INTRODUCTION TO ROBOTICS

Course Code	Category	Но	ours / W	eek	Credits	Ma	Maximum Marks	
AME553	Open Elective	L	Т	Р	С	CIA	SEE	Tota
	Open Elective	4	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil]	Practica	l Classe	es: Nil	Tota	al Classes	s: 45
COURSE OBJECTIV								
	ledge in various robot structu	ires and	their wo	rksnace				
	in performing kinematics and				•			
	edge of the dynamics associa				of robotic sys	tems.		
	edge and analysis skills assoc							
	al handling and robot applicat				e			
COURSE OUTCOME	S (COs):							
	teristic features of robots and	usage c	of differe	nt gripp	ers for indus	trial appli	cations.	
	and inverse kinematics of rob							
	ial Kinematics of planar and s							
	cation of robot actuators and							
CO5 Remember materia	l handling and applications in	n manuf	acturing.					
COURSE LEARNING	OUTCOMES (CLOs):							
	een automation and robotics.							
	l describe its anatomy.							
	pes of industrial sensors.							
4. Classify various gr								
	ion analysis of robot.							
	ds for calculating the kinemat				ics of a robo	t manipula	ator.	
	tions, joint coordinates and. v	world co	oordinate	es.				
	ogeneous transformation.	on invita	tons					
 Describe the differ Illustrate Lagrange 	ential kinematics of planar m	ampuia	tors.					
11. Discuss jacobian a								
12. Illustrate Newton-J								
13. Describe joint space								
14. Illustrate cubic pol	ynomial fit.							
15. Classify types of n								
16. Explain actuators a								
	obot applications in manufact	uring.						
	robots in material handling.							
19. Explain work cell	-							
20. Discuss the role of	robots in assembly and inspe	ection.						
Unit-I INTRO	DUCTION TO ROBOTICS						Class	es: 09
ntroduction: Automatic	on and robotic, an over view	v of rot	ootics, cl	assifica	tion by coor	dinate sy	stem and	contro
ystems; Components o	f the industrial robotics: Deg pes of grippers, general cons	rees of	freedom	, end et	ffectors: Med	chanical g		
Unit -II MOTIO	N ANALYSIS AND KINEN		S				Class	00

Motion analysis: Basic rotation matrices, composite rotation matrices, Euler angles, equivalent angle and axis, homogeneous transformation, problems; Manipulator kinematics: D-H notations, joint coordinates and world

coordinates, fo	prward and inverse kinematics, problems.		
Unit -III	KINEMATICS AND DYNAMICS	Classes: 09	
	nematics: Differential kinematics of planar and spherical manipulators, Jacobians pr nics: Lagrange, Euler formulations, Newton-Euler formulations, problems on		
Unit -IV	TRAJECTORY PLANNING AND ACTUATORS	Classes: 09	
Slew motion,	nning: Joint space scheme, cubic polynomial fit, avoidance of obstacles, types of mot joint interpolated motion, straight line motion, problems, Robot actuators and feed eumatic and hydraulic actuators.		
Unit -V	ELECTRIC ACTUATORS AND ROBOTIC APPLICATIONS	Classes: 09	
resolvers and assembly and	tors: DC servo motors, stepper motors, feedback components: position sensors encoders, velocity sensors, tactile sensor; Robot application in manufacturing: M inspection.		
Text Books:			
	M. P, "Industrial Robotics", TataMcGraw-Hill, 1 st Edition, 2013. , "Introduction to Robotic Mechanics and Control", Pearson, 3 rd Edition, 2013.		
Reference Bo	oks:		
	D. Klafter, "Robotic Engineering", Prentice Hall, 1 st Edition, 2013. "Robotics", McGraw-Hill, 1 st Edition, 2013.		
Web Referen	ces:		
2. http://op	ww.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/lecture1.pdf encourses.emu.edu.tr/course/view.php?id=32 ww.researchgate.net/publication/277712686_Introduction_to_Robotics_class_notes_	UG_level	
1. http://ww	vw.robot.bmstu.ru/ vw.robotee.com/index.php/download-free-robotic-e-books/		