INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTOR

Course Title	BIG DATA AN	BIG DATA AND BUSINESS ANALYTICS				
Course Code	ACS012	ACS012				
Programme	B. Tech	B. Tech				
Semester	SEVEN	SEVEN				
Course Type	Core	Core				
Regulation	IARE - R16					
		Theory		Practi	cal	
Course Structure	Lectures	Lectures Tutorials Credits Laboratory Credits				
	3 1 4 3 2					
Course Faculty	Ms. B Pravallika	a, Assistant Prof	essor			

I. COURSE OVERVIEW:

This course provides a clear understanding on concepts of sources of big data, characteristics, storing and processing components, and analytics applications. This course emphasizes on potential impact of big data challenges, open research issues, and various tools associated with it. This course includes the introduction and processing big data with an overview of Hadoop technology and its components such as pig, hive, etc.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACS005	IV	Database Management System	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Big Data and Business Analytics	70 Marks	30 Marks	100

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
x	Open Ended Experime	ents					

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two subdivisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1:	Assessment	pattern	for	CIA
----------	------------	---------	-----	-----

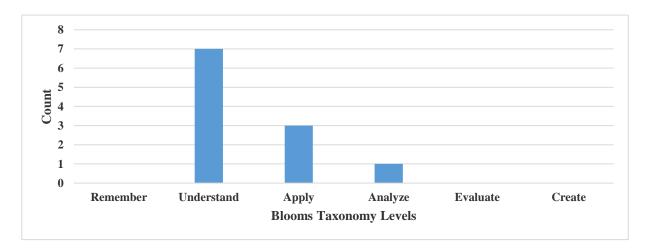
Component	Theory CIE Exam Quiz / AAT		Total Marks	
Type of Assessment				
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

Quiz / Alternative Assessment Tool (AAT)

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.


VI. COURSE OBJECTIVES:

Studen	Students will try to learn:						
Ι	The scope and essentiality of Big Data and Business Analytics.						
II	The technologies used to store, manage, and analyze big data in a Hadoop ecosystem.						
III	The techniques and principles in big data analytics with scalability and streaming capability.						
IV	The hypothesis on the optimized business decisions in solving complex real-world problems.						

VII. COURSE OUTCOMES:

After su	After successful completion of this course, students will be able to:				
	Course Outcomes				
CO 1	Explain the evolution of big data with its characteristics and challenges with traditional business intelligence.	Taxonomy) Understand			
CO 2	Compare big data analysis and analytics in optimizing the business decisions.	Understand			
CO 3	Classify the key issues and applications in intelligent business and scientific computing.	Understand			
CO 4	Explain the big data technologies used to process and querying the bigdata in Hadoop, MapReduce, Pig and Hive.	Understand			
CO 5	Make use of appropriate components for processing, scheduling and knowledge extraction from large volumes in distributed Hadoop Ecosystem.	Apply			
CO 6	Translate the data from traditional file system to HDFS for analyzing big data in Hadoop ecosystem.	Understand			
CO 7	Develop a Map Reduce application for optimizing the jobs.	Apply			
CO 8	Develop applications for handling huge volume of data using Pig Latin.	Apply			
CO 9	Explain the importance of bigdata framework HIVE and its built-in functions, data types and services like DDL.	Understand			
CO 10	Demonstrate business models and scientific computing paradigms, and tools for big data analytics.	Understand			
CO 11	Categorize Hadoop components for developing real time big data analytics in various applications like recommender systems, social media applications etc.	Analyze			

