |

# **IV. EVALUATIONSCHEME:**

| S. No | Component            | Duration   | Marks |
|-------|----------------------|------------|-------|
| 1.    | I Mid Examination    | 80 minutes | 20    |
| 2.    | I Assignment         | -          | 5     |
| 3.    | II Mid Examination   | 80 minutes | 20    |
| 4.    | II Assignment        | -          | 5     |
| 5.    | External Examination | 3 hours    | 75    |

## V. COURSE OBJECTIVES:

### At the end of the course, the students will be able to:

- I. Understand the basic principles of object-oriented techniques.
- II. Acquire the knowledge and usage of object- oriented analysis and design concepts.
- III. Explore and analyze different analysis and design models, such Object Oriented Models, Structured Analysis and Design Models.
- IV. Analyze and understand how to map one style of diagrammatic notations into another.
- V. Understand the studying and developing examples of existing UML models.

### VI. COURSE OUTCOMES:

#### After completing this course the student must demonstrate the knowledge and ability to:

- 1. Explain the importance of modeling.
- 2. Demonstrate the Conceptual model of UML and SDLC.
- 3. Illustrate classes and relationships.
- 4. Define classes modeling techniques and instances modeling techniques.
- 5. Describe interaction diagrams and their modeling techniques.
- 6. Explain events and signals and their modeling techniques.
- 7. Explain the terms and concepts of component and deployment.
- 8. Demonstrate component and deployment diagram and their modeling techniques.
- 9. Analyzing and modeling library application and static and dynamic models of library application.
- 10. Demonstrate state machines and state chart diagrams and their modeling techniques.

### VII. HOW PROGRAM OUTCOMES AREASSESSED:

|     | Program Outcomes                                                                                                                                                                                                                                                                                  | Level | Proficiency<br>assessed by |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| PO1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          | Н     | Assignment<br>Tutorials    |
| PO2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                         | Н     | Assignments                |
| PO3 | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | Н     | Mini Projects              |
| PO4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments,                                                                                                                                                            | S     | Projects                   |

|      | Program Outcomes                                                                                                                                                                                                                                                                                          | Level | Proficiency<br>assessed by |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
|      | analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                                                                                                                                                       |       |                            |
| PO5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                 | Н     | Projects                   |
| PO6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               | Ν     |                            |
| PO7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   | Ν     |                            |
| PO8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    | Ν     |                            |
| PO9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   | S     | Tutorials                  |
| PO10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | Н     | Mini Projects              |
| PO11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               | Ν     |                            |
| PO12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation<br>and ability to engage in independent and life-long learning in the<br>broadest context of technological change.                                                                                                           | S     | Lecture,<br>Projects       |

N- None

# **S-Supportive**

H - Highly Related

# VIII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

|      | Program Specific Outcomes                                                                                                                                                                                                                                                                          | Level    | Proficiency<br>assessed by |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PSO1 | <b>Professional Skills:</b> The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity. | Н        | Lectures,<br>Assignments   |
| PSO2 | <b>Problem-Solving Skills:</b> The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.                                                                                 | S        | Projects                   |
| PSO3 | <b>Successful Career and Entrepreneurship:</b> The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.                                                                             | Н        | Guest<br>Lectures          |
|      | N - None S - Supportive H                                                                                                                                                                                                                                                                          | - Highly | Related                    |

#### IX. **SYLLABUS:**

#### UNIT - I

**Introduction to UML:** Importance of modeling, principles of modeling, object oriented modeling, Conceptual model of the UML, Architecture, and Software Development Life Cycle.

#### UNIT – II

Basic Structural Modeling: Classes, Relationships, common Mechanisms and diagrams.

Advanced Structural Modeling: Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages.

Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams

#### UNIT – III

Basic Behavioral Modeling-I: Interactions, Interaction diagrams.

Basic Behavioral Modeling –II: Use cases, Use case Diagrams, Activity diagrams.

#### $\mathbf{UNIT} - \mathbf{IV}$

Advanced Behavioral Modeling: Events and Signals, State machines, Processes and Threads, Time and space chart diagrams.

Architectural Modeling: Component, Deployment, Component Diagrams, Deployment diagrams

#### UNIT – V

Pattern and Frameworks, Artifact Diagrams Case Study: The Unified Library application

#### Text books:

- 1. Grady Booch, James Rum baugh, Ivar Jacobson: The Unified Modeling Language User Guide, Pearson Education.
- 2. Hans, Erik Eriksson Magnus Penker, Brian Lyons, David Fado: UML 2 Toolkit, WILEY, Dreamtech India Pvt. Ltd.

