
1

LECTURE NOTES

ON

MICRO PROCESSORS AND INTERFACING

(AECB55)Open Elective-1

B.Tech V semester

(IARE-R18)

(2020-2021)

Mrs. B.Lakshmi Prasanna, Assistant Professor, ECE

INFORMATION TECHNOLOGY

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500043

MODULE-1

INTRODUCTION TO 8 BIT AND 16 BIT MICROPROCESSOR

An over view of 8085

Introduction to processor:

 A processor is the logic circuitry that responds to and processes the basic instructions that

drives a computer.

 The term processor has generally replaced the term central processing unit (CPU). The

processor in a personal computer or embedded in small devices is often called a

microprocessor.

 The processor (CPU, for Central Processing Unit) is the computer's brain. It allows the

processing of numeric data, meaning information entered in binary form, and the execution

of instructions stored in memory.

Evolution of Microprocessor:

A microprocessor is used as the CPU in a microcomputer. There are now many different

microprocessors available.

 Microprocessor is a program-controlled device, which fetches the instructions from memory,

decodes and executes the instructions. Most Micro Processor are single- chip devices.

 Microprocessor is a backbone of computer system. which is called CPU

 Microprocessor speed depends on the processing speed depends on DATA BUS WIDTH.

 A common way of categorizing microprocessors is by the no. of bits that their ALU can

 Work with at a time

 The address bus is unidirectional because the address information is always given by the

Micro Processor to address a memory location of an input / output devices.

 The data bus is Bi-directional because the same bus is used for transfer of data between

Micro Processor and memory or input / output devices in both the direction.

 It has limitations on the size of data. Most Microprocessor does not support floating-point

operations.

 Microprocessor contain ROM chip because it contain instructions to execute data.

 What is the primary & secondary storage device? - In primary storage device the

 Storage capacity is limited. It has a volatile memory. In secondary storage device the storage

capacity is larger. It is a nonvolatile memory.

a) Primary devices are: RAM (Read / Write memory, High Speed, Volatile Memory)

/ ROM (Read only memory, Low Speed, Non Voliate Memory)

b) Secondary devices are: Floppy disc / Hard disk

Compiler: Compiler is used to translate the high-level language program into machine code at a

time. It doesn’t require special instruction to store in a memory, it stores automatically. The

Execution time is less compared to Interpreter.

http://searchcio-midmarket.techtarget.com/definition/instruction
http://searchcio-midmarket.techtarget.com/definition/CPU
http://en.kioskea.net/contents/base/binaire.php3

4-bit Microprocessor:

 The first microprocessor (Intel 4004) was invented in 1971. It was a 4-bit calculation device

with a speed of 108 kHz. Since then, microprocessor power has grown exponentially. So

what exactly are these little pieces of silicone that run our computers(" Common Operating

Machine Particularly Used For Trade Education And Research ")

 It has 3200 PMOS transistors.

 It is a 4-bit device used in calculator.

8-Bit microprocessor:

 In 1972, Intel came out with the 8008 which is 8-bit.

 In 1974, Intel announced the 8080 followed by 8085 is a 8-bit processor Because 8085

processor has 8 bit ALU (Arithmetic Logic Review). Similarly 8086 processor has 16 bit

ALU. This had a larger instruction set then 8080. used NMOS transistors, so it operated

much faster than the 8008.

 The 8080 is referred to as a “Second generation Microprocessor”

 Limitations of 8 Bit microprocessor:

 Low speed of execution

 Low memory addressing capability

 Limited number of general purpose registers

 Less power full instruction set

Examples for 4/ 8 / 16 / 32 bit Microprocessors:

 4-Bit processor – 4004/4040

 8-bit Processor - 8085 / Z80 / 6800

 16-bit Processor - 8086 / 68000 / Z8000

 32-bit Processor - 80386 / 80486

What are 1st / 2nd / 3rd / 4th generation processor?

 The processor made of PMOS technology is called 1
st
 generation processor, and it is

made up of 4 bits

 The processor made of NMOS technology is called 2
nd

 generation processor, and it is

made up of 8 bits

 The processor made of CMOS technology is called 3rd generation processor, and it is

made up of 16 bits

 The processor made of HCMOS technology is called 4
th

 generation processor, and it is

made up of 32 bits (HCMOS : High-density n- type Complementary Metal Oxide Silicon

field effect transistor)

Block diagram of microprocessor:

The Central Processing Unit (CPU):

 This device coordinates all operations of a micro computer. It fetches programs stored in

ROM‟s or RAMs and executes the instructions depending one a specific Instructions set,

which is characteristic of each type of CPU, and which is recognized by the CPU.

The Random Access Memory (RAM): Temporary or trail programs are written.

 Besides the ROM area, every computer has some memory space for temporary storage of

data as well as for programs under development. These memory devices are RAMs or Read – write

memory. The contents of it are not permanent and are altered when power is turned off. So the RAM

memory is considered to be volatile memory.

The Read Only Memory (ROM): Permanent programs are stored.

 The permanent memory device/area is called ROM, because whatever be the memory

contents of ROMs, they cannot be over written with some other information.

 For a blank ROM, the manufacturer supplies the device without any inf. In it, information

can be entered electrically into the memory space. This is called burning a ROM or PROM.

Data Lines/Data Bus:

 The number of data lines, like add. Lines vary with the specific CPU .The set of data lines

is database like the address bus unlike add. Bus, the data bus is bidirectional because while the

information on the address Bus always flows out of the CPU; the data can flow both out of the CPU

as well as into the CPU.

Control lines/ control Bus:

 The no. of control lines also depends on the specific CPU one is using.

Ex: Read; Write lines are examples of control lines

Clock: The clock is a symmetrical square wave signal that drives the CPU

Instructions: An instruction is an elementary operation that the processor can accomplish.

Instructions are stored in the main memory, waiting to be processed by the processor. An instruction

has two fields:

 Operation code, which represents the action that the processor must execute;

 Operand code, which defines the parameters of the action. The operand code depends on the

operation. It can be data or a memory address

Introduction to 8085 Microprocessor:

The Salient Features of 8085 Microprocessor:

 8085 is an 8 bit microprocessor, manufactured with N-MOS technology.

 It has 16-bit address bus and hence can address up to 2
16

= 65536 bytes (64KB)

memory locations through A0-A15.

 The first 8 lines of address bus and 8 lines of data bus are multiplexed AD0 - AD7.

Data bus is a group of 8 lines D0 - D7.

 It supports external interrupt request.8085 consists of 16 bit program counter (PC)

and stack pointer (SP).

 Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

 It requires a signal +5V power supply and can operate at 3 MHz, 5 MHz and 6

MHz Serial in/Serial out Port.

 It is enclosed with 40 pins DIP (Dual in line package).

Internal Architecture of 8085:

8085 Bus Structure: Address Bus:

 The address bus is a group of 16 lines generally identified as A0 to A15.

 The address bus is unidirectional: bits flow in one direction-from the MPU to peripheral

devices.

 The MPU uses the address bus to perform the first function: identifying a peripheral or a

memory location.

Data Bus:

 The data bus is a group of eight lines used for data flow.

 These lines are bi-directional - data flow in both directions between the MPU and

memory and peripheral devices.

 The MPU uses the data bus to perform the second function: transferring binary

information.

 The eight data lines enable the MPU to manipulate 8-bit data ranging from 00 to FF (28 =

256 numbers).

 The largest number that can appear on the data bus is 11111111.

Control Bus:

 The control bus carries synchronization signals and providing timing signals.

 The MPU generates specific control signals for every operation it performs. These signals

are used to identify a device type with which the MPU wants to communicate.

Registers of 8085:

 The 8085 have six general-purpose registers to store 8-bit data during program execution.

 These registers are identified as B, C, D, E, H, and L.

 They can be combined as register pairs-BC, DE, and HL-to perform some 16-bit

operations.

Accumulator (A):

 The accumulator is an 8-bit register that is part of the arithmetic/logic unit (ALU).

 This register is used to store 8-bit data and to perform arithmetic and logical operations.

 The result of an operation is stored in the accumulator.

Flags:

 The ALU includes five flip-flops that are set or reset according to the result of an

operation.

 The microprocessor uses the flags for testing the data conditions.

 They are Zero (Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags. The

most commonly used flags are Sign, Zero, and Carry.

The bit position for the flags in flag register is,

1. Sign Flag (S):

After execution of any arithmetic and logical operation, if D7 of the result is 1, the sign flag

is set. Otherwise it is reset.

D7 is reserved for indicating the sign; the remaining is the magnitude of number.

If D7 is 1, the number will be viewed as negative number. If D7 is 0, the number will be

viewed as positive number.

2. Zero Flag (z):

If the result of arithmetic and logical operation is zero, then zero flag is set otherwise it is

reset.

3. Auxiliary Carry Flag (AC):

If D3 generates any carry when doing any arithmetic and logical operation, this flag is set.

Otherwise it is reset.

4. Parity Flag (P):

If the result of arithmetic and logical operation contains even number of 1's then this flag

will be set and if it is odd number of 1's it will be reset.

5. Carry Flag (CY):

If any arithmetic and logical operation result any carry then carry flag is set otherwise it is

reset.

Arithmetic and Logic Unit (ALU):

 It is used to perform the arithmetic operations like addition, subtraction, multiplication,

division, increment and decrement and logical operations like AND, OR and EX-OR.

 It receives the data from accumulator and registers.

 According to the result it set or reset the flags.

Program Counter (PC):

 This 16-bit register sequencing the execution of instructions.

 It is a memory pointer. Memory locations have 16-bit addresses, and that is why this is a

16-bit register.

 The function of the program counter is to point to the memory address of the next

instruction to be executed.

 When an opcode is being fetched, the program counter is incremented by one to point to

the next memory location.

Stack Pointer (SP):

 The stack pointer is also a 16-bit register used as a memory pointer.

 It points to a memory location in R/W memory, called the stack.

 The beginning of the stack is defined by loading a 16-bit address in the stack pointer

(register).

Temporary Register: It is used to hold the data during the arithmetic and logical operations.

Instruction Register: When an instruction is fetched from the memory, it is loaded in the

instruction register.

Instruction Decoder: It gets the instruction from the instruction register and decodes the

instruction. It identifies the instruction to be performed.

Serial I/O Control: It has two control signals named SID and SOD for serial data transmission.

Timing and Control unit:

 It has three control signals ALE, RD (Active low) and WR (Active low) and three status

signals IO/M(Active low), S0 and S1.

 ALE is used for provide control signal to synchronize the components of microprocessor

and timing for instruction to perform the operation.

 RD (Active low) and WR (Active low) are used to indicate whether the operation is

reading the data from memory or writing the data into memory respectively.

 IO/M(Active low) is used to indicate whether the operation is belongs to the memory or

peripherals.

Interrupt Control Unit:

 It receives hardware interrupt signals and sends an acknowledgement for receiving the

interrupt signal.

Pin Diagram and Pin Description Of 8085

8085 is a 40 pin IC, DIP package. The signals from the pins can be grouped as follows

1. Power supply and clock signals

2. Address bus

3. Data bus

4. Control and status signals

5. Interrupts and externally initiated signals

6. Serial I/O ports

1. Power supply and clock frequency signals

 Vcc + 5 volt power supply

 Vss Ground

 X1, X2: Crystal or R/C network or LC network connections to set the

frequency of internal clock generator.

 The frequency is internally divided by two. Since the basic operating timing

frequency is 3 MHz, a 6 MHz crystal is connected externally.

 CLK (output)-Clock Output is used as the system clock for peripheral and

devices interfaced with the microprocessor.

2. Address Bus:

 A8 - A15 (output; 3-state)

 It carries the most significant 8 bits of the memory address or the 8 bits of

the I/O address;

3. Multiplexed Address / Data Bus:

 AD0 - AD7 (input/output; 3-state)

 These multiplexed set of lines used to carry the lower order 8 bit address as well as data

bus.

 During the opcode fetch operation, in the first clock cycle, the lines deliver the lower

order address A0 - A7.

 In the subsequent IO / memory, read / write clock cycle the lines are used as data bus.

 The CPU may read or write out data through these lines.

4. Control and Status signals:

 ALE (output) - Address Latch Enable.

 This signal helps to capture the lower order address presented on the multiplexed address

/ data bus.

 RD (output 3-state, active low) - Read memory or IO device.

 This indicates that the selected memory location or I/O device is to be read and that the

data bus is ready for accepting data from the memory or I/O device.

 WR (output 3-state, active low) - Write memory or IO device.

 This indicates that the data on the data bus is to be written into the selected memory

location or I/O device.

 IO/M (output) - Select memory or an IO device.

 This status signal indicates that the read / write operation relates to whether the memory

or I/O device.

 It goes high to indicate an I/O operation.

 It goes low for memory operations.

5. Status Signals:

 It is used to know the type of current operation of the microprocessor.

6. Interrupts and externally initiated operations:

 They are the signals initiated by an external device to request the microprocessor to do a

particular task or work.

 There are five hardware interrupts called,

 On receipt of an interrupt, the microprocessor acknowledges the interrupt by the active

low INTA (Interrupt Acknowledge) signal.

Reset In (input, active low)

 This signal is used to reset the microprocessor.

 The program counter inside the microprocessor is set to zero.

 The buses are tri-stated.

