

Time: 3 hour
Maximum Marks: 70

Answer ONE Question from each MODULE All Questions Carry Equal Marks

All parts of the question must be answered in one place only MODULE-I

1. (a) Explain the formation of depletion region in an open-circuited p-n junction diode and also the effect of forward and reverse biasing of $\mathrm{p}-\mathrm{n}$ junction on the depletion region with neat sketches?
(b) A P-N junction germanium diode has a reverse saturation current of 0.10 A at the room temperature of 270 C.It is observed to be 30 A , when the room temperature is increased. Evaluate the room temperature?
[7m]
2. (a) Construct the circuit diagrams of a full wave rectifier and Bridge rectifier. Explain the operation of the circuit with relevant waveforms.
[7m]
(b) A full wave bridge rectifier having load resistance of 100 is fed with 220 V , Assuming the diodes are ideal, Find the following terms:
[7m]
(i) DC output voltage
(ii) Peak inverse voltage
(iii) Rectifier efficiency

MODULE-II

3. (a) Explain clearly the DC and AC load line and also explain how to obtain quiescent point graphically for a transistor amplifier of CE configuration.
[7m]
(b) Common emitter circuit has the following components. $R_{s}=1 k \Omega, R_{1}=110 k \Omega, R_{1}=$ $12 k \Omega R_{c}=6 k \Omega$. H-parameters are $h_{i e}=1.2 k \Omega, h_{f e}=75$ and $h_{o e}=25 \mu A / V h_{r e}=$ $25 * 10^{-4} \mu A / V$. Draw the equivalent hybrid model and calculate $A_{i}, R_{i}, A_{v}, R_{0}$? $\quad[\mathbf{7 m}]$
4. (a) Explain following terms with neat sketch :
[7m]
(i) cut off region,
(ii) saturation region
(iii) active region
(b) Compute current gain, voltage gain, input and output impedance of the CB amplifier if it is driven by a voltage source of internal resistance $R_{s}=1 k$. The load impedance is $R_{L}=1 \mathrm{~K}$. The transistor parameters are $h_{i b}=22, h_{f b}=-0.98, h_{r b}=2.910^{-4}, h_{o b}=0.5 \mu A / V .[\mathbf{7 m}]$

MODULE-III

5. (a) Develop the gray to binary and binary to gray conversion logic with neat sketches. [7m]
(b) Perform the subtraction using 1 s complement and 2 s Complement
(i) $(11010)_{2}-(10000)_{2}$
(ii) $(1000100)_{2}-(1010100)_{2}$
6. (a) Give the Boolean expressions, symbols and truth tables for following gates: (i) AND NOR (ii) EX-OR (iii) OR (iv) EX-NOR.
(b) Obtain the canonical SOP form of the following functions:
(i) $Y(A, B)=A+B$.
(ii) $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AB}+\mathrm{ACD}$

MODULE-IV

7. (a) Construct a 64:1 MUX using 8:1 MUXs with suitable neat block diagram.
(b) Solve the following Boolean expressions using K-map and implement it by using NOR gates.
(i) $F(A, B, C, D)=A B^{\prime} C^{\prime}+A C+A^{\prime} C D^{\prime}$
(ii) $F(W, X, Y, Z)=w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w x y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z+w x y z$
8. (a) Implement the given function in $4: 1$ mux $f=m(0,1,3,5,6)$
(b) Build a De-Multiplexer using $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{m}(1,4,5,6,7,9,14,15)$

MODULE-V

9. (a) Write short notes on shift register? Mention its application along with the Serial Transfer in 4-bit shift Registers?
(b) Identify the steps involved in design of asynchronous sequential circuit in detail with an example?
[7m]
10. (a) Explain 3 bit ring counter? Discuss how ring counters differ from twisted ring counter? [7m]
(b) Construct and implement 4-bit binary counter (using D flip flops) which counts all possible odd numbers only?
[7m]
END OF EXAMINATION

COURSE OBJECTIVES:

The course should enable the students to:

1	The Fundamental knowledge of the operational principles and characteristics of semiconductor devices and their applications.
2	The basic concept of number systems, boolean algebra and optimized implementation of combinational and sequential circuits.
3	The perceive subsequent studies in the area of microprocessors, microcontrollers, VLSI design and embedded systems effectively use of fundamentals of digital electronics.

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Recall the properties of semiconductor materials which form the basis for the formation of PN junction diode.
CO 2	Illustrate the volt-ampere characteristics of semiconductor devices for finding cut-in voltage, static, dynamic resistance and transition, diffusion capacitance.
CO 3	Apply the pn junction characteristics for the diode.Applications such as switch and rectifiers.
CO 4	Explain half wave and full wave rectifier circuits with filter and without filters for conversion of alternating current in to direct current.
CO 5	Interpret DC and AC load line analysis of different amplifiers for optimal operating level regardless of input, load placed on the device.
CO 6	Analyse the input and output characteristics of transistor configurations and small signal h-parameter models for determining the input - output resistances, current gain and voltage gain.
CO 7	Compare the binary decimal, octal and hexadecimal number systems in terms of basic arithmetic operations.
CO 8	Identify the functionality of logic gates, parity code and hamming code techniques for error detection and correction of single bit in digital systems.
CO 9	Apply Boolean postulates and theorems, k-map and tabular methods for obtaining minimized Boolean expressions.
CO 10	Develop gate level combinational circuits to built adders, subtractors, multiplexers, demultiplexers, encoder and decoders.
CO 11	Describe the operation of Flip-Flops and latches for constructing sequential circuits . CO 12Implement the synchronous\& asynchronous counters for memory storing applications.