COURSE KNOWLEDGE COMPETEMCY LEVEL

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

PO No	Program Outcomes	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics,	2	CIE/Quiz/AAT
	science, engineering fundamentals, and an engineering		
	specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	CIE/Quiz/AAT
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 3	Conduct Investigations of Complex Problems: Use research-	3	CIE/Quiz/AAT
	based knowledge and research methods including design of		
	experiments, analysis and interpretation of data, and synthesis of		
	the information to provide valid conclusions.		
PO 4	Modern Tool Usage: Create, select, and apply appropriate	3	CIE/Quiz/AAT
	techniques, resources, and modern Engineering and IT tools		
	including prediction and modelling to complex Engineering		
	activities with an understanding of the limitations.		
PO 5	Individual and Teamwork: Function effectively as an	3	CIE/Quiz/AAT
	individual, and as a member or leader in diverse teams, and in		
D O (multidisciplinary settings		
PO 6	Communication: Communicate effectively on complex	-	-
	Engineering activities with the Engineering community and with		
	society at large, such as, being able to comprehend and write		
	effective reports and design documentation, make effective		
	presentations, and give and receive clear instructions.		
PO 7	Life-Long Learning: Recognize the need for and having the	-	-
	preparation and ability to engage in independent and life-long		
DO 0	learning in the broadest context of technological change.		
PO 8	Ethics: Apply ethical principles and commit to professional	-	-
D O 0	ethics and responsibilities and norms of the Engineering practice.		
PO 9	Individual and Teamwork: Function effectively as an	-	-
	individual, and as a member or leader in diverse teams, and in		
DO 10	multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex	-	-
	Engineering activities with the Engineering community and with		

PO 11	society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project Management and Finance: Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments.	-	-
PO 12	Life - Long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	-	-

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency Assessed by
PSO 1	Design next-generation computer systems, networking devices,	3	Research papers/
	search engines, soft computing and intelligent systems, web		Group discussion/
	browsers, and knowledge discovery tools.		Short term courses
PSO 2	Focus on improving software reliability, network security and	2	Research papers/
	information retrieval systems.		Industry exposure
PSO 3	Practical experience in shipping real world software, using	3	Research papers/
	industry standard tools and collaboration techniques will equip		Group discussion/
	to secure and succeed in first job upon graduation in IT		Short term courses
	industry.		

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course					Prog	gram (Outco	mes					Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark														
CO 2	\checkmark												\checkmark		
CO 3	\checkmark	\checkmark	\checkmark												
CO 4	\checkmark	\checkmark	\checkmark										\checkmark		
CO 5	\checkmark	\checkmark	\checkmark										\checkmark		
CO 6	\checkmark	\checkmark													
CO 7	\checkmark		\checkmark	\checkmark									\checkmark	\checkmark	
CO 8	\checkmark		\checkmark	\checkmark									\checkmark	\checkmark	
CO 9	\checkmark	\checkmark	\checkmark										\checkmark		
CO 10				\checkmark											
CO 11				\checkmark									\checkmark	\checkmark	

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Explain the evolution of big data with its characteristics and challenges by applying computer science methodologies	1
CO 2	PO 1	Compare big data analysis and analytics in optimizing business decisions by using the mathematical principles and computer science methodologies .	2
	PSO 1	Understand the differences between analysis and analytics in the areas related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 3	PO 1	Understand the key issues and applications in intelligent business by applying mathematical principles and computer science methodologies	2
	PO 2	Understand the key issues in problems identification and formulation, data collection, model translation, validation, interpretation of results and documentation in optimizing business decisions.	6
	PO 3	Classify the key issues in terms of defining various problems , customer and user needs , cost effective and creative solutions , design process , economic context and management techniques .	7
CO 4	PO 1	Explain the big data technologies used to process and querying the bigdata by applying mathematical principles and computer science methodologies	2
-	PO 2	Understand the problem and develop solutions using big data technologies and document the results for interpretation	4
	PO 3	Identify the appropriate technology like pig, hive etc. suitable for various problems, by understanding customer and user needs, with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques.	7
	PSO 1	Explain the big data technologies used to process and querying the bigdata in the areas related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 5	PO 1	Select appropriate Hadoop component for mining large volumes of data in Hadoop using computer science methodologies	1
	PO 2	Make use of Hadoop components on huge volume of information and data collected from various sources and perform model translation and validation	3
	PO4	Make use of Hadoop components for developing applications based on technical literature and quality issues. Identify, classify and describe the performance of systems through analytical methods and techniques .	3
	PSO 1	Make use of Hadoop components on huge volume data used to develop analytical solutions related to Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 6	PO 1	Translate the data from traditional file system to HDFS for analyzing big data in Hadoop ecosystem using the mathematical principles and computer science methodologies	2