Reset Out (Output)

 It indicates CPU is being reset.

 Used to reset all the connected devices when the microprocessor is reset

7. Direct Memory Access (DMA):

Tri state devices:

 3 output states are high & low states and additionally a high impedance state.

 When enable E is high the gate is enabled and the output Q can be 1 or 0 (if A is 0, Q is 1,

otherwise Q is 0). However, when E is low the gate is disabled and the output Q enters into a

high impedance state.

 For both high and low states, the output Q draws a current from the input of the OR gate.

 When E is low, Q enters a high impedance state; high impedance means it is electrically

isolated from the OR gate's input, though it is physically connected. Therefore, it does not

draw any current from the OR gate's input.

 When 2 or more devices are connected to a common bus, to prevent the devices from

interfering with each other, the tristate gates are used to disconnect all devices except the one

that is communicating at a given instant.

 The CPU controls the data transfer operation between memory and I/O device. Direct

Memory Access operation is used for large volume data transfer between memory and an I/O

device directly.

 The CPU is disabled by tri-stating its buses and the transfer is effected directly by

external control circuits.

 HOLD signal is generated by the DMA controller circuit. On receipt of this signal, the

microprocessor acknowledges the request by sending out HLDA signal and leaves out the

control of the buses. After the HLDA signal the DMA controller starts the direct transfer of

data.

READY (input)
 Memory and I/O devices will have slower response compared to microprocessors.

 Before completing the present job such a slow peripheral may not be able to handle

further data or control signal from CPU.

 The processor sets the READY signal after completing the present job to access the data.

 The microprocessor enters into WAIT state while the READY pin is disabled.

8. Single Bit Serial I/O ports:

 SID (input) - Serial input data line

 SOD (output) - Serial output data line

 These signals are used for serial communication.

 Architecture of 8086 Microprocessor

Overview or Features of 8086

 It is a 16-bit Microprocessor (μp).It’s ALU, internal registers works with 16bit binary

word.

 8086 has a 20 bit address bus can access up to 2
20

= 1 MB memory locations.

 8086 has a 16bit data bus. It can read or write data to a memory/port either 16bits or 8 bit

at a time.

 It can support up to 64K I/O ports.

 It provides 14, 16 -bit registers.

 Frequency range of 8086 is 6-10 MHz

 It has multiplexed address and data bus AD0- AD15 and A16 – A19.

 It requires single phase clock with 33% duty cycle to provide internal timing.

 It can prefetch up to 6 instruction bytes from memory and queues them in order to speed

up instruction execution.

 It requires +5V power supply.

 A 40 pin dual in line package.

 8086 is designed to operate in two modes, Minimum mode and Maximum mode.

o The minimum mode is selected by applying logic 1 to the MN / MX# input pin.

This is a single microprocessor configuration.

o The maximum mode is selected by applying logic 0 to the MN / MX# input pin.

This is a multi micro processors configuration.

Architecture of 8086 or Functional Block diagram of 8086
 8086 has two blocks Bus Interface Unit (BIU) and Execution Unit (EU).

 The BIU performs all bus operations such as instruction fetching, reading and writing

operands for memory and calculating the addresses of the memory operands. The

instruction bytes are transferred to the instruction queue.

 EU executes instructions from the instruction system byte queue.

 Both units operate asynchronously to give the 8086 an overlapping instruction fetch and

execution mechanism which is called as Pipelining. This results in efficient use of the

system bus and system performance.

 BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.

 EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag

register.

 Figure: 8086 Architecture

Explanation of Architecture of 8086:

Bus Interface Unit:

 It provides a full 16 bit bidirectional data bus and 20 bit address bus.

 The bus interface unit is responsible for performing all external bus operations.

 Specifically it has the following functions:

 Instructions fetch Instruction queuing, Operand fetch and storage, Address relocation and

Bus control.

 The BIU uses a mechanism known as an instruction stream queue to implement pipeline

architecture.

 This queue permits prefetch of up to six bytes of instruction code. Whenever the queue of

the BIU is not full, it has room for at least two more bytes and at the same time the EU is not

requesting it to read or write operands from memory, the BIU is free to look ahead in the

program by prefetching the next sequential instruction.

 These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU

fetches two instruction bytes in a single memory cycle.

 After a byte is loaded at the input end of the queue, it automatically shifts up through the

FIFO to the empty location nearest the output.

 The EU accesses the queue from the output end. It reads one instruction byte after the

other from the output of the queue. If the queue is full and the EU is not requesting access to

operand in memory.

 These intervals of no bus activity, which may occur between bus cycles, are known as idle

state.

 If the BIU is already in the process of fetching an instruction when the EU request it to read

or write operands from memory or I/O, the BIU first completes the instruction fetch bus cycle

before initiating the operand read / write cycle.

 The BIU also contains a dedicated adder which is used to generate the 20bit physical

address that is output on the address bus. This address is formed by adding an appended 16

bit segment address and a 16 bit offset address.

 For example: The physical address of the next instruction to be fetched is formed by

combining the current contents of the code segment CS register and the current contents of the

instruction pointer IP register.

 The BIU is also responsible for generating bus control signals such as those for memory read

or write and I/O read or write.

Execution Unit

 The Execution unit is responsible for decoding and executing all instructions.

 The EU extracts instructions from the top of the queue in the BIU, decodes them,

generates operands if necessary, passes them to the BIU and requests it to perform the read or

write bus cycles to memory or I/O and perform the operation specified by the instruction on

the operands.

 During the execution of the instruction, the EU tests the status and control flags and

updates them based on the results of executing the instruction.

 If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted

to top of the queue.

 When the EU executes a branch or jump instruction, it transfers control to a location

corresponding to another set of sequential instructions.

 Whenever this happens, the BIU automatically resets the queue and then begins to fetch

instructions from this new location to refill the queue.

General Bus Operation

 The 8086 has a combined address and data bus commonly referred as a time multiplexed

address and data bus.

 The main reason behind multiplexing address and data over the same pins is the

maximum utilization of processor pins and it facilitates the use of 40 pin standard DIP

package.

 The bus can be demultiplexed using a few latches and transceivers, when ever required.

 Basically, all the processor bus cycles consist of at least four clock cycles. These are

referred to as T1, T2, T3, and T4. The address is transmitted by the processor during T1. It is

present on the bus only for one cycle.

 The negative edge of this ALE pulse is used to separate the address and the data or status

information. In maximum mode, the status lines S0, S1 and S2 are used to indicate the type of

operation.

 Status bits S3 to S7 are multiplexed with higher order address bits and the BHE signal.

Address is valid during T1 while status bits S3 to S7 are valid during T2 through T4.

Maximum mode

 In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

 In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus

controller derives the control signal using this status information.

 In the maximum mode, there may be more than one microprocessor in the system

configuration.

Minimum mode

 In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum

mode by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip itself.

 There is a single microprocessor in the minimum mode system.

Register Organization of 8086

General purpose registers

The 8086 microprocessor has a total of fourteen registers that are accessible to the

programmer. It is divided into four groups. They are:

 Four General purpose registers

 Four Index/Pointer registers

 Four Segment registers

 Two Other registers

General purpose registers:

Accumulator register consists of two 8-bit registers AL and AH, which can be combined

together and used as a 16-bit register AX. AL in this case contains the low order byte of the

word, and AH contains the high-order byte. Accumulator can be used for I/O operations and

string manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together

and used as a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH

contains the high-order byte. BX register usually contains a data pointer used for based, based

indexed or register indirect addressing.

Count register consists of two 8-bit registers CL and CH, which can be combined together

and used as a 16-bit register CX. When combined, CL register contains the low order byte of

the word, and CH contains the high-order byte. Count register can be used in Loop,

shift/rotate instructions and as a counter in string manipulation

Data register consists of two 8-bit registers DL and DH, which can be combined together

and used as a 16-bit register DX. When combined, DL register contains the low order byte of the

word, and DH contains the high-order byte. Data register can be used as a port number in I/O

operations. In integer 32-bit multiply and divide instruction the DX register contains high-order

word of the initial or resulting number.

Index or Pointer Registers

These registers can also be called as Special Purpose registers.

Stack Pointer (SP) is a 16-bit register pointing to program stack, i.e. it is used to hold the

address of the top of stack. The stack is maintained as a LIFO with its bottom at the start of the

stack segment (specified by the SS segment register).Unlike the SP register, the BP can be used

to specify the offset of other program segments.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. It is usually used

by subroutines to locate variables that were passed on the stack by a calling program. BP register

is usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register

indirect addressing, as well as a source data addresses in string manipulation instructions are

used in conjunction with the DS register to point the data locations in the data segment.

Destination Index (DI) is a 16-bit register is used in conjunction with the ES register

for string operations. DI is used for indexed, based indexed and register indirect addressing, as

well as a destination data addresses in string manipulation instructions. In short, Destination

Index and SI Source Index registers are used to hold address.

Segment Registers
Most of the registers contain data/instruction offsets within 64 KB memory segment.

There are four different 64 KB segments for instructions, stack, data and extra data. To specify

where in 1 MB of processor memory these 4 segments are located the processor uses four

segment registers.

Code segment (CS) is a 16-bit register containing address of 64 KB segment with

processor instructions. The processor uses CS segment for all accesses to instructions referenced

by instruction pointer (IP) register. CS register cannot be changed directly. The CS register is

automatically updated during far jump, far call and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with

program stack. By default, the processor assumes that all data referenced by the stack pointer

(SP) and base pointer (BP) registers is located in the stack segment. SS register can be changed

directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program

data. By default, the processor assumes that all data referenced by general registers (AX, BX,

CX, DX) and index register (SI, DI) is located in the data segment. DS register can be changed

directly using POP and LDS instructions.

Extra segment (ES) used to hold the starting address of Extra segment. Extra segment is

provided for programs that need to access a second data segment. Segment registers cannot be

used in arithmetic operations.

Other registers of 8086

Instruction Pointer (IP) is a 16-bit register. This is a crucially important register which is used

to control which instruction the CPU executes. The IP, or program counter, is used to store the

memory location of the next instruction to be executed. The CPU checks the program counter to

ascertain which instruction to carry out next. It then updates the program counter to point to the

next instruction. Thus the program counter will always point to the next instruction to be

executed.

Flag Register of 8086:

It contains a group of status bits called flags that indicate the status of the CPU or the result of

arithmetic operations. There are two types of flags:

1. The status flags which reflect the result of executing an instruction. The programmer cannot

set/reset these flags directly.

2. The control flags enable or disable certain CPU operations. The programmer can set/reset

these bits to control the CPU's operation.

Nine individual bits of the status register are used as control flags (3 of them) and status flags (6

of them).The remaining 7 are not used.

A flag can only take on the values 0 and 1. We say a flag is set if it has the value 1.The status

flags are used to record specific characteristics of arithmetic and of logical instructions.

Control Flags: There are three control flags

1. The Direction Flag (D): Affects the direction of moving data blocks by such instructions as

MOVS, CMPS and SCAS. The flag values are 0 = up and 1 = down and can be set/reset by the

STD (set D) and CLD (clear D) instructions.

2. The Interrupt Flag (I): Dictates whether or not system interrupts can occur. Interrupts are

actions initiated by hardware block such as input devices that will interrupt the normal execution

of programs. The flag values are 0 = disable interrupts or 1 = enable interrupts and can be

manipulated by the CLI (clear I) and STI (set I) instructions.

3. The Trap Flag (T): Determines whether or not the CPU is halted after the execution of each

instruction. When this flag is set (i.e. = 1), the programmer can single step through his program

to debug any errors. When this flag = 0 this feature is off. This flag can be set by the INT 3

instruction.

Status Flags: There are six status flags

2. The Carry Flag (C): This flag is set when the result of an unsigned arithmetic operation is

too large to fit in the destination register. This happens when there is an end carry in an addition

operation or there an end borrows in a subtraction operation. A value of 1 = carry and 0 = no

carry.

3. The Overflow Flag (O): This flag is set when the result of a signed arithmetic operation is too

large to fit in the destination register (i.e. when an overflow occurs). Overflow can occur when

adding two numbers with the same sign (i.e. either positive or both negative). A value of 1 =

overflow and 0 = no overflow.

4. The Sign Flag (S): This flag is set when the result of an arithmetic or logic operation is

negative. This flag is a copy of the MSB of the result (i.e. the sign bit). A value of 1 means

negative and 0 = positive.

5. The Zero Flag (Z): This flag is set when the result of an arithmetic or logic operation is equal

to zero. A value of 1 means the result is zero and a value of 0 means the result is not zero.

6. The Auxiliary Carry Flag (A): This flag is set when an operation causes a carry from bit 3 to

bit 4 (or a borrow from bit 4 to bit 3) of an operand. A value of 1 = carry and 0 = no carry.

7. The Parity Flag (P): This flags reflects the number of 1s in the result of an operation. If the

number of 1s is even its value = 1 and if the number of 1s is odd then its value = 0.

Addressing Modes of 8086:

Addressing mode indicates a way of locating data or operands. Depending up on the data

type used in the instruction and the memory addressing modes, any instruction may belong to

one or more addressing modes or same instruction may not belong to any of the addressing

modes.

