STRENGTH OF MATERIALS

IV Semester: CE									
Course Code	Category	Hours / Week		Credits	Ma	Maximum Marks			
ACEB07	Core	L	Т	Р	С	CIA	SEE	Total	
		3	1	-	4	30	70	100	
Contact Classes: 45	Contact Classes: 45 Tutorial Classes: 15		Practical Classes: Nil Total				al Classes:	Classes: 60	
OBJECTIVES:									
The course should enable the students to:									
I. Describe the concepts and principles, understand the theory of elasticity including strain/displacement									
and Hooke's law relationships; and perform calculations, relative to the strength and stability of structures and mechanical components:									
II. Define the characteristics and calculate the magnitude of combined stresses in individual members and									
complete structures; analyze solid mechanics problems using classical methods and energy methods;									
III. Analyze various	III. Analyze various situations involving structural members subjected to combined stresses by application								
of Mohr's circle	of stress; locate the shea	ar cen	ter of th	nin wall b	beams; and				
IV. Calculate the deflection at any point on a beam subjected to a combination of loads; solve for stresses									
and deflections	of beams under unsymi	metric	al load	ing; appl	y various ia members:	allure criteri	a for gene	eral stress	
states at points,	solve torsion problems i	II Uals			members,				
MODULE –I	STRESSES AND STR	AINS	5				Clas	ses: 12	
Concept of stress and	Concept of stress and strain St. Venant''s principle, stress and strain diagram. Elasticity and plasticity, types of							types of	
stresses and strains, He	ooke's law stress – strain	n diag	ram for	mild ste	el working s	stress, factor	r of safety,	Lateral	
strain, Poisson's ratio	and volumetric strain -]	Elasti	c modu	li and the	e relationship	p between th	nem; Bars	of	
varying section, comp	osite bars, temperature s	tresse	s. Strai	n Energy	- Resilienc	e, Gradual,	sudden, im	pact and	
shock loadings, simple	e applications, two-dime	nsion	al syste	m, stress	at a point of	n a plane, pi	rincipal str	esses and	
principal planes, Mohi	r circle of stress, ellipse	of stre	ess and	their app	lications. Ty	vo-dimensio	onal stress-	-strain	
elastic constants	ins and principal axis of s	stram,	, circle (or strain a	and empse c	n strain. Re	lationship	between	
clastic constants.									
MODULE –II	BENDING MOMENT	ANI) SHEA	R FOR	CE DIAGR	AMS	Clas	ses: 08	
Bending Moment (BM) and Shear Force (SF) diagrams. BM and SF diagrams for cantilevers simply supported									
with or without over	hangs. Calculation of 1	naxin	num Bl	M and S	F and the	point of co	ontra flexu	ire under	
concentrated loads, uniformly distributed loads over the whole span or part of span, combination of									
concentrated loads (two or three) and uniformly distributed loads, uniformly varying loads, application of									
moments. Relationship between moment, slope and deflection, Moment area method, Macaulay's method. Use									
of these methods to ca	iculate slope and deflect	10n 10	or deteri	minant be	eams.				
MODULE –III	DEFLECTIONS IN B	EAM	S, TOI	RSION			Clas	ses: 08	
Derivation of bending equation, Neutral axis, determination of bending stresses, section modulus ofrectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections, Design of simple beam sections.									
Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T angle sections.									

Μ	ODULE –IV	TORSION	Classes: 08				
Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shafts, torsional rigidity, Combined torsion and bending of circular shafts, principal stress and maximum shear stresses under combined loading of bending and torsion. Analysis of close-coiled-helical springs.							
N	IODULE –V	THIN CYLINDERS AND SPHERES	Classes: 09				
Derivation of formulae and calculations of hoop stress, longitudinal stress in a cylinder, and sphere subjected to internal pressures.							
Tex	xt Books:						
1. 2. 3. 4.	Timoshenko, S. Kazmi, S. M. A Hibbeler, R. C. Crandall, S. H., York, NY: McC	and Young, D. H., "Elements of Strength of Materials", DVNC, New Yorl ., "Solid Mechanics" TMH, Delhi, India. Mechanics of Materials. 6th ed. East Rutherford, NJ: Pearson Prentice Hall N. C. Dahl, and T. J. Lardner. An Introduction to the Mechanics of Solids. Graw Hill, 1979.	s, USA. , 2004. 2nd ed. New				
Ref	ference Books:						
 Mechanics of Materials - Ferdinand P. Beer, E. Russel Jhonston Jr., John T. DEwolf– TMH2002. Strength of Materials by R. Subramanian, Oxford University Press, New Delhi. 							
We	b References:						
1. 2. 3.	 http://www.nptelvideos.in/2012/11/strength-of-materials- prof.html http://ocw.mit.edu/courses/civil-and-environmental-engineering/1-050-solid-mechanics-fall-2004/lecture-notes/ https://www.youtube.com/watch?v=coRgpxG2pyY&list=PLLbvVfERDon3oDfCYxkwRct1Q6YeOzi9g 						
E-1 1. 2. 3.	Fext Books: http://www.free http://royalmech https://books.go	engineeringbooks.com/Civil/Strength-of-Material-Books.php nanicalbuzz.blogspot.in/2015/04/strength-of-materials-book-by-r-k-bansal.l ogle.co.in/books?id=I8gg004004C&printsec=frontcover&da=STRENGT1	ntml H+OF+MATE				

3. https://books.google.co.in/books?id=18gg0Q4OQ4C&printsec=frontcover&dq=STRENGTH+OF+MATE RIALS&hl=en&sa=X&ved=0ahUKEwjpveCD44HgAhWBad4KHacUAgYQ6AEIMDAB#v=onepage& q=STRENGTH%20OF%20MATERIALS&f=false