XI. JUSTIFICATIONS FOR CO - (PO, PSO) MAPPING - DIRECT:

	PO 2	Translation of data structure from traditional to HDFS includes volume of information and data , file structure translation methods , validation and solution development with proper	6
CO 7	PO 1	documentation.Develop a Map Reduce application for optimizing the jobs by applying mathematical and scientific principles by integrating computer science knowledge.	3
	PO 2	Develop a Map Reduce application for optimizing the jobs for specific problems by including volume of information and data, file structure translation, validation and solution development with proper documentation.	6
	PO 3	Develop a Map Reduce application by investigating and defining various problems , understanding customer and user needs , with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques.	7
	PO 4	Develop MapReduce applications with laboratory skills , technical literature and quality issues. Identify, classify and describe the performance of systems through analytical methods and techniques.	5
	PO 5	Make use of library resources for optimizing the jobs using Map Reduce application.	1
	PSO 1	Develop a Map Reduce application for optimizing the jobs related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
	PSO 2	Develop a Map Reduce application with major focus on improving software reliability, network security and information retrieval systems.	1
	PSO 3	Develop a Map Reduce application by using modern computer tools for creating innovative career paths , to be an entrepreneur and desire for higher studies .	2
CO 8	PO 1	Understand the pig latin functionalities for handling huge volume of data by applying mathematical and scientific principles by integrating computer science knowledge .	3
	PO 2	Identify pig latin functions for big data applications related to specific problems by including huge volume of information and data collection, file structure translation, validation and solution development with proper documentation .	6
	PO 3	Develop a Pig Latin application by investigating and defining various problems , understanding customer and user needs , with cost effective and creative solutions by managing the design process , knowledge on economic context , management techniques .	7
	PO 4	Develop applications for handling huge volume of data using Pig Latin by working on laboratory skills , technical literature and quality issues. Identify, classify and describe the performance of systems in computer software by applying quantitative methods through analytical methods and techniques.	8
	PO 5	Develop software applications for handling huge volume of data using Pig Latin.	1
	PSO 1	Develop Pig Latin big data applications for specific problems by including huge volume of data and related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4

	DCO 2	Develop his data applications with D's Let's for some 'C'	1
	PSO 2	Develop big data applications using Pig Latin for specific	1
		problems with a major focus on improving software reliability,	
	DCO 0	network security and information retrieval systems.	
	PSO 3	Develop applications by using modern computer tools related	3
		to Pig Latin for creating innovative career paths, to be an	
		entrepreneur and desire for higher studies.	
CO 9	PO 1	Understand the importance of big data framework HIVE by	3
		using computer science methodologies, mathematical and	
		scientific principles.	
	PO 2	Demonstrate the HIVE functions and services for specific	6
		problems by including huge volume of information and data	
		collection, file structure translation, validation and solution	
		development with proper documentation.	
	PO 3	Explain the HIVE application process by including various	7
		problems, customer and user needs, with cost effective and	
		creative solutions by managing the design process,	
		knowledge on economic context, management techniques.	
	PSO 1	Explain the HIVE features and services for analyzing programs	5
		in the areas related to Algorithms, Bigdata, Artificial	
		Intelligence, Machine Learning and Networking.	
CO 10	PO 4	Make use of tools for designing business models through	8
		laboratory skills, technical literature, technical uncertainty	
		and quality issues. Identify, classify and describe the	
		performance of systems in computer software by applying	
		quantitative methods through analytical methods and	
		techniques.	
CO 11	PO 4	Develop real time applications through laboratory skills and	9
		considering technical literature, technical uncertainty and	
		quality issues. Identify, classify and describe the	
		performance of systems in computer software by applying	
		quantitative methods through analytical methods and	
		techniques.	
	PSO 1	Categorize various Hadoop components in the areas related to	4
		Algorithms, Bigdata, Artificial Intelligence, Machine	
		Learning.	
	PSO 2	Develop applications using Hadoop ecosystem with a major	1
		focus on improving software reliability, network security and	-
		information retrieval systems.	
	PSO 3	Develop applications by using Hadoop modern computer	3
	1503	tools for creating innovative career paths, to be an	5
		entrepreneur and desire for higher studies.	
		endepreneur and desire for inglier studies.	