The addressing mode describes the types of operands and the way they are accessed for

executing an instruction. According to the flow of instruction execution, the instructions may be

categorized as

1. Sequential control flow instructions and

2. Control transfer instructions.

Sequential control flow instructions are the instructions which after execution,

transfer control to the next instruction appearing immediately after it (in the sequence) in the

program. For example the arithmetic, logic, data transfer and processor control instructions

are Sequential control flow instructions.

The control transfer instructions on the other hand transfer control to some

predefined address or the address somehow specified in the instruction, after their execution.

For example INT, CALL, RET & JUMP instructions fall under this category.

The addressing modes for Sequential and control flow instructions are explained as follows.

1. Immediate addressing mode:

In this type of addressing, immediate data is a part of instruction, and appears in the

form of successive byte or bytes.

Example: MOV AX, 0005H.

In the above example, 0005H is the immediate data. The immediate data may be 8- bit or 16-bit

in size.

2. Direct addressing mode:

In the direct addressing mode, a 16-bit memory address (offset) directly

specified in the instruction as a part of it.

Example: MOV AX, [5000H].

3. Register addressing mode:

In the register addressing mode, the data is stored in a register and it is referred

using the particular register. All the registers, except IP, may be used in this mode.

Example: MOV BX, AX

4. Register indirect addressing mode:

Sometimes, the address of the memory location which contains data or operands is

determined in an indirect way, using the offset registers. The mode of addressing is known

as register indirect mode.

In this addressing mode, the offset address of data is in either BX or SI or DI

Register. The default segment is either DS or ES.

Example: MOV AX, [BX].

5. Indexed addressing mode:

In this addressing mode, offset of the operand is stored one of the index

registers. DS & ES are the default segments for index registers SI & DI respectively.

Example: MOV AX, [SI]

Here, data is available at an offset address stored in SI in DS.

6. Register relative addressing mode:

In this addressing mode, the data is available at an effective address formed by

adding an 8-bit or 16-bit displacement with the content of any one of the register BX, BP, SI

& DI in the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

7. Based indexed addressing mode:

The effective address of data is formed in this addressing mode, by adding content

of a base register (any one of BX or BP) to the content of an index register (any one of SI

or DI). The default segment register may be ES or DS.

Example: MOV AX, [BX][SI]

8. Relative based indexed:

The effective address is formed by adding an 8 or 16-bit displacement with the

sum of contents of any of the base registers (BX or BP) and any one of the index registers,

in a default segment.

Example: MOV AX, 50H [BX] [SI]

For the control transfer instructions, the addressing modes depend upon whether

the destination location is within the same segment or in a different one. It also depends

upon the method of passing the destination address to the processor. Basically, there are

two addressing modes for the control transfer instructions, viz. intersegment and

intrasegment addressing modes.

If the location to which the control is to be transferred lies in a different

segment other than the current one, the mode is called intersegment mode. If the

destination location lies in the same segment, the mode is called intrasegment mode.

Addressing Modes for control transfer instructions:

1. Intersegment

 Intersegment direct

 Intersegment indirect

2. Intrasegment

 Intrasegment direct

 Intrasegment indirect

1. Intersegment direct:

In this mode, the address to which the control is to be transferred is in a

different segment. This addressing mode provides a means of branching from one code

segment to another code segment. Here, the CS and IP of the destination address are

specified directly in the instruction.

Example: JMP 5000H, 2000H;

Jump to effective address 2000H in segment 5000H.

2. Intersegment indirect:

In this mode, the address to which the control is to be transferred lies in a

different segment and it is passed to the instruction indirectly, i.e. contents of a

memory block containing four bytes, i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB)

sequentially. The starting address of the memory block may be referred using any of the

addressing modes, except immediate mode.

Example: JMP [2000H].

Jump to an address in the other segment specified at effective address 2000H in DS.

3. Intrasegment direct mode:

In this mode, the address to which the control is to be transferred lies in the same

segment in which the control transfers instruction lies and appears directly in the

instruction as an immediate displacement value. In this addressing mode, the

displacement is computed relative to the content of the instruction pointer.

The effective address to which the control will be transferred is given by the sum of

8 or 16 bit displacement and current content of IP. In case of jump instruction, if the signed

displacement (d) is of 8-bits (i.e. -128<d<+127), it as short jump and if it is of 16 bits (i.e. -

32768<d<+32767), it is termed as long jump.

Example: JMP SHORT LABEL.

4. Intrasegment indirect mode:

In this mode, the displacement to which the control is to be transferred is in the

same segment in which the control transfer instruction lies, but it is passed to the instruction

directly. Here, the branch address is found as the content of a register or a memory location.

This addressing mode may be used in unconditional branch instructions.

Example: JMP [BX]; Jump to effective address stored in BX.

INSTRUCTION SET OF 8086

The Instruction set of 8086 microprocessor is classified into 7, they are:-

 Data transfer instructions

 Arithmetic& logical instructions

 Program control transfer instructions

 Machine Control Instructions

 Shift / rotate instructions

 Flag manipulation instructions

 String instructions

Data Transfer instructions

Data transfer instruction, as the name suggests is for the transfer of data from memory

to internal register, from internal register to memory, from one register to another register,

from input port to internal register, from internal register to output port etc

1. MOV instruction

It is a general purpose instruction to transfer byte or word from register to register,

memory to register, register to memory or with immediate addressing.

General Form:

MOV destination, source

Here the source and destination needs to be of the same size, that is both 8 bit or both 16 bit.

MOV instruction does not affect any flags.

Example:-

MOV BX, 00F2H ; load the immediate number 00F2H in BX

Register

MOV CL, [2000H] ; Copy the 8 bit content of the memory

Location, at a displacement of 2000H from data segment

base to the CL register

MOV [589H], BX ; Copy the 16 bit content of BX register on to

the memory location, which at a displacement of 589H

from the data segment base.

MOV DS, CX ; Move the content of CX to DS

2. PUSH instruction

The PUSH instruction decrements the stack pointer by two and copies the word

from source to the location where stack pointer now points. Here the source must of word

size data. Source can be a general purpose register, segment register or a memory location.

The PUSH instruction first pushes the most significant byte to sp-1, then the least

significant to the sp-2.

Push instruction does not affect any flags.

Example:-

PUSH CX ; Decrements SP by 2, copy content of CX to the stack (figure shows execution of

this instruction)

PUSH DS ; Decrement SP by 2 and copy DS to stack

3. POP instruction

The POP instruction copies a word from the stack location pointed by the stack

pointer to the destination. The destination can be a General purpose register, a segment

register or a memory location. Here after the content is copied the stack pointer is

automatically incremented by two.

The execution pattern is similar to that of the PUSH instruction.

Example:

POP CX ; Copy a word from the top of the stack to CX and increment SP by 2.

4. IN & OUT instructions

The IN instruction will copy data from a port to the accumulator. If 8 bit is read the data

will go to AL and if 16 bit then to AX. Similarly OUT instruction is used to copy data from

accumulator to an output port.

Both IN and OUT instructions can be done using direct and indirect addressing modes.

Example:

IN AL, 0F8H

;

Copy a byte from the port 0F8H to AL

MOV DX, 30F8H ; Copy port address in DX

IN AL, DX ; Move 8 bit data from 30F8H port

IN AX, DX ; Move 16 bit data from 30F8H port

OUT 047H, AL ; Copy contents of AL to 8 bit port 047H

MOV DX, 30F8H ; Copy port address in DX

OUT DX, AL ; Move 8 bit data to the 30F8H port

OUT DX, AX ; Move 16 bit data to the 30F8H port

5. XCHG instruction

The XCHG instruction exchanges contents of the destination and source. Here

destination and source can be register and register or register and memory location, but

XCHG cannot interchange the value of 2 memory locations.

General Format

XCHG Destination, Source

Example:

XCHG BX, CX

;

exchange word in CX with the word in BX

XCHG AL, CL ; exchange byte in CL with the byte in AL

XCHG AX, SUM[BX] ; Here physical address, which is DS+SUM+

[BX]. The content at physical address and the

content of AX are interchanged.

Arithmetic and Logic instructions

The arithmetic and logic logical group of instruction include,

1. ADD instruction

Add instruction is used to add the current contents of destination with that of

source and store the result in destination. Here we can use register and/or memory

locations. AF, CF, OF, PF, SF, and ZF flags are affected

General Format:

ADD Destination, Source

Example:

 ADD AL, 0FH ; Add the immediate content, 0FH to the content of AL and store

the result in AL

 ADD AX, BX ; AX <= AX+BX

 ADD AX,0100H – IMMEDIATE

 ADD AX,BX – REGISTER

 ADD AX,[SI] – REGISTER INDIRECT OR INDEXED

 ADD AX, [5000H] – DIRECT

 ADD [5000H], 0100H – IMMEDIATE

 ADD 0100H – DESTINATION AX (IMPLICT)

2. ADC: ADD WITH CARRY

This instruction performs the same operation as ADD instruction, but adds the

carry flag bit (which may be set as a result of the previous calculation) to the result. All

the condition code flags are affected by this instruction. The examples of this instruction

along with the modes are as follows:

Example:

 ADC AX,BX – REGISTER

 ADC AX,[SI] – REGISTER INDIRECT OR INDEXED

 ADC AX, [5000H] – DIRECT

 ADC [5000H], 0100H – IMMEDIATE

 ADC 0100H – IMMEDIATE (AX IMPLICT)

3. SUB instruction

SUB instruction is used to subtract the current contents of destination

with that of source and store the result in destination. Here we can use register and/or

memory locations. AF, CF, OF, PF, SF, and ZF flags are affected

General Format:

SUB Destination, Source

Example:

 SUB AL, 0FH ; subtract the immediate content, 0FH from the content of AL and

store the result in AL

 SUB AX, BX ; AX <= AX-BX

 SUB AX,0100H – IMMEDIATE (DESTINATION AX)

 SUB AX,BX – REGISTER

 SUB AX,[5000H] – DIRECT

 SUB [5000H], 0100H – IMMEDIATE

4. SBB: SUBTRACT WITH BORROW

The subtract with borrow instruction subtracts the source operand and the borrow

flag (CF) which may reflect the result of the previous calculations, from the destination

operand. Subtraction with borrow, here means subtracting 1 from the subtraction

obtained by SUB, if carry (borrow) flag is set.

The result is stored in the destination operand. All the flags are affected

(condition code) by this instruction. The examples of this instruction are as follows:

Example:

 SBB AX,0100H – IMMEDIATE (DESTINATION AX)

 SBB AX,BX – REGISTER

 SBB AX,[5000H] – DIRECT

 SBB [5000H], 0100H – IMMEDIATE

5. CMP: COMPARE

The instruction compares the source operand, which may be a register or an

immediate data or a memory location, with a destination operand that may be a register

or a memory location. For comparison, it subtracts the source operand from the

destination operand but does not store the result anywhere. The flags are affected

depending upon the result of the subtraction. If both of the operands are equal, zero flag

is set. If the source operand is greater than the destination operand,carry flag is set or else,

carry flag is reset. The examples of this instruction are as follows:

Example:

 CMP BX,0100H – IMMEDIATE

 CMP AX,0100H – IMMEDIATE

 CMP [5000H], 0100H – DIRECT

 CMP BX,[SI] – REGISTER INDIRECT OR INDEXED

 CMP BX, CX – REGISTER

6. INC & DEC instructions

INC and DEC instructions are used to increment and decrement the content of the

specified destination by one. AF, CF, OF, PF, SF, and ZF flags are affected.

Example:

INC AL ; AL<= AL + 1

INC AX ; AX<=AX + 1

DEC AL ; AL<= AL – 1

DEC AX ; AX<=AX – 1

7. AND instruction

This instruction logically ANDs each bit of the source byte/word with the

corresponding bit in the destination and stores the result in destination. The source can be

an immediate number, register or memory location, register can be a register or memory

location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the

operation and AF is undefined.

General Format:

AND Destination, Source

Example:

 AND BL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then after

the operation BL would be BL= 1000 0010.

 AND CX, AX ; CX <= CX AND AX

 AND CL, 08 ; CL<= CL AND (0000 1000)

8. OR instruction

This instruction logically ORs each bit of the source byte/word with the

corresponding bit in the destination and stores the result in destination. The source can be

an immediate number, register or memory location, register can be a register or memory

location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the

operation and AF is undefined.

General Format:

OR Destination, Source

Example:

 OR BL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then after

the operation BL would be BL= 1100 1110.

 OR CX, AX ; CX <= CX AND AX

 OR CL, 08 ; CL<= CL AND (0000 1000)

9. NOT instruction

The NOT instruction complements (inverts) the contents of an operand register

or a memory location, bit by bit. The examples are as follows:

Example:

 NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX= (0100)2= (4)16).

 NOT [5000H]

10. XOR instruction

The XOR operation is again carried out in a similar way to the AND and OR

operation. The constraints on the operands are also similar. The XOR operation gives a

high output, when the 2 input bits are dissimilar. Otherwise, the output is zero. The

example instructions are as follows:

Example:

 XOR AX,0098H

 XOR AX,BX

 XOR AX,[5000H]

Shift / Rotate Instructions

Shift instructions move the binary data to the left or right by shifting them within

the register or memory location. They also can perform multiplication of powers of 2
+n

and

division of powers of 2
-n

.

There are two type of shifts logical shifting and arithmetic shifting, later is used

with signed numbers while former with unsigned.