#### **References:**

- 1. Meilir Page Jones: Fundamentals of Object Oriented Design in UML, Pearson Education.
- 2. Pascal Roques: Modeling Software Systems Using UML2, WILEY, Dreamtech India Pvt. Ltd.
- 3. Atul Kahate: Object Oriented Analysis & Design, The McGraw Hill Companies.
- 4. Craig Larman Appling UML and Patterns: An introduction to Object Oriented Analysis and Design and Unified Process, Pearson Education.
- 5. Mark Priestley: Practical Object-oriented Design with UML, TATA McGraw Hill.

# IX. COURSEPLAN:

| Lecture<br>No. | Course Learning Outcomes                                         | Topics to be covered                                                                                                                                                                                                                                                                              | Reference  |
|----------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1 - 2          | Explain the importance of modeling.                              | Importance of Modeling ,Principles of<br>Modeling ,Object Oriented Modeling                                                                                                                                                                                                                       | T1:26-32   |
| 3 - 4          | Demonstrate the Conceptual model of UML and SDLC.                | Conceptual model of UML. Architecture,<br>Software Development Life Cycle                                                                                                                                                                                                                         | T1:39-57   |
| 5 - 6          | Illustrate classes and relationships<br>mechanisms and diagrams. | Classes, Modeling the vocabulary,<br>Modeling the distribution of<br>responsibilities, Modeling non software<br>things, Modeling primitive types of a<br>System.                                                                                                                                  | T1:69-95   |
| 7 - 8          | Illustrate relationships mechanisms<br>and diagrams              | Relationships: Terms and Concepts.<br>Modeling single dependencies,<br>Modeling single inheritance, Modeling<br>structural relationships, Creating webs of<br>relationships                                                                                                                       | T1:97-155  |
| 9 - 10         | Demonstrate common<br>mechanisms and diagrams                    | Common mechanisms and diagrams:<br>Notes, Stereotypes, Tagged values and<br>constraints. Modeling comments, new<br>building blocks, new properties,<br>Semantics, Extending UML.                                                                                                                  | T1:157-201 |
| 11 - 13        | Explain complex views of system                                  | Diagrams, view and models, modeling<br>different views of a system, modeling<br>different level of abstraction, modeling<br>complex views                                                                                                                                                         | T1:127-213 |
| 14             | Define Advanced structural modeling techniques                   | Advanced structural modeling,<br>Advanced. classes Classifiers, Modeling<br>semantics of a class,<br>choosing right kind of a classifier                                                                                                                                                          | T1:214-223 |
| 15             | Explain advanced relationships                                   | Advanced Relationships: advanced<br>dependency, generalization, association<br>Realization. Refinement relationships,<br>Modeling webs, Creating webs of<br>relationship                                                                                                                          | T1:229-239 |
| 16             | Illustrate Interfaces and their<br>modeling techniques           | Interfaces, Types, Roles, Realization<br>Modeling the seams in a seam. Static<br>and dynamic types, Making interfaces<br>understandable and approachable.<br>Packages, visibility, importing and<br>exporting, modeling group of elements,<br>architectural views, Scaling up to large<br>systems | T1:267-278 |
| 17 - 19        | List interaction Modeling techniques                             | Common modeling techniques:<br>Modeling simple collaboration, logical<br>database schema, Forward and Reverse<br>Engineering                                                                                                                                                                      | T1:244-261 |
| 20 - 21        | Describe instances and their modeling techniques                 | Instances: Terms and Concepts,<br>Common modeling Techniques,<br>Modeling concrete Instances.                                                                                                                                                                                                     | T1:281-311 |
| 22             | State Prototypical modeling<br>techniques.                       | Modeling Prototypical Instances. Object<br>Diagrams: Modeling Object structures,<br>Forward and Reverse<br>Engineering                                                                                                                                                                            | T1:281-311 |