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

Course	Program Outcomes/Number of Key Competencies Matched													PSO/ No. of key competencies		
Outcomes	1 2 3 4 5 6 7 8 9 10 11 12										12	1	2	3		
	3	3 10 10 11 1 5 3 3 12 5 12 12									12	6	2	2		
CO 1	1															
CO 2	2												4			

CO 3	2	6	7								
CO 4	2	4	7						4		
CO 5	1	3	3								
CO 6	2	6									
CO 7	3	6	7	5	1				4	1	2
CO 8	3	6	7	8	1				4	1	2
CO 9	3	6	7						5		
CO 10				8							
CO 11				9					4	3	3

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

		I	Progra	um Ou	itcome	es / Nu	ımber	of Vi	tal Fe	atures				O/ No. l Featu	
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	1
CO 1	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 2	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	0.0	0.0
CO 3	66.7	60.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 4	66.7	40.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	0.0	0.0
CO 5	33.3	30.0	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 6	66.7	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 7	100.0	60.0	70.0	45.5	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	33.3	66.7
CO 8	100.0	60.0	70.0	72.7	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	33.3	66.7
CO 9	100.0	60.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	0.0	0.0
CO 10	0.0	0.0	0.0	72.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 11	0.0	0.0	0.0	81.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	100.0	66.7

XIV. COURSE ARTICULATION MATRIX (CO - PO/PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $0 \le C \le 5\%$ No correlation; $1 < C \le 40\%$ - Low / Slight;
- 2 40 % < C < 60% Moderate. $3 - 60\% \le C < 100\%$ - Substantial / High

Course Outcomes					Pro	gram	Outc	omes					Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 2	3	0	0	0	0	0	0	0	0	0	0	0	3	0	0
CO 3	3	3	3	0	0	0	0	0	0	0	0	0	0	0	0
CO 4	3	2	3	0	0	0	0	0	0	0	0	0	3	0	0
CO 5	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
CO 6	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 7	3	3	3	2	3	0	0	0	0	0	0	0	3	1	3
CO 8	3	3	3	3	3	0	0	0	0	0	0	0	3	1	3
CO 9	3	3	3	0	0	0	0	0	0	0	0	0	3	0	0
CO 10	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0
CO 11	0	0	0	3	0	0	0	0	0	0	0	0	3	3	3
TOTAL	23	18	16	11	6	0	0	0	0	0	0	0	1.5	1.5	1.5
AVERAGE	2.5	2.5	2.6	2.7	3.0	0	0	0	0	0	0	0	3.0	2.5	3.0

XV. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1,PO 2, PO 3,PO 4, PO 5	SEE Exams	PO 1,PO 2, PO 3,PO 4, PO 5	Assignments	PO 1	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XVI. ASSESSMENT METHODOLOGIES - INDIRECT

✓	Early Semester Feedback	~	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII.SYLLABUS

UNIT-I	INTRODUCTION TO BIG DATA
Introduction	n to Big data: Characteristics of Data, Evolution of Big Data, Definition of Big Data,
Challenges	with Big Data, Traditional Business Intelligence (BI) versus Big Data.
Big data	analytics: Classification of Analytics, Importance and challenges facing big data,
Terminolog	gies Used in Big Data Environments, The Big Data Technology Landscape.

UNIT-II	INTRODUCTION TO HADOOP		
overview c	Hadoop, RDBMS versus Hadoop, Distributed Computing f Hadoop, Use Case of Hadoop, Hadoop Distributors, Pre- with Hadoop Ecosystem		
UNIT-III	THE HADOOP DISTRIBUTED FILESYSTEM		
Operations, The Java I	stributed File System (HDFS): The Design of HDFS, HDFS Hadoop Filesystems. Interface- Reading Data from a Hadoop URL, Reading Dat a. Data Flow- Anatomy of a File Read, Anatomy of a File W	a Using the Fi	ilesystem API,
UNIT -IV	UNDERSTANDING MAP REDUCE FUNDAMENTAL	S	
Map and Ro Controlling	e Framework: Exploring the features of Map Reduce, Worki educe Functions, Techniques to optimize MapReduce jobs, U MapReduce Execution with Input Format, Reading Data w riter, Combiner, Partitioners, MapReduce Phases, Devo	ses of MapRed vith custom Re	luce. cord Reader, -
UNIT -V	INTRODUCTION TO PIG AND HIVE		
started with	Pig: Pig architecture, Benefits, Installing Pig, Properties of Pig Latin, Working with operators in Pig, Working with fund Hive: Getting started with Hive, Hive Services, Data types DDL.	ctions in Pig.	
Text Books	:		
Edition 2. Tom W	Acharya, Subhashini Chellappan, —Big Data and Analytics, 2014DT Editorial Services, —Big Data, Dream Tech Press, hite, —Hadoop: The Definitive Guide, O'Reilly, 3 rd Edition, Book Big Data, dreamtech publications, 1 st Edition, 2017	2 nd Edition, 20	
Reference	Books:		
Busines 2013. 2. Rajiv S Manage 3. Arvind	l Minelli, Michele Chambers, Ambiga Dhiraj, —Big Data, Bis Intelligence and Analytic Trends for Today's Business, Wi abherwal, Irma Becerra- Fernandez, —Business Intelligence ement, John Wiley, 1 st Edition, 2011. Sathi, —Big Data Analytics: Disruptive Technologies for ation, 1 st Edition, 2012.	ley CIO Series –Practice, Tecl	, 1 st Edition,
	COURSE PLAN: lan is meant as a guideline. Probably there may be changes.		
Lecture No	Topics to be covered	СО	Reference