Fig.1 Shift operations

Rotate on the other hand rotates the information in a register or memory either

from one end to another or through the carry flag.

Fig.2 Rotate operations

SHL/SAL instruction

Both the instruction shifts each bit to left, and places the MSB in CF and LSB is made 0.

The destination can be of byte size or of word size, also it can be a register or a memory location.

Number of shifts is indicated by the count.

All flags are affected.

General Format:

SAL/SHL destination, count

Example:

MOV BL, B7H

;

BL is made B7H

SAL BL, 1 ;

shift the content of BL register one place to left.

Before execution,

CY

B7 B6 B5 B4 B3 B2 B1 B0

0

1 0 1 1 0 1 1 1

After the execution,

CY B7 B6 B5 B4 B3 B2 B1 B0 1

 0 1 1 0 1 1 1 0

1. SHR instruction

This instruction shifts each bit in the specified destination to the right and 0 is

stored in the MSB position. The LSB is shifted into the carry flag. The destination can be

of byte size or of word size, also it can be a register or a memory location. Number of shifts

is indicated by the count.

All flags are affected

General Format: SHR

destination, count Example:

MOV BL, B7H ; BL is made B7H

SHR BL, 1 ; shift the content of BL register one place to the right. Before

execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

1 0 1 1 0 1 1 1 0

 After execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

0 1 0 1 1 0 1 1 1

2. ROL instruction

This instruction rotates all the bits in a specified byte or word to the left some

number of bit positions. MSB is placed as a new LSB and a new CF. The destination

can be of byte size or of word size, also it can be a register or a memory location. Number

of shifts is indicated by the count.

All flags are affected

General Format: ROL

destination, count Example:

MOV BL, B7H ; BL is made B7H

ROL BL, 1 ; rotates the content of BL register one place to the left. Before

execution,

 After the execution,

 CY B7 B6 B5 B4 B3 B2 B1 B0

 1 0 1 1 0 1 1 1 1

3. ROR instruction

This instruction rotates all the bits in a specified byte or word to the right some

number of bit positions. LSB is placed as a new MSB and a new CF. The destination

can be of byte size or of word size, also it can be a register or a memory location. Number

of shifts is indicated by the count.

All flags are affected

General Format: ROR

destination, count Example:

MOV BL, B7H ; BL is made B7H

ROR BL, 1 ; shift the content of BL register one place to the right.

Before execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

1 0 1 1 0 1 1 1 0

CY B7 B6 B5 B4 B3 B2 B1 B0

0 1 0 1 1 0 1 1 1

After execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

1 1 0 1 1 0 1 1 1

4. RCR instruction

This instruction rotates all the bits in a specified byte or word to the right some

number of bit positions along with the carry flag. LSB is placed in a new CF and previous

carry is placed in the new MSB. The destination can be of byte size or of word size, also it

can be a register or a memory location. Number of shifts is indicated by the count.

All flags are affected

General Format: RCR

destination, count Example:

MOV BL, B7H ; BL is made B7H

RCR BL, 1 ; shift the content of BL register one place to the right.

Before execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

1 0 1 1 0 1 1 1 0

 After execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

0 1 0 1 1 0 1 1 1

Program control transfer instructions

There are 2 types of such instructions. They are:

1. Unconditional transfer instructions – CALL, RET, JMP

2. Conditional transfer instructions – J condition

1. CALL instruction

The CALL instruction is used to transfer execution to a subprogram or

procedure. There are two types of CALL instructions, near and far.

A near CALL is a call to a procedure which is in the same code segment as the

CALL instruction. 8086 when encountered a near call, it decrements the SP by 2 and copies

the offset of the next instruction after the CALL on the stack. It loads the IP with the offset

of the procedure then to start the execution of the procedure.

A far CALL is the call to a procedure residing in a different segment. Here value

of CS and offset of the next instruction both are backed up in the stack. And then branches

to the procedure by changing the content of CS with the segment base containing procedure

and IP with the offset of the first instruction of the procedure.

Example:

Near call

CALL PRO ; PRO is the name of the procedure

CALL CX ; Here CX contains the offset of the first instruction of

the procedure, that is replaces the content of IP with the content

of CX

Far call

CALL DWORD PTR[8X] ; New values for CS and IP are fetched from four

memory locations in the DS. The new value for CS is fetched

from [8X] and [8X+1], the new IP is fetched from [8X+2]

and [8X+3].

2. RET instruction

 RET instruction will return execution from a procedure to the next instruction after the

CALL instruction in the calling program. If it was a near call, then IP is replaced with the value

at the top of the stack, if it had been a far call, then another POP of the stack is required. This

second popped data from the stack is put in the CS, thus resuming the execution of the calling

program. RET instruction can be followed by a number, to specify the parameters passed.RET

instruction does not affect any flags.

General format:

RET

Example:

p1 PROC ; procedure declaration.

MOV AX, 1234h ;

RET ; return to caller.

p1 ENDP

3

.

JMP instruction

This is also called as unconditional jump instruction, because the processor jumps to the

specified location rather than the instruction after the JMP instruction. Jumps can be

short jumps when the target address is in the same segment as the JMP instruction or

far jumps when it is in a different segment.

General Format:

JMP<target address>

Example:

MOV AL,05H

JMP label1 ; jump over to label

MOV AL, 00H

label1:MOV [2000H], AL

RET

4. Conditional Jump (J cond)

Conditional jumps are always short jumps in 8086. Here jump is done only if the

condition specified is true/false. If the condition is not satisfied, then the

execution proceeds in the normal way.

Example:

There are many conditional jump instructions like JC :

 Jump on carry

 (CF=set)

JNC : Jump on non carry (CF=reset)

JZ : Jump on zero (ZF=set)

JNO : Jump on overflow (OF=set)

Etc

5.Iteration control instructions

These instructions are used to execute a series of instructions some number of

times. The number is specified in the CX register, which will be automatically

decremented in course of iteration. But here the destination address for the jump must

be in the range of -128 to 127 bytes.

Example:

Instructions here are:-

 LOOP : loop through the set of instructions until CX is 0 LOOPE/LOOPZ

: here the set of instructions are repeated until CX=0 or ZF=0 LOOPNE/LOOPNZ :

 here repeated until CX=0 or ZF=1

Machine Control Instructions

1. HLT instruction

The HLT instruction will cause the 8086 microprocessor to fetching and

executing instructions.

The 8086 will enter a halt state. The processor gets out of this Halt signal upon

an interrupt signal in INTR pin/NMI pin or a reset signal on RESET input.

General form:-

 HLT

2. WAIT instruction

When this instruction is executed, the 8086 enters into an idle state. This idle

state is continued till a high is received on the TEST input pin or a valid interrupt

signal is received. Wait affects no flags. It generally is used to synchronize the 8086

with a peripheral device(s).

3. ESC instruction

This instruction is used to pass instruction to a coprocessor like 8087. There is a 6

bit instruction for the coprocessor embedded in the ESC instruction. In most cases the

8086 treats ESC and a NOP, but in some cases the 8086 will access data items in memory

for the coprocessor

4. LOCK instruction

In multiprocessor environments, the different microprocessors share a system bus, which is

needed to access external devices like disks. LOCK

Instruction is given as prefix in the case when a processor needs exclusive access of the system

bus for a particular instruction. It affects no flags.

Example:

LOCK XCHG SEMAPHORE, AL : The XCHG instruction requires two

 bus accesses. The lock prefix prevents another processor

from taking control of the system bus

between the 2 accesses

5. NOP instruction

At the end of NOP instruction, no operation is done other than the fetching and

decoding of the instruction. It takes 3 clock cycles. NOP is used to fill in time delays or to

provide space for instructions while trouble shooting. NOP affects no flags.

Flag manipulation instructions

1. STC instruction

This instruction sets the carry flag. It does not affect any other flag.

2. CLC instruction

This instruction resets the carry flag to zero. CLC does not affect any other flag.

3. CMC instruction

This instruction complements the carry flag. CMC does not affect any other flag.

4. STD instruction

This instruction is used to set the direction flag to one so that SI and/or DI can be

decremented automatically after execution of string instruction. STD does not affect any

other flag.

5. CLD instruction

This instruction is used to reset the direction flag to zero so that SI and/or DI can

be incremented automatically after execution of string instruction. CLD does not affect

any other flag.

6. STI instruction

This instruction sets the interrupt flag to 1. This enables INTR interrupt of the

8086. STI does not affect any other flag.

7. CLI instruction

This instruction resets the interrupt flag to 0. Due to this the 8086 will not

respond to an interrupt signal on its INTR input. CLI does not affect any other flag.

String Instructions

1. MOVS/MOVSB/MOVSW

These instructions copy a word or byte from a location in the data segment to a

location in the extra segment. The offset of the source is in SI and that of destination

is in DI. For multiple word/byte transfers the count is stored in the CX register.

When direction flag is 0, SI and DI are incremented and when it is 1, SI and DI are

decremented.

MOVS affect no flags. MOVSB is used for byte sized movements while

MOVSW is for word sized.

Example:

 CLD ; clear the direction flag to auto increment SI and DI MOV

AX, 0000H;

 MOV DS, AX ; initialize data segment register to 0 MOV

ES, AX ; initialize extra segment register to 0 MOV

SI, 2000H ; Load the offset of the string1 in SI MOV DI,

2400H ; Load the offset of the string2 in DI MOV CX,

04H ; load length of the string in CX

 REP MOVSB ; decrement CX and MOVSB until CX will be 0

2. REP/REPE/REP2/REPNE/REPNZ

REP is used with string instruction; it repeats an instruction until the specified

condition becomes false.

Example: Comments

REP

 CX=0

REPE/REPZ CX=0 OR ZF=0

REPNE/REPNZ CX=0 OR ZF=1

3. LODS/LODSB/LODSW

This instruction copies a byte from a string location pointed to by SI to AL or a

word from a string location pointed to by SI to AX.LODS does not affect any flags.

LODSB copies byte and LODSW copies word.

Example:

 CLD ; clear direction flag to auto increment SI MOV SI,

OFFSET S_STRING ; point SI at string

 LODS S_STRING ;

4. STOS/STOSB/STOSW

The STOS instruction is used to store a byte/word contained in AL/AX to the

offset contained in the DI register. STOS does not affect any flags. After copying

the content DI is automatically incremented or decremented, based on the value of

direction flag.

Example:

MOV DL, OFFSET D_STRING; assign DI with destination address.

STOS D_STRING ; assembler uses string name to determine byte or

Word, if byte then AL is used and if of word size, AX is used.

5. CMPS/CMPSB/CMPSW

CMPS is used to compare the strings, byte wise or word wise. The comparison

is affected by subtraction of content pointed by DI from that pointed by SI. The AF,

 CF, OF, PF, SF and ZF flags are affected by this

instruction, but neither operand is affected.

Example:

;

Comments

MOV SI, OFFSET STRING_A ; Point first string

MOV DI, OFFSET STRING_B ; Point second string

MOV CX, 0AH ; Set the counter as 0AH

CLD ; Clear direction flag to auto increment

REPE CMPSB

; Repeatedly compare till unequal or counter =0

ASSEMBLER DIRECTIVES

There are some instructions in the assembly language program which are not a part of

processor instruction set. These instructions are instructions to the assembler, linker and loader.

These are referred to as pseudo-operations or as assembler directives. The assembler directives

enable us to control the way in which a program assembles and lists. They act during the

assembly of a program and do not generate any executable machine code.

There are many specialized assembler directives. Let us see the commonly used assembler

directive in 8086 assembly language programming.

1. ASSUME:

It is used to tell the name of the logical segment the assembler to use for a specified

segment.

E.g.: ASSUME CS: CODE tells that the instructions for a program are in a logical segment

named CODE.

2. DB -Define Byte:

The DB directive is used to reserve byte or bytes of memory locations in the

available memory. While preparing the EXE file, this directive directs the assembler to

allocate the specified number of memory bytes to the said data type that may be a constant,

variable, string, etc. Another option of this directive also initializes the reserved memory

bytes with the ASCII codes of the characters specified as a string. The following examples

show how the DB directive is used for different purposes.

1) RANKS DB 01H,02H,03H,04H

This statement directs the assembler to reserve four memory locations for a list named

RANKS and initialize them with the above specified four values.

2) MESSAGE DB „GOOD MORNING‟

This makes the assembler reserve the number of bytes of memory equal to the number of

characters in the string named MESSAGE and initializes those locations by the ASCII

equivalent of these characters.

3) VALUE DB 50H

This statement directs the assembler to reserve 50H memory bytes and leave them

uninitialized for the variable named VALUE.

3. DD -Define Double word - used to declare a double word type variable or to reserve

memory locations that can be accessed as double word.

E.g.: ARRAY _POINTER DD 25629261H declares a

 double word named ARRAY_POINTER.

4. DQ -Define Quad word

This directive is used to direct the assembler to reserve 4 words (8 bytes) of

memory for the specified variable and may initialize it with the specified values.

E.g.: BIG_NUMBER DQ 2432987456292612H declares

 a quad word named BIG_NUMBER.

5. DT -Define Ten Bytes:

The DT directive directs the assembler to define the specified variable requiring

10-bytes for its storage and initialize the 10-bytes with the specified values. The directive

may be used in case of variables facing heavy numerical calculations, generally processed

by numerical processors.