# At the end of the course, the students are able to achieve the following course learning outcomes:

| 23 - 24 | Demonstrate interaction diagram                                 | Interactions: Terms and Concepts.                                                                                                                                                  | T1:312-360  |
|---------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         |                                                                 | Modeling Flow of control.                                                                                                                                                          |             |
| 25 - 26 | Illustrate Interfaces and their modeling techniques             | Interaction Diagrams: Terms and<br>Concepts. Common Modeling<br>Techniques: Modeling Flow of control<br>by time ordering, Modeling Flow of<br>control by Organization. Forward and | T1:355-378  |
| 27      | Demonstrate use case diagrams                                   | Use case: Terms and Concepts.<br>Common Modeling Techniques:<br>Modeling the behavior of an element.                                                                               | T1:382-433  |
| 28 - 29 | Describe Use cases and their modeling techniques                | Use case diagrams: Common Modeling<br>Techniques: Modeling the Context of a<br>system, Modeling the requirements of a<br>system, Forward and<br>Reverse Engineering.               | T1:434-438  |
| 30 - 32 | State Activity diagrams and their modeling techniques           | Activity Diagrams: Terms and Concepts.<br>Common modeling techniques:<br>Modeling a Workflow, Modeling an<br>Operation Forward and<br>Reverse engineering.                         | T1:279-295  |
| 33      | Describe Events And Signals                                     | Events and Signals: Terms and<br>Concepts. Common modeling<br>Techniques: Modeling a Family of<br>signals, Modeling exceptions.                                                    | T1:299-306  |
| 34      | Illustrate State machines and their modeling techniques         | State Machines: Terms and Concepts,Common modeling Techniques,Modeling the lifetime of an object.                                                                                  | T1:312-328  |
| 35 - 36 | List Process and threads modeling techniques                    | Processes and Threads: Terms and<br>concepts, Modeling multiple Flows of<br>Control, modeling inter process<br>communication                                                       | T1:333-342  |
| 37 - 38 | Describe Component and deployment and their modeling techniques | Components: Terms and Concepts.<br>Modeling Executable and Libraries,<br>modeling tables, Files and Documents<br>modeling an API, modeling Source co                               | T1:367-377  |
| 39 - 40 | Demonstrate Deployment Diagram                                  | Deployment: Terms and Concepts,<br>Modeling Processors and Devices,<br>Modeling the                                                                                                | T1:382-389  |
| 41 - 42 | Demonstrate Component and deployment diagram                    | Component Diagram :Terms and<br>Concepts, Modeling Source code ,an<br>executable Release, Physical database,<br>Adaptable systems, Forward and<br>Reverse engineering              | T1:416-425  |
| 43 - 44 | Demonstrate Deployment Diagram<br>and client server system      | Deployment Diagram: Terms and<br>Concepts, Modeling an Embedded<br>system. Modeling Client Server<br>System, a Fully distributed system,<br>Forward and Reverse engineering        | T1:429-438  |
| 45-50   | Illustrate Patterns and Framework                               | Patterns and Framework, Artifact<br>Diagrams The unified library<br>Application                                                                                                    | T1: 403-411 |
| 51-57   | List Artifacts diagrams and library diagram                     | Artifact Diagrams The unified library Application                                                                                                                                  | T1: 476-477 |

### X. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENTOF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course     | Program Outcomes |            |     |     |     |     |            |            |     |      |      | Program Specific<br>Outcomes |      |      |      |
|------------|------------------|------------|-----|-----|-----|-----|------------|------------|-----|------|------|------------------------------|------|------|------|
| Objectives | <b>PO1</b>       | <b>PO2</b> | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12                         | PSO1 | PSO2 | PSO3 |
| Ι          |                  | S          | Н   |     |     |     |            |            |     |      |      |                              | Н    | S    | Н    |
| II         |                  | Н          |     |     | S   |     |            |            |     |      |      |                              | S    |      | Н    |
| III        |                  |            |     |     |     |     |            |            |     | Н    | S    |                              | Н    | S    | S    |
| IV         |                  |            | S   |     | Н   |     |            |            |     |      |      |                              | Н    | S    | S    |
| V          |                  |            |     |     |     |     |            |            |     |      | S    | Н                            | S    |      | Н    |

**S** – **Supportive** 

H - Highly Related

### XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course   | Program Outcomes |            |     |            |     |            |            |     |     |      |       |         | Program Specific<br>Outcomes |      |      |
|----------|------------------|------------|-----|------------|-----|------------|------------|-----|-----|------|-------|---------|------------------------------|------|------|
| Outcomes | <b>PO1</b>       | <b>PO2</b> | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | PO9 | PO10 | PO11  | PO12    | PSO1                         | PSO2 | PSO3 |
| 1        | Η                |            |     |            |     | S          |            |     |     |      |       |         | Н                            |      | Н    |
| 2        |                  | S          |     |            |     |            |            |     |     |      | Н     |         | S                            | Н    |      |
| 3        |                  | Н          | S   |            |     |            |            |     |     |      |       |         |                              | Н    | Н    |
| 4        |                  |            | Н   |            | S   |            |            |     |     |      |       |         | S                            | Н    |      |
| 5        |                  |            |     |            | Н   |            |            |     |     |      | S     |         | Н                            |      | S    |
| 6        |                  |            |     |            | S   |            |            | Н   |     |      |       |         | Н                            | Н    | S    |
| 7        |                  | Н          |     |            |     |            |            |     |     |      | S     |         | Н                            |      | S    |
| 8        |                  |            | Н   | S          |     |            |            |     |     |      |       |         | Н                            | S    |      |
| 9        |                  |            | Н   | S          |     |            |            |     |     |      |       |         | Н                            |      | Н    |
| 10       |                  |            |     |            | Н   |            |            |     |     |      |       | S       | Н                            | S    | Н    |
|          | S – Supportive   |            |     |            |     |            |            |     |     |      | H – H | ighly R | elated                       |      |      |

Prepared by: Ms. K Mayuri, Assistant Professor, CSE

HOD, COMPUTER SCIENCE AND ENGINEERING