Lecture No	Topics to be covered	СО	Reference
1	Define big data and its importance.	CO 1	T1:2.3
2-3	Describe the elements of big data-volume, variety, velocity and veracity	CO 1	T1:2.1, 2.5
4-5	Understand the life cycle of big data	CO 1 CO 2	T1:2.4
6-7	Define the importance and challenges of big data.	CO 1,CO 2	T1:2.5 – 2.6 R2:21.51
8	Understand Traditional Vs Big Data Business Approach	CO 1,CO 2	T1:2.9
9-10	Classify the Big data analytics - Classification of Analytics	CO 1,CO 4	T1:3.1 R2:21.51

Lecture No	Topics to be covered	СО	Reference
11	Importance and challenges facing big data,	CO 4	T1:3.7 -3.8
12-14	Explain the terminologies Used in Big Data Environments	CO 4	T1:3.12 R2:21.55
15	Explain the Big Data Technology Landscape with Hadoop ecosystem.	CO 4	T1:4.1 – 4.2 R2:21.58
16	Understand the core components of Hadoop-big data.	CO 4	T2:26.16 R2:21.61
17-18	Outline Hadoop ecosystem and Computing Challenges, RDBMS versus Hadoop	CO 5,CO 6	T1:5.1 – 5.5 R2:21.24
19	Recall the history and overview of Hadoop	CO 5,CO 6	T1:5.5 R2:21.29
20	Demonstrate the real time use case in Hadoop	CO 4	T1:5.6 – 5.7 R2:21.31
21-22	Explain Hadoop Distributors and processing Data with Hadoop	CO 4,CO 5	T1:5.8 R2:21.33
23	Summarize the other components in Hadoop Interacting in Hadoop Ecosystem	CO 4,CO 6	T1:5.9
24	Explain the Design concepts of HDFS	CO 5	T1:5.11 R2:21.64
25	Find differences between Basic Filesystem Operations and Hadoop Filesystems.	CO 4,CO 6	T1:5.10-5.13 T2:3
26-27	Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem API	CO 4,CO 6	T2:3
28-29	Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, Limitations	CO 4,CO 6	T1:5.10 T2:3
30-31	Explore the features of MapReduce and Map and Reduce Functions	CO 4,CO 7	T1:8.1-8.3 T2:8
32	Outline the techniques to optimize MapReduce jobs and uses	CO 4, CO 7	T2:27.8
33-35	Illustrate the controlling MapReduce Execution with Input Format	CO 4,CO 7, CO 10	T2:7
36-37	Explain the reading Data with custom Record Reader, - Reader, Writer, Combiner, Practitioners, MapReduce Phases	CO 7	T1:8.2 – 8.3
38	Develop a simple MapReduce Application	CO 7,CO 10, CO 11	T1:8.4 - 8.8
39	Explain Pig architecture	CO 8,CO 9	T1:10.1-10.6
40-41	Summarize Installation process of Pig along with Properties and getting started with Pig Latin,	CO 8,CO 9	T2:11
42	Develop applications by working with operators in Pig, Working with functions in Pig.	CO 8,CO 9, CO 10,CO 11	T1:10.7-10.12
43	Explain the Hive component and Hive Services	CO 9	T1:9.1-9.2 T2:12
44-45	Demonstrate Hive Data types, Built-in functions and Hive DDL.	CO 9,CO 10, CO 11	T1:9.3-9.8

Prepared by: Ms. B Pravallika, Assistant Professor