E.g.: PACKED_BCD 11223344556677889900 declares an array that is 10 bytes in

length.

6. DW -Define Word:

The DW directives serves the same purposes as the DB directive, but it now makes

the assembler reserve the number of memory words (16-bit) instead of bytes. Some

examples are given to explain this directive.

1) WORDS DW 1234H, 4567H, 78ABH, 045CH

This makes the assembler reserve four words in memory (8 bytes), and initialize the words

with the specified values in the statements. During initialization, the lower bytes are stored

at the lower memory addresses, while the upper bytes are stored at the higher addresses.

2) NUMBER1 DW 1245H

This makes the assembler reserve one word in memory.

7. END-End of Program:

The END directive marks the end of an assembly language program. When the

assembler comes across this END directive, it ignores the source lines available later on.

Hence, it should be ensured that the END statement should be the last statement in the file

and should not appear in between. Also, no useful program statement should lie in the file,

after the END statement.

8. ENDP-End Procedure - Used along with the name of the procedure to indicate the end of a

procedure.

E.g.: SQUARE_ROOT PROC: start of procedure

SQUARE_ROOT ENDP: End of procedure

9. ENDS-End of Segment:

This directive marks the end of a logical segment. The logical segments are

assigned with the names using the ASSUME directive. The names appear with the ENDS

directive as prefixes to mark the end of those particular segments. Whatever are the

contents of the segments, they should appear in the program before ENDS. Any statement

appearing after ENDS will be neglected from the segment. The structure shown below

explains the fact more clearly.

DATA SEGMENT

--------------------- DATA

ENDS

ASSUME CS: CODE, DS: DATA CODE

SEGMENT

--------------------- CODE

ENDS

10. EQU-Equate - Used to give a name to some value or symbol. Each time the assembler finds

the given name in the program, it will replace the name with the vale.

E.g.: CORRECTION_FACTOR EQU 03H MOV

AL, CORRECTION_FACTOR

11. EVEN - Tells the assembler to increment the location counter to the next even address

if it is not already at an even address.

Used because the processor can read even addressed data in one clock cycle

12. EXTRN - Tells the assembler that the names or labels following the directive are in some

other assembly module.

For example if a procedure in a program module assembled at a different time from that

which contains the CALL instruction ,this directive is used to tell the assembler that the

procedure is external

13. GLOBAL - Can be used in place of a PUBLIC directive or in place of an EXTRN

directive.

It is used to make a symbol defined in one module available to other modules.

E.g.: GLOBAL DIVISOR makes the variable DIVISOR public so that it can be accessed from

other modules.

14. GROUP-Used to tell the assembler to group the logical statements named after the

directive into one logical group segment, allowing the contents of all the segments to be

accessed from the same group segment base.

E.g.: SMALL_SYSTEM GROUP CODE, DATA, STACK_SEG

15. INCLUDE - Used to tell the assembler to insert a block of source code from the named

file into the current source module.

This will shorten the source code.

16. LABEL- Used to give a name to the current value in the location counter.

This directive is followed by a term that specifies the type you want associated with that

name.

E.g: ENTRY_POINT LABEL FAR

NEXT: MOV AL, BL

17. NAME- Used to give a specific name to each assembly module when programs

consisting of several modules are written.

E.g.: NAME PC_BOARD

18. OFFSET- Used to determine the offset or displacement of a named data item or

procedure from the start of the segment which contains it.

E.g.: MOV BX, OFFSET PRICES

19. ORG- The location counter is set to 0000 when the assembler starts reading a

segment. The ORG directive allows setting a desired value at any point in the program.

E.g.: ORG 2000H

20. PROC- Used to identify the start of a procedure.

E.g.: SMART_DIVIDE PROC FAR identifies the start of a procedure named

SMART_DIVIDE and tells the assembler that the procedure is far

21. PTR- Used to assign a specific type to a variable or to a label.

E.g.: INC BYTE PTR[BX] tells the assembler that we want to increment the byte

pointed to by BX

22. PUBLIC- Used to tell the assembler that a specified name or label will be accessed from

other modules.

E.g.: PUBLIC DIVISOR, DIVIDEND makes the two variables DIVISOR and

DIVIDEND available to other assembly modules.

23. SEGMENT- Used to indicate the start of a logical segment.

E.g.: CODE SEGMENT indicates to the assembler the start of a logical segment called

CODE

24. SHORT- Used to tell the assembler that only a 1 byte displacement is needed to code a

jump instruction.

E.g.: JMP SHORT NEARBY_LABEL

25. TYPE - Used to tell the assembler to determine the type of a specified variable.

E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to increment BX to

point to the next word in an array of words.

MACROS:

 A Macro is a named block of assembly language statements. Once defined, it can be invoked

(called) as many times in a program as you wish. When you invoke a macro, a copy of its code is

inserted directly into the program at the location where it was invoked. This type of automatic code

insertion is also known as inline expansion. It is customary to refer to calling a macro, although

technically there is no CALL instruction involved.

 Declaring Macros are defined directly at the beginning of a source program, or they are

placed in a separate file and copied into a program by an INCLUDE directive. Macros are expanded

during the assembler’s preprocessing step. In this step, the preprocessor reads a macro definition and

scans the remaining source code in the program. At every point where the macro is called, the

assembler inserts a copy of the macro’s source code into the program. A macro definition must be

found by the assembler before trying to assemble any calls of the macro. If a program defines a

macro but never calls it, the macro code does not appear in the compiled program.

Defining Macros :A macro is defined using the MACRO and ENDM directives.

The syntax is:

macroname MACRO parameter-1, parameter-2...statement-list

.

.

.

ENDM

 There is no fixed rule regarding indentation, but we recommend that you indent statements

between macroname and ENDM. You might also want to prefix macro names with the letter m,

creating recognizable names such as mPutChar, mWriteString, and mGotoxy. The statements

between the MACRO and ENDM directives are not assembled until the macro is called. There can

be any number of parameters in the macro definition, separated by commas.

Parameters:

Macro parameters are named placeholders for text arguments passed to the caller. The arguments

may in fact be integers, variable names, or other values, but the preprocessor treats them as text.

Parameters are not typed, so the preprocessor does not check argument types to see whether they are

correct. If a type mismatch occurs, it is caught by the assembler after the macro has been expanded.

Example: The following Putchar macro receives a single input parameter called char and displays it

on the console:

Putchar MACRO char

mov dl,char

mov ah,02h

int 21h

ENDM 2

 Invoking Macros A macro is called (invoked) by inserting its name in the program, possibly

followed by macro arguments. The syntax for calling a macro is: macroname argument-1, argument-

2, ... Macroname must be the name of a macro defined prior to this point in the source code. Each

argument is a text value that replaces a parameter in the macro. The order of arguments must

correspond to the order of parameters, but the number of arguments does not have to match the

number of parameters. If too many arguments are passed, the assembler issues a warning. If too few

arguments are passed to a macro, the unfilled parameters are left blank.

PROCEDURES :

 Defining a Procedure : Informally, we can define a procedure as a named block of statements

that ends in a return statement.

 A procedure is declared using the PROC and ENDP directives. It must be assigned a name (a

valid identifier). A procedure must be written in the end of the code segment (before end directive),

and it can't receive any parameter.

 When you create a procedure other than your program’s startup procedure, end it with a RET

instruction. RET forces the CPU to return to the location from where the procedure was called. A

procedure is defined using the PROC and ENDP directives.

The syntax is:

procedurename PROC

 .

 .

ret

procedurename ENDP

Example: Sum of Three Integers

 Let’s create a procedure named Sum Of that calculates the sum of three 16-bit integers. We will

assume that relevant integers are assigned to AX, BX, and CX before the procedure is called. The

procedure returns the sum in AX:

 SumOf PROC

add ax,bx

add ax,cx

 ret

SumOf ENDP

Invoking procedures A procedure is called (invoked) by inserting its name in the program Preceded

by (call). The syntax for calling a procedure is:

Call procedurename

CALL and RET Instructions

 The CALL instruction calls a procedure by directing the processor to begin execution at a

new memory location. The procedure uses a RET (return from procedure) instruction to bring the

processor back to the point in the program where the procedure was called. Mechanically speaking,

the CALL instruction pushes its return address on the stack and copies the called procedure’s

address into the instruction pointer. When the procedure is ready to return, its RET instruction pops

the return address from the stack into the instruction pointer. In 32-bit mode, the CPU executes 3 the

instruction in memory pointed to by EIP (instruction pointer register). In 16-bit mode, IP points to

the instruction.

WHILE:

In Macro, the WHILE statement is used to repeat macro sequence until the

expression specified with it is true. Like REPEAT, end of loop is specified by ENDM

statement. The WHILE statement allows to use relational operators in its expressions.

The table-1 shows the relational operators used with WHILE statements.

Table-1: Relational operators used in WHILE statement.

FOR statement:

A FOR statement in the macro repeats the macro sequence for a list of data. For

example, if we pass two arguments to the macro then in the first iteration the FOR

statement gives the macro sequence using first argument and in the second iteration it

gives the macro sequence using second argument. Like WHILE statement, end of FOR is

indicated by ENDM statement. The program shows the use of FOR statement in the

macro.

Example1:

DISP MACRO CHR MOV AH,

02H FOR ARG, <CHR> MOV

DL, ARG INT 21H

ENDM ENDM

. MODEL SMALL

. CODE

START: DISP „M‟, „A‟, „C‟, „R‟, „O‟ END START

 ASSEMBLY LANGUAGE PROGRAMS INVOLVING LOGICAL, BRANCH & CALL

INSTRUCTIONS

CODE FOR 8 BIT ADDER

DATA SEGMENT

OPERATOR FUNCTION

EQ Equal

NE Not equal

LE Less than or equal

LT Less than

GE Greater than or equal

GT Greater than

NOT Logical inversion

AND Logical AND

OR Logical OR

A1 DB 50H

A2 DB 51H

RES DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AL,A1

MOV BL,A2

ADD AL,BL

MOV RES,AL

MOV AX,4C00H

INT 21H

CODE ENDS

END START

CODE FOR 16 BIT ADDER

DATA SEGMENT

 A1 DW 0036H

 A2 DW 0004H SUM

DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

MOV DS,AX

MOV AX,A1

MOV BX,A2

DIV BX

MOV SUM,AX

MOV AX,0008H

INT 21H

CODE ENDS

END START

ADD 3x3 MATRIX

.MODEL SMALL

.DATA

M1 DB 10H,20H,30H,40H,50H,60H,70H,80H,90H

M2 DB 10H,20H,30H,40H,50H,60H,70H,80H,90H

RESULT DW 9 DUP (0)

.CODE

START: MOV AX,@DATA

 MOV DS,AX

MOV CX,9

MOV DI,OFFSET M1

MOV BX,OFFSET M2

MOV SI,OFFSET

RESULT

BACK: MOV AH,00

MOV AL,[DI]

ADD AL,[BX]

ADC AH,00

MOV [SI],AX

INC DI

INC BX

INC SI

INC SI

LOOP BACK

MOV AH,4CH

INT 21H

END START

END

ARRAY SUM

.MODEL SMALL

.DATA

ARRAY DB 12H, 24H, 26H, 63H, 25H, 86H, 2FH, 33H, 10H, 35H

SUM DW 0

.CODE

START:MOV AX, @DATA

MOV DS, AX

MOV CL, 10

XOR DI, DI

LEA BX, ARRAY

 BACK: MOV AL, [BX+DI]

MOV AH, 00H

ADD SUM, AX

INC DI

DEC CL

JNZ BACK

 END START

ASCII TO HEX

DATA SEGMENT

A DB 41H

R DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AL,A

SUB AL,30H

CMP AL,39H

JBE L1

SUB AL,7H

 L1: MOV R,AL

INT 3H

 CODE ENDS

 END START

AVERAGE

.MODEL SMALL

.STACK 100

.DATA

 NO1 DB 63H

NO2 DB 2EH

AVG DB ?

.CODE

 START: MOV AX,@DATA

 MOV DS,AX

MOV AL,NO1

ADD AL,NO2

ADC AH,00H

SAR AX,1

MOV AVG,AL

 END START

16 BIT SUB

DATA SEGMENT

 A1 DW 1001H

 A2 DW 1000H

 SUB DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX,A1

 MOV BX,A2

 SBB AX,BX

 MOV SUB,AX

 MOV AX,4C00H

 INT 21H

CODE ENDS

 END START

16 BIT SUM

DATA SEGMENT

A1 DW 1000H

A2 DW 1001H

SUM DW ?

 DATA ENDS

 CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX,A1

 MOV BX,A2

 ADC AX,BX

 MOV SUM,AX

 MOV AX,4C00H

 INT 21H

CODE ENDS

END START

8 Bit MUL

DATA SEGMENT

A1 DB 25H

A2 DB 25H

A3 DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START:MOV AX,DATA

MOV DS,AX

MOV AL,A1

MOV BL,A2

MUL BL

MOV A3,AL

MOV AX,4C00H

INT 21H

 CODE ENDS

 END START

16 BIT MUL

DATA SEGMENT

A1 DW 1000H

A2 DW 1000H

A3 DW ?