MAPPING OF SEMESTER END EXAMINATION QUESTIONS TO COURSE OUTCOMES

Q.No		All Questions carry equal marks	Taxonomy	CO's	PO's
1	a	Explain the formation of depletion region in an open-circuited p-n junction diode and also the effect of forward and reverse biasing of $p-n$ junction on the depletion region with neat sketches?	Remember	CO 1	PO 1
	b	A P-N junction germanium diode has a reverse saturation current of 0.10 A at the room temperature of 270 C .It is observed to be 30 A , when the room temperature is increased. Evaluate the room temperature?	Understand	CO 2	PO 1,2
2	a	Construct the circuit diagrams of a full wave rectifier and Bridge rectifier. Explain the operation of the circuit with relevant waveforms.	Apply	CO 3	PO 2
	b	A full wave bridge rectifier having load resistance of 100 is fed with 220 V , Assuming the diodes are ideal, Find the following terms: (i) DC output voltage (ii) Peak inverse voltage (iii) Rectifier efficiency	Understand	CO 4	PO 1
3	a	Explain clearly the DC and AC load line and also explain how to obtain quiescent point graphically for a transistor amplifier of CE configuration.	Understand	CO 5	PO 1,3
	b	Common emitter circuit has the following components. $R_{s}=1 k \Omega, R_{1}=110 k \Omega, R_{1}=12 k \Omega$ $R_{c}=6 k \Omega$. H-parameters are $h_{i e}=1.2 k \Omega$, $h_{f e}=75$ and $h_{o e}=25 \mu \mathrm{~A} / \mathrm{V}$ $h_{r e}=25 * 10^{-4} \mu A / V$. Draw the equivalent hybrid model and calculate $A_{i}, R_{i}, A_{v}, R_{0}$?	Analyze	CO 6	PO 1,3
4	a	Explain following terms with neat sketches(i) cut off region, (ii) saturation region (iii) active region	Understand	CO 5	PO 1,3
	b	Compute current gain, voltage gain, input and output impedance of the CB amplifier if it is driven by a voltage source of internal resistance $\mathrm{Rs}=1 \mathrm{k}$. The load impedance is $\mathrm{RL}=1 \mathrm{~K}$. The transistor parameters are $h_{i b}=22, h_{f b}=-0.98$, $h_{r b}=2.910^{-4}, h_{o b}=0.5 \mu A / V$	Analyze	CO 6	PO 1,3
5	a	Develop the gray to binary and binary to gray conversion logic with neat sketches.	Apply	CO 8	PO 1,2

	b	Perform the subtraction using 1 s complement and 2s Complement (i) $(11010)_{2}(10000)_{2}$ (ii) $(1000100)_{2}(1010100)_{2}$	Analyze	CO 7	PO 1
6	a	Give the Boolean expressions, symbols and truth tables for following gates: (i) AND NOR (ii) EX-OR (iii) OR (iv) EX-NOR.	Apply	CO 8	PO 1,2
	b	Obtain the canonical SOP form of the following functions: (i) $\mathrm{Y}(\mathrm{A}, \mathrm{B})=\mathrm{A}+\mathrm{B}$. (ii) $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ $=A B+A C D$	Apply	CO 9	PO 1,2
7	a	Construct a 64:1 MUX using 8:1 MUXs with suitable neat block diagram.	Apply	CO 10	PO 1,2
	b	Solve the following Boolean expressions using K-map and implement it by using NOR gates. (i) $F(A, B, C, D)=A B^{\prime} C^{\prime}+A C+A^{\prime} C D^{\prime}$ (ii) $F(W, X, Y, Z)=w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w x y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z+w x y$	Apply	CO 9	PO 1,2
8	a	Implement the given function in 4:1 mux $F=\sum m(0,1,3,5,6)$	Apply	CO 10	PO 1,2
	b	Build a De-Multiplexer using $F(w, x, y, z)=\sum m(1,4,5,6,7,9,14,15)$	Apply	CO 9	PO 1,2
9	a	Write short notes on shift register? Mention its application along with the Serial Transfer in 4-bit shift Registers?	Understand	CO 11	PO 1,3
	b	Identify the steps involved in design of asynchronous sequential circuit in detail with an example?	Apply	CO 12	PO 2,3
10	a	Explain 3 bit ring counter? Discuss how ring counters differ from twisted ring counter?	Understand	CO 12	PO 1,3
	b	Construct and implement 4-bit binary counter (using D flip flops) which counts all possible odd numbers only?	Apply	CO 10	PO 2,3

KNOWLEDGE COMPETENCY LEVELS OF MODEL QUESTION PAPER

Signature of Course Coordinator
HOD, IT