A4 DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START:MOV AX,DATA

MOV DS,AX

MOV AX,A1

MOV BX,A2

MUL BX

MOV A3,DX

MOV A4,AX

MOV AX,4C00H

INT 21H

CODE ENDS

END START

EVEN ODD

DATA SEGMENT

ORG 2000H

FIRST DW 3H

DATA ENDS

CODE SEGMENT

 ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX,FIRST

 SHR AX,1

 JC L1

 MOV BX,00

 INT 3H

L1: MOV BX,01

 INT 3H

 CODE ENDS

 END START

FACTORIAL

 DATA SEGMENT ORG

2000H FIRST DW 3H

SEC DW 1H

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

MOV DS,AX

MOV AX,SEC

MOV CX,FIRST

L1: MUL CX

DEC CX

JCXZ L2

JMP L1

L2: INT 3H

CODE ENDS

END START

FIBONOCCI

DATA SEGMENT ORG

2000H FIRST DW 0H

SEC DW 01H THIRD

DW 50H RESULT

DW ?

 DATA ENDS

 CODE SEGMENT

 ASSUME CS: CODE, DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV SI,OFFSET RESULT

 MOV AX,FIRST

 MOV BX,SEC

 MOV CX,THIRD

 MOV [SI],AX

 L1: INC SI

 INC SI

 MOV [SI],BX

 ADD AX,BX

 XCHG AX,BX

 CMP BX,CX

 INT 3H

 CODE ENDS

 END START

FIND NUMBER

.MODEL SMALL

.STACK 100

.DATA

ARRAY DB 63H,32H,45H,75H,12H,42H,09H,14H,56H,38H

SER_NO DB 09H

SER_POS DB ?

.CODE

START:MOV AX,@DATA

MOV DS,AX

MOV ES,AX

MOV CX,000AH

LEA DI,ARRAY

MOV AL,SER_NO

CLD

REPNE SCAS ARRAY

MOV AL,10

SUB AL CL

MOV SER_POS,AL

END START

GREATER

DATA SEGMENT

ORG 2000H

FIRST DW 5H,2H,3H,1H,4H

COUNT EQU (($-FIRST)/2)-1

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV CX,COUNT

 MOV SI,OFFSET FIRST

 MOV AX,[SI]

 L2: INC SI

INC SI

MOV BX,[SI]

CMP AX,BX

JGE L1

XCHG AX,BX

JMP L1

L1: DEC CX

 JCXZ L4

JMP L2

L4: INT 3H

 CODE ENDS

 END START

HEX TO ASCII

DATA SEGMENT

A DB 08H

C DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV AL,A

 ADD AL,30H

 CMP AL,39H

 JBE L1

 ADD AL,7H

 L1: MOV C,AL

 INT 3H

 CODE ENDS

 END START

MAX

.MODEL SMALL

.STACK 100

.DATA

ARRAY DB 63H,32H,45H,75,12H,42H,09H,14H,56H,38H

MAX DB 0

.CODE

START:MOV AX,@DATA

MOV DS,AX

XOR DI,DI

MOV CL,10

LEA BX,ARRAY

MOV AL,MAX

 BACK: CMP AL,[BX+DI]

 JNC SKIP

MOV DL,[BX+DI]

MOV AL,DL

 SKIP: INC DI

 DEC CL

 JNZ BACK

MOV MAX,AL

MOV AX,4C00H

INT 21H

END START

NO OF 1S

DATA SEGMENT ORG

2000H FIRST DW 7H

DATA ENDS CODE

SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV AX,FIRST

 MOV BX,00

 MOV CX,16

 L2: SHR AX,1

 JC L1

 L4: DEC CX

 JCXZ L3

 JMP L2

 L1: INC BX

 JMP L4

 L3: INT 3H

 CODE ENDS

 END START

SMALLER

DATA SEGMENT

ORG 2000H

FIRST DW 5H,2H,3H,1H,4H

COUNT EQU (($-FIRST)/2)-1

RESULT DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV CX,COUNT

 MOV SI,OFFSET FIRST

 MOV AX,[SI]

 L2: INC SI

 INC SI

 MOV BX,[SI]

 CMP AX,BX

 JB L1

 XCHG AX,BX

 JMP L1

 L1: DEC CX

 JCXZ L4

 JMP L2

 L4: MOV RESULT,AX

 CODE ENDS

 END START

SUM OF CUBES

DATA SEGMENT

ORG 2000H

NUM DB 1H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV DX,DATA

MOV DS,AX

MOV CL,NUM

MOV BX,00

L1: MOV AL,CL

 MOV CH,CL MUL AL

 MUL CH

 ADD BX,AX

 DEC CL

 JNZ L1

MOV RES,BX

INT 3H

CODE ENDS

END START

SUM OF SQUARES

DATA SEGMENT

NUM DW 5H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

 MOV DS,AX MOV

CX,NUM MOV BX,00

 L1: MOV AX,CX

 MUL CX

 ADD BX,AX

 DEC CX

 JNZ L1

 MOV RES,BX

 INT 3H

 CODE ENDS

 END START

 SORTING:

ASCENDING ORDER

 MOV AX,0000H

 MOV CH, 0004H

 DEC CH

UP1: MOV CL, CH

 MOV SI,2000H

UP: MOV AL,[SI]

 INC SI

 CMP AL,[SI]

 JC DOWN

 XCHG AL,[SI]

 DEC SI

 MOV [SI], AL

 INC SI

DOWN: DEC CL

 JNZ UP

 DEC CH

 JNZ UP1

 INT 03

DESCENDING ORDER

 MOV AX,0000H

 MOV CH, 0004H

 DEC CH

UP1: MOV CL, CH

 MOV SI,2000H

UP: MOV AL,[SI]

 INC SI

 CMP AL,[SI]

 JNC DOWN

 XCHG AL,[SI]

 DEC SI

 MOV [SI], AL

 INC SI

DOWN: DEC CL

 JNZ UP

 DEC CH

 JNZ UP1

 INT 03

EVALUATION OF ARITHMETIC EXPRESSIONS

An Assembly program for performing the following operation Z= ((A-B)/10*C)

DATA SEGMENT

 A DB 60

 B DB 20

 C DB 5

 Z DW?

 ENDS

 CODE SEGMENT

 ASSUME DS: DATA CS: CODE

START: MOV AX, DATA

 MOV DS, AX

 MOV AH, 0 ; Clear content of AX

 MOV AL, A ; Move A to register AL

 SUB AL, B ;Subtract AL and B

 MUL C ; Multiply C to AL

 MOV BL, 10 ; Move 10 to register BL

 DIV BL ; Divide AL content by BL

 MOV Z, AX ; Move content of AX to Z

 MOV AH, 4CH

 INT 21H

 ENDS

 END START

An Assembly program for performing the following operation C = (A + B)^2

DATA SEGMENT

 A DB 60

 B DB 20

 C EQU 2000H

 ENDS

 CODE SEGMENT

 ASSUME DS: DATA CS: CODE

 START: MOV AX, DATA

 MOV DS, AX

 MOV AX, A ; Move A to Register Ax

 ADD AX, B ; Add B to A

 IMUL AX ; Square (A+B)

 MOV [C], AX ; Move (A+B) ^2 to C in BX.

 INT 21H

 ENDS

 END START

STRING MANIPULATIONS

Inserting a string

 MOV SI,2000

 MOV DI,3000

 MOV BX,5000

 MOV CX,0005

 CLD

L1: MOV AL,[SI]

 CMP AL,[BX]

 JZ L2

 MOVSB

 LOOP L1

 JMP L3

L2: MOVSB

 MOV BX,7000

 MOV AL,[BX]

 MOV [DI],AL

 DEC CX

 INC DI

 REP

 MOVSB

L3: INT 3

Deleting a string

 MOV SI,2000

 MOV DI,3000

 MOV BX,5000

 MOV CX,0005

 CLD

L1: MOV AL,[SI]

 CMP AL,[BX]

 JZ L2

 MOVSB

 LOOP L1

 JMP L3

L2: INC SI

 DEC CX

 REP

 MOVSB

L3: INT 03

Moving A Block Of Data From One Memory Location To Another Memory Location

 MOV SI, 2000

 MOV DI, 2010

 MOV CX, 0008

 REP

 MOVSB

 INT 03

Reverse a given string

 MOV SI, 2000

 MOV DI, 2008

 MOV CX, 0008

 ADD SI, 07

UP: MOV AL,[SI]

 MOV [DI], AL

 DEC SI

 INC DI

 DEC CX

 JNZ UP

 INT 03

Search a number from String

 MOV CX,0004

 MOV AX,0000

 MOV SI,2000

 MOV BX,3000

UP: MOV AL,[SI]

 CMP AL,[BX]

 JZ DOWN

 INC SI

 DEC CL

 JNZ UP

 MOV AH,00

 JMP L3

DOWN: DEC CL

 MOV AH,01

 MOV [DI],AH

 L3: INT 03

MODULE-II

OPERATION OF 8086 AND INTERRUPTS

PIN DIAGRAM OF 8086 AND PIN DESCRIPTION OF 8086

Figure shows the Pin diagram of 8086. The description follows it.

 The Microprocessor 8086 is a 16-bit CPU available in different clock rates and packaged

in a 40 pin CERDIP or plastic package.

 The 8086 operates in single processor or multiprocessor configuration to achieve high

performance. The pins serve a particular function in minimum mode (single processor

mode) and other function in maximum mode configuration (multiprocessor mode).

 The 8086 signals can be categorized in three groups.

1. The first are the signal having common functions in minimum as well as

maximum mode.

2. The second are the signals which have special functions for minimum mode

3. The third are the signals having special functions for maximum mode.

 The following signal descriptions are common for both modes.

 AD15-AD0: These are the time multiplexed memory I/O address and data lines.

1. Address remains on the lines during T1 state, while the data is available on the data

bus during T2, T3, Tw and T4. These lines are active high and float to a tristate

during interrupt acknowledge and local bus hold acknowledge cycles.

 A19/S6, A18/S5, A17/S4, and A16/S3: These are the time multiplexed address and

status lines.

2. During T1 these are the most significant address lines for memory operations.

3. During I/O operations, these lines are low.

4. During memory or I/O operations, status information is available on those lines for T2,

T3, Tw and T4.

5. The status of the interrupt enable flag bit is updated at the beginning of each clock cycle.

6. The S4 and S3 combine indicate which segment registers is presently being used for

memory accesses as in below fig

7. These lines float to tri-state off during the local bus hold acknowledge. The status line S6

is always low.

8. The address bit is separated from the status bit using latches controlled by the ALE

signal.

9.

 BHE/S7: The bus high enable is used to indicate the transfer of data over the higher order

(D15-D8) data bus as shown in table. It goes low for the data transfer over D15-D8 and is used

to derive chip selects of odd address memory bank or peripherals. BHE is low during

T1 for read, write and interrupt acknowledge cycles, whenever a byte is to be transferred

on higher byte of data bus. The status information is available during T2, T3 and T4. The

signal is active low and tristated during hold. It is low during T1 for the first pulse of the

interrupt acknowledge cycle.

 RD – Read: This signal on low indicates the peripheral that the processor is performing

memory or I/O read operation. RD is active low and shows the state for T2, T3, Tw of any

read cycle. The signal remains tristated during the hold acknowledge.

 READY: This is the acknowledgement from the slow device or memory that they have

completed the data transfer. The signal made available by the devices is synchronized by the

8284A clock generator to provide ready input to the 8086. the signal is active high.

 INTR-Interrupt Request: This is a triggered input. This is sampled during the last clock

cycles of each instruction to determine the availability of the request. If any interrupt

request is pending, the processor enters the interrupt acknowledge cycle. This can be

internally masked by resulting the interrupt enable flag. This signal is active high and

internally synchronized.

 TEST: This input is examined by a ‘WAIT’ instruction. If the TEST pin goes low,

execution will continue, else the processor remains in an idle state. The input is

synchronized internally during each clock cycle on leading edge of clock.

 CLK- Clock Input: The clock input provides the basic timing for processor operation and

bus control activity. It’s an asymmetric square wave with 33% duty cycle.

Figure shows the Pin functions of 8086.

The following pin functions are for the minimum mode operation of 8086.

 M/IO – Memory/IO: This is a status line logically equivalent to S2 in maximum mode.

When it is low, it indicates the CPU is having an I/O operation, and when it is high, it

indicates that the CPU is having a memory operation. This line becomes active high in the

previous T4 and remains active till final T4 of the current cycle. It is tristated during local

bus “hold acknowledge “.

 INTA – Interrupt Acknowledge: This signal is used as a read strobe for interrupt

acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.

 ALE – Address Latch Enable: This output signal indicates the availability of the valid

address on the address/data lines, and is connected to latch enable input of latches. This

signal is active high and is never tristated.

 DT/R – Data Transmit/Receive: This output is used to decide the direction of data flow

through the transceivers (bidirectional buffers). When the processor sends out data, this

signal is high and when the processor is receiving data, this signal is low.

 DEN – Data Enable: This signal indicates the availability of valid data over the address/data

lines. It is used to enable the transceivers (bidirectional buffers) to separate the data from the

multiplexed address/data signal. It is active from the middle of T2 until the middle of T4. This

is tristated during ‘hold acknowledge’ cycle.

 HOLD, HLDA- Acknowledge: When the HOLD line goes high; it indicates to the

processor that another master is requesting the bus access. The processor, after receiving the

HOLD request, issues the hold acknowledge signal on HLDA pin, in the middle of the next

clock cycle after completing the current bus cycle.

 At the same time, the processor floats the local bus and control lines. When the processor

detects the HOLD line low, it lowers the HLDA signal. HOLD is an asynchronous input, and

is should be externally synchronized. If the DMA request is made while the CPU is

performing a memory or I/O cycle, it will release the local bus during T4 provided :

1. The request occurs on or before T2 state of the current cycle.

2. The current cycle is not operating over the lower byte of a word.

3. The current cycle is not the first acknowledge of an interrupt acknowledge sequence.

4. A Lock instruction is not being executed.

The following pin functions are applicable for maximum mode operation of 8086.

 S2, S1, and S0 – Status Lines: These are the status lines which reflect the type of

operation, being carried out by the processor. These become activity during T4 of the

previous cycle and active during T1 and T2 of the current bus cycles.

 LOCK: This output pin indicates that other system bus master will be prevented from

gaining the system bus, while the LOCK signal is low. The LOCK signal is activated by the

‘LOCK’ prefix instruction and remains active until the completion of the next instruction.

When the CPU is executing a critical instruction which requires the system bus, the LOCK

prefix instruction ensures that other processors connected in the system will not gain the

control of the bus.

The 8086, while executing the prefixed instruction, asserts the bus lock signal output,

which may be connected to an external bus controller. By prefetching the instruction, there is a

considerable speeding up in instruction execution in 8086. This is known as instruction

pipelining.

 At the starting the CS: IP is loaded with the required address from which the execution is

to be started. Initially, the queue will be empty and the microprocessor starts a fetch

operation to bring one byte (the first byte) of instruction code, if the CS: IP address is odd

or two bytes at a time, if the CS: IP address is even.

 The first byte is a complete opcode in case of some instruction (one byte opcode instruction)

and is a part of opcode, in case of some instructions (two byte opcode instructions), the

remaining part of code lie in second byte.

 The second byte is then decoded in continuation with the first byte to decide the instruction

length and the number of subsequent bytes to be treated as instruction data. The queue is

updated after every byte is read from the queue but the fetch cycle is initiated by BIU

only if at least two bytes of the queue are empty and the EU may be concurrently

executing the fetched instructions.

 The next byte after the instruction is completed is again the first opcode byte of the next

instruction. A similar procedure is repeated till the complete execution of the program. The

fetch operation of the next instruction is overlapped with the execution of the current

instruction. As in the architecture, there are two separate units, namely Execution unit and

Bus interface unit.

 While the execution unit is busy in executing an instruction, after it is completely decoded,

the bus interface unit may be fetching the bytes of the next instruction from memory,

depending upon the queue status.

 RQ/GT0, RQ/GT1 – Request/Grant: These pins are used by the other local bus master

in maximum mode, to force the processor to release the local bus at the end of the

processor current bus cycle.

 Each of the pin is bidirectional with RQ/GT0 having higher priority than RQ/GT1.

RQ/GT pins have internal pull-up resistors and may be left unconnected. Request/Grant

sequence is as follows:

1. A pulse of one clock wide from another bus master requests the bus access to

8086.

2. During T4(current) or T1(next) clock cycle, a pulse one clock wide from 8086 to

the requesting master, indicates that the 8086 has allowed the local bus to float

and that it will enter the ‘hold acknowledge’ state at next cycle. The CPU bus

interface unit is likely to be disconnected from the local bus of the system.

3. A one clock wide pulse from another master indicates to the 8086 that the hold

request is about to end and the 8086 may regain control of the local bus at the

next clock cycle. Thus each master to master exchange of the local bus is a

sequence of 3 pulses. There must be at least one dead clock cycle after each bus

exchange. The request and grant pulses are active low. For the bus request those

are received while 8086 is performing memory or I/O cycle, the granting of the

bus is governed by the rules as in case of HOLD and HLDA in minimum mode.

MINIMUM MODE AND MAXIMUM MODE OF OPERATION WITH TIMING

DIAGRAMS

Minimum Mode 8086 System

 Minimum mode 8086 system

 In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum

mode by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip itself. There

is a single microprocessor in the minimum mode system.

 The remaining components in the system are latches, transceivers, clock generator,

memory and I/O devices. Some type of chip selection logic may be required for selecting

memory or I/O devices, depending upon the address map of the system.

 Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are

used for separating the valid address from the multiplexed address/data signals and are

controlled by the ALE signal generated by 8086.

 Transceivers are the bidirectional buffers and some times they are called as data

amplifiers. They are required to separate the valid data from the time multiplexed

address/data signals.

 They are controlled by two signals namely, DEN and DT/R.

 The DEN signal indicates the direction of data, i.e. from or to the processor. The system

contains memory for the monitor and users program storage.

 Usually, EPROM is used for monitor storage, while RAM for users program storage. A

system may contain I/O devices.

Write Cycle Timing Diagram for Minimum Mode

 The working of the minimum mode configuration system can be better described in terms

of the timing diagrams rather than qualitatively describing the operations.

 The opcode fetch and read cycles are similar. Hence the timing diagram can be

categorized in two parts, the first is the timing diagram for read cycle and the second is

the timing diagram for write cycle.

 The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and also

M / IO signal. During the negative going edge of this signal, the valid address is latched

on the local bus.

 The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO

signal indicates a memory or I/O operation.

 At T2, the address is removed from the local bus and is sent to the output. The bus is then

tristated. The read (RD) control signal is also activated in T2.

 The read (RD) signal causes the address device to enable its data bus drivers. After RD goes

low, the valid data is available on the data bus.

 The addressed device will drive the READY line high. When the processor returns the read

signal to high level, the addressed device will again tristate its bus drivers.

 A write cycle also begins with the assertion of ALE and the emission of the address. The

M/IO signal is again asserted to indicate a memory or I/O operation. In T2, after sending the

address in T1, the processor sends the data to be written to the addressed location.

 The data remains on the bus until middle of T4 state. The WR becomes active at the

beginning of T2 (unlike RD is somewhat delayed in T2 to provide time for floating).

 The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O

word to be read or write.

 The M/IO, RD and WR signals indicate the type of data transfer as specified in table

below.

Bus Request and Bus Grant Timings in Minimum Mode System of 8086

 Hold Response sequence: The HOLD pin is checked at leading edge of each clock pulse.

If it is received active by the processor before T4 of the previous cycle or during T1 state

of the current cycle, the CPU activates HLDA in the next clock cycle and for succeeding

bus cycles, the bus will be given to another requesting master.

 The control of the bus is not regained by the processor until the requesting master does

not drop the HOLD pin low. When the request is dropped by the requesting master, the

HLDA is dropped by the processor at the trailing edge of the next clock.

Maximum Mode 8086 System

 In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

 In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus

controller derives the control signal using this status information.

 In the maximum mode, there may be more than one microprocessor in the system

configuration.

 The components in the system are same as in the minimum mode system.

 The basic function of the bus controller chip IC8288 is to derive control signals like RD

and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by

the processor on the status lines.

 The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are

driven by CPU.

 It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and

AIOWC. The AEN, IOB and CEN pins are especially useful for multiprocessor systems.

 AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of

the MCE/PDEN output depends upon the status of the IOB pin.

 If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts as

peripheral data enable used in the multiple bus configurations.

 INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an

interrupting device.

 IORC, IOWC are I/O read command and I/O write command signals respectively.

 These signals enable an IO interface to read or write the data from or to the address port.

 The MRDC, MWTC are memory read command and memory write command signals

respectively and may be used as memory read or write signals.

 All these command signals instructs the memory to accept or send data from or to the

bus.

 For both of these write command signals, the advanced signals namely AIOWC and

AMWTC are available.

 Here the only difference between in timing diagram between minimum mode and

maximum mode is the status signals used and the available control and advanced

command signals.

 R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as

on the ALE and apply a required signal to its DT / R pin during T1.

 In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate

MRDC or IORC. These signals are activated until T4. For an output, the AMWC or

AIOWC is activated from T2 to T4 and MWTC or IOWC is activated from T3 to T4.

 The status bit S0 to S2 remains active until T3 and become passive during T3 and T4.

 If reader input is not activated before T3, wait state will be inserted between T3 and T4.

Memory Read Timing Diagram in Maximum Mode of 8086

Memory Write Timing in Maximum mode of 8086

RQ/GT Timings in Maximum Mode

 The request/grant response sequence contains a series of three pulses. The request/grant

pins are checked at each rising pulse of clock input.

 When a request is detected and if the condition for HOLD request is satisfied, the

processor issues a grant pulse over the RQ/GT pin immediately during T4 (current) or T1

(next) state.

 When the requesting master receives this pulse, it accepts the control of the bus, it sends a

release pulse to the processor using RQ/GT pin.

Minimum Mode Interface

 When the Minimum mode operation is selected, the 8086 provides all control

signals needed to implement the memory and I/O interface.

 The minimum mode signal can be divided into the following basic groups :

1. Address/data bus

2. Status

3. Control

4. Interrupt and

5. DMA.

Each and every group is explained clearly.

Address/Data Bus:

 These lines serve two functions. As an address bus is 20 bits long and consists of

signal lines A0 through A19. A19 represents the MSB and A0 LSB. A 20bit address

gives the 8086 a 1Mbyte memory address space. More over it has an independent

I/O address space which is 64K bytes in length.

 The 16 data bus lines D0 through D15 are actually multiplexed with address lines

A0 through A15 respectively. By multiplexed we mean that the bus work as an

address bus during first machine cycle and as a data bus during next machine cycles.

 D15 is the MSB and D0 LSB. When acting as a data bus, they carry read/write data

for memory, input/output data for I/O devices, and interrupt type codes from an

interrupt controller.

Status signal:

 The four most significant address lines A19 through A16 are also multiplexed but in

this case with status signals S6 through S3.

 These status bits are output on the bus at the same time that data are transferred over

the other bus lines.

 Bit S4 and S3 together from a 2 bit binary code that identifies which of the 8086

internal segment registers is used to generate the physical address that was output on

the address bus during the current bus cycle. Code S4S3 = 00 identifies a register

known as extra segment register as the source of the segment address.

 Status line S5 reflects the status of another internal characteristic of the 8086. It is

the logic level of the internal enable flag. The last status bit S6 is always at the logic 0

level.

Control Signals:

 The control signals are provided to support the 8086 memory I/O interfaces. They

control functions such as when the bus is to carry a valid address in which direction data are

to be transferred over the bus, when valid write data are on the bus and when to put read

data on the system bus.

 ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on

the bus. This address must be latched in external circuitry on the 1-to-0 edge of the pulse

at ALE.

 Another control signal that is produced during the bus cycle is BHE bank high enable.

Logic 0 on this used as a memory enable signal for the most significant byte half of the

data bus D8 through D1. These lines also serve a second function, which is as the S7

status line.

 Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress

and in which direction data are to be transferred over the bus. The logic level of M/IO

tells external circuitry whether a memory or I/O transfer is taking place over the bus.

Logic 1 at this output signals a memory operation and logic 0 an I/O operation.

 The direction of data transfer over the bus is signaled by the logic level output at DT/R.

When this line is logic 1 during the data transfer part of a bus cycle, the bus is in the

transmit mode. Therefore, data are either written into memory or output to an I/O device.

On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This

corresponds to reading data from memory or input of data from an input port.

 The signals read RD and write WR indicates that a read bus cycle or a write bus cycle is

in progress. The 8086 switches WR to logic 0 to signal external device that valid write or

output data are on the bus.

 On the other hand, RD indicates that the 8086 is performing a read of data of the bus.

During read operations, one other control signal is also supplied. This is DEN (data

enable) and it signals external devices when they should put data on the bus. There is one

other control signal that is involved with the memory and I/O interface. This is the

READY signal.

 READY signal is used to insert wait states into the bus cycle such that it is extended by a

number of clock periods. This signal is provided by an external clock generator device

and can be supplied by the memory or I/O sub-system to signal the 8086 when they are

ready to permit the data transfer to be completed.

Interrupt signals:

 The key interrupt interface signals are interrupt request (INTR) and interrupt

acknowledge (INTA).

 INTR is an input to the 8086 that can be used by an external device to signal that it

need to be serviced.

 Logic 1 at INTR represents an active interrupt request. When an interrupt request

has been recognized by the 8086, it indicates this fact to external circuit with pulse to

logic 0 at the INTA output.

 The TEST input is also related to the external interrupt interface. Execution of a

WAIT instruction causes the 8086 to check the logic level at the TEST input.

 If the logic 1 is found, the MPU suspend operation and goes into the idle state. The

8086 no longer executes instructions; instead it repeatedly checks the logic level of

the TEST input waiting for its transition back to logic 0.

 As TEST switches to 0, execution resume with the next instruction in the program.

This feature can be used to synchronize the operation of the 8086 to an event in

external hardware.

 There are two more inputs in the interrupt interface: the nonmaskable interrupt NMI

and the reset interrupt RESET.

 On the 0-to-1 transition of NMI control is passed to a nonmaskable interrupt

service routine. The RESET input is used to provide a hardware reset for the 8086.

Switching RESET to logic 0 initializes the internal register of the 8086 and initiates a

reset service routine.

DMA Interface signals:

 The direct memory access DMA interface of the 8086 minimum mode consist of

the HOLD and HLDA signals.

 When an external device wants to take control of the system bus, it signals to the 8086

by switching HOLD to the logic 1 level. At the completion of the current bus cycle, the

8086 enters the hold state. In the hold state, signal lines AD0 through AD15, A16/S3

through A19/S6, BHE, M/IO, DT/R, RD, WR, DEN and INTR are all in the high Z

state.

 The 8086 signals external device that it is in this state by switching its HLDA output

to logic 1 level.

Maximum Mode Interface

 When the 8086 is set for the maximum-mode configuration, it provides signals for

implementing a multiprocessor / coprocessor system environment.

 By multiprocessor environment we mean that one microprocessor exists in the

system and that each processor is executing its own program.

 Usually in this type of system environment, there are some system resources that

are common to all processors. They are called as global resources. There are also

other resources that are assigned to specific processors. These are known as local or

private resources.

 Coprocessor also means that there is a second processor in the system. In these

two processors does not access the bus at the same time. One passes the control of the

system bus to the other and then may suspend its operation.

 In the maximum-mode 8086 system, facilities are provided for implementing

allocation of global resources and passing bus control to other microprocessor or

coprocessor.

8288 Bus Controller – Bus Command and Control Signals:

 8086 does not directly provide all the signals that are required to control the memory, I/O

and interrupt interfaces.

 Specially the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer produced by

the 8086. Instead it outputs three status signals S0, S1, S2 prior to the initiation of each

bus cycle. This 3- bit bus status code identifies which type of bus cycle is to follow.

 S2S1S0 are input to the external bus controller device, the bus controller generates the

appropriately timed command and control signals.

 The 8288 produces one or two of these eight command signals for each bus cycles. For

instance, when the 8086 outputs the code S2S1S0 equals 001; it indicates that an I/O read

cycle is to be performed.

 In the code 111 is output by the 8086, it is signaling that no bus activity is to take place.

 The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3

signals provide the same functions as those described for the minimum system mode.

 This set of bus commands and control signals is compatible with the Multibus

and industry standard for interfacing microprocessor systems.

 The output of 8289 are bus arbitration signals:

Bus busy (BUSY), common bus request (CBRQ), bus priority out (BPRO), bus priority

in (BPRN), bus request (BREQ) and bus clock (BCLK).

 They correspond to the bus exchange signals of the Multibus and are used to lock

other processor off the system bus during the execution of an instruction by the 8086.

 In this way the processor can be assured of uninterrupted access to common

system resources such as global memory.

 Queue Status Signals: Two new signals that are produced by the 8086 in the

maximum- mode system are queue status outputs QS0 and QS1. Together they form

a 2-bit queue status code, QS1QS0.

 Following table shows the four different queue status.

 Local Bus Control Signal – Request / Grant Signals: In a maximum mode

configuration, the minimum mode HOLD, HLDA interface is also changed

QS1 QS0 Queue Status

0 (Low) 0 Queue Empty. The queue has been reinitiated as a

result of the execution of a transfer instruction.

0 1 First Byte. The byte taken from the queue was the

first byte of the instruction.

1 0 Queue Empty. The queue has been reinitiated as a

result of the execution of a transfer instruction.

1 1 (High) Subsequent Byte. The byte taken from the queue

was the subsequent byte of the instruction.

 . These two are replaced by request/grant lines RQ/ GT0 and RQ/ GT1,

respectively. They provide a prioritized bus access mechanism for accessing the local

bus.

INTERRUPT STRUCTURE OF 8086

Definition: The meaning of ‘interrupts’ is to break the sequence of operation. While the CPU

is executing a program, on ‘interrupt’ breaks the normal sequence of execution of

instructions, diverts its execution to some other program called Interrupt Service Routine

(ISR).After executing ISR , the control is transferred back again to the main program.

Interrupt processing is an alternative to polling.

Need for Interrupt: Interrupts are particularly useful when interfacing I/O devices that

provide or require data at relatively low data transfer rate.

Types of Interrupts: There are two types of Interrupts in 8086. They are:

(i) Hardware Interrupts and

(ii) Software Interrupts

(i) Hardware Interrupts (External Interrupts). The Intel microprocessors support

hardware interrupts through:

 Two pins that allow interrupt requests, INTR and NMI

 One pin that acknowledges, INTA, the interrupt requested on

INTR. INTR and NMI

 INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled

using STI/CLI instructions or using more complicated method of updating the FLAGS

register with the help of the POPF instruction.

 When an interrupt occurs, the processor stores FLAGS register into stack, disables

further interrupts, fetches from the bus one byte representing interrupt type, and jumps

to interrupt processing routine address of which is stored in location 4 * <interrupt

type>. Interrupt processing routine should return with the IRET instruction.

 NMI is a non-maskable interrupt. Interrupt is processed in the same way as the

INTR interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing

routine is stored in location 0008h. This interrupt has higher priority than the maskable

interrupt.

 – Ex: NMI, INTR.

(ii) Software Interrupts (Internal Interrupts and Instructions) .Software interrupts can be

caused by:

 INT instruction - breakpoint interrupt. This is a type 3 interrupt.

 INT <interrupt number> instruction - any one interrupt from available 256 interrupts.

 INTO instruction - interrupt on overflow

 Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When

the CPU processes this interrupt it clears TF flag before calling the interrupt

processing routine.

 Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape

opcode (type 7).

 Software interrupt processing is the same as for the hardware interrupts.

 - Ex: INT n (Software Instructions)

 Control is provided through:

i. IF and TF flag bits

ii. IRET and IRETD

Performance of Software Interrupts

1.It decrements SP by 2 and pushes the flag register on the stack.

2.Disables INTR by clearing the IF.

3.It resets the TF in the flag Register.

4.It decrements SP by 2 and pushes CS on the stack.

5.It decrements SP by 2 and pushes IP on the stack.

6.Fetch the ISR address from the interrupt vector table.

VECTOR INTERRUPT TABLE

Interrupt Vector Table

Functions associated with INT00 to INT04

INT 00 (divide error)

 INT00 is invoked by the microprocessor whenever there is an attempt to divide a

number by zero.

 ISR is responsible for displaying the message “Divide Error” on the screen

INT 01

 For single stepping the trap flag must be 1

 After execution of each instruction, 8086 automatically jumps to 00004H to fetch 4

bytes for CS: IP of the ISR.

 The job of ISR is to dump the registers on to the screen

INT 02 (Non maskable Interrupt)

 Whenever NMI pin of the 8086 is activated by a high signal (5v), the CPU Jumps

to physical memory location 00008 to fetch CS: IP of the ISR associated with NMI.

INT 03 (break point)

 A break point is used to examine the CPU and memory after the execution of a group

of Instructions.

 It is one byte instruction whereas other instructions of the form “INT nn” are 2

byte instructions.

INT 04 (Signed number overflow)

 There is an instruction associated with this INT 0 (interrupt on overflow).

 If INT 0 is placed after a signed number arithmetic as IMUL or ADD the CPU

will activate INT 04 if 0F = 1.

 In case where 0F = 0, the INT 0 is not executed but is bypassed and acts as a NOP.

Performance of Hardware Interrupts

 NMI : Non maskable interrupts - TYPE 2 Interrupt

 INTR : Interrupt request - Between 20H and FFH

Interrupt Priority Structure

INTERRUPT SERVICE ROUTINE

ISR Stands for "Interrupt Service Routine." An ISR (also called an interrupt handler) is

a software process invoked by an interrupt request from a hardware device. It handles the request

and sends it to the CPU, interrupting the active process. When the ISR is complete, the process is

resumed.

INTRODUCTION TO DOS AND BIOS INTERRUPTS

DOS (Disk Operating System) interrupts

INT 21h is provided by DOS. When MS-DOS is loaded into the computer, INT 21H can be

invoked to perform some extremely useful functions. These functions are commonly referred to

as DOS INT 21H function calls. Data input and output through the keyboard and monitor are the

most commonly used functions. Below are two examples that use DOS interrupts.

1. Display the message defined with variable DATA_ASC DB ‘the

 earth is but one country’,’$’

 MOV AH,09 ;option 9 to display string of data

 MOV DX, OFFSET DATA_ASC ;DX= offset address of data

 INT 21H ; invoke the interrupt

2. Inputting a single character, with echo.

 MOV AH, 01 ;option 01 to input one character

https://techterms.com/definition/software
https://techterms.com/definition/hardware
https://techterms.com/definition/cpu
https://techterms.com/definition/process

 INT 21H ;invoke the interrupt DOS interrupts

DOS (Disk Operating System) Interrupts

1.Function Call 01: Read The Key Board

Input Parameter Ah = 01 Read A Character From Keyboard. Echo It On CRO Screen and Return

The ASCII Code Of The Key Pressed in Al Output Parameter: Al = ASCII Code Of Character

2. Function Call 02h: Display On CRT Screen

 Input Parameter: Ah = 02

Dl = ASCII Character To Be Displayed On CRT Screen

3. Function Call 03: Read Character From Com1

 Input Parameter: Ah = 03h

Function: Reads Data From Com Port

Output Parameter: Al = ASCII Code Of Character

4. Function Call 04: Write Character To Com1

Input Parameter: Ah = 04h Dl = ASCII Code Of Character To Be Transmitted

Function: Writes Data To Com Port

5. Function Call 05: Write To Lpt1

 Input Parameter: Al = 05H

Dl = Ascii Code Of Character To Be Printted

Function: Print The Character Available In Dl On Printer Attached To Lpt1

 6. Function Call 09: Display A Character String

Input Parameter: Ah = 09,ds:dx= Address Of Character String Function: Displays The Characters

Available In The String To Crt Till A $

7. Function Call 0ah: Buffered Key Board

Input Input Parameter: Ah = 0ah

Ds:dx = Address Of Keyboard Input Buffer

Function: The ASCII Codes Of The Characters Received From Keyboard Are Stored In

Keyboard Buffer From 3rd Byte. 1st Byte Of Buffer = Size Of Buffer Upto 255. It Receives The

Characters Till Specified No.Of Characters Are Received Or Enter Key Is Presses Which Ever Is

Earlier

BIOS (BASIC INPUT/OUTPUT SYSTEM) INTERRUPTS

INT 10H subroutines are burned into the ROM BIOS of the 8086 based and compatibles and are

used to communicate with the computer user screen video. Much of the manipulation of screen

text or graphics is done through INT 10H. Among them are changing the color of characters or

background, clearing screen, and changing the locations of cursor.

Below example use BIOS interrupts.

 1. Clearing the screen:

 MOV AX, 0600H ;scroll entire screen

 MOV BH, 07 ;normal attribute

 MOV CX, 0000 ;start at 00,00

 MOV DX, 184FH ;end at 18, 4F

 INT 10H ;invoke the interrupt BIOS interrupt

INT 10h:Video Service Interrupt

It Controls The Video Display

(a) Function Call 00: Select Video Mode

 Input Parameter: Al = Mode Number

 Ah = 00h

 Function: It Changes The Display Mode And Clears The Screen

Al = 00 40 X 25 Black And White

Al = 04 320 X 200 Color

Al = 10h 640 X 350 X 16 Color

(b) FUNCTION CALL 03: READ CURSOR POSITION

 Input Parameter: Ah = 03

 Bh = Page Number

Function: Reads Cursor Position On Screen

Output Parameters: Ch = Starting Line

 Cl = Ending Line

 Dh = Current Row

 Dl = Current Column

(C) Function Call 0E:Write Character On CRT Screen And Advance Cursor

Input Parameter:Ah = 0eh

 Al = ASCII Code Of The Character

 Bh = Page(text Mode)

 Bl = Color(graphics)

Function: Display Character Available In Al On Screen

INT 11h: Determine The Type Of Equipment Installed. Register Ax Should Contain FFFFh And

Instruction INT 11h To Be Executed. On Return, Register Ax Will Indicate The Equipments

Attached To Computer

INT14h: Control The Serial Communication Port Attached To The Computer. Ah Should

Contain The Function Call

(a) Function Call 00:initialize The Com Port

(b) Function Call 01: Send A Character

(c) Function Call 02:receive A Character

INT 16h: Keyboard Interrupt Ah Should Contain The Function Call

(a) Function Call 00: Read Keyboard Character, It Will Return Ascii Code Of The Character

(b) Function Call 01: Get Key Board Status

Module-III

INTERFACING WITH 8086

MEMORY INTERFACING TO 8086 (STATIC RAM & EPROM)

Memory interfacing

Memory is an integral part of a microcomputer system. There are two main types of memory.

(i) Read only memory (ROM): As the name indicates this memory is available only for

reading purpose. The various types available under this category are PROM, EPROM,

EEPROM which contain system software and permanent system data.

(ii) Random Access memory (RAM): This is also known as Read Write Memory. It is a

volatile memory. RAM contains temporary data and software programs generally for

different applications.

 While executing particular task it is necessary to access memory to get instruction

codes and data stored in memory. Microprocessor initiates the necessary signals when read or

write operation is to be performed. Memory device also requires some signals to perform read

and write operations using various registers. To do the above job it is necessary to have a device

and a circuit, which performs this task is known as interfacing device and as this is involved with

memory it-is known as memory interfacing device.

The basic concepts of memory interfacing involve three different tasks. The microprocessor

should be able to read from or write into the specified register. To do this it must be able to select

the required chip, identify the required register and it must enable the appropriate buffers.

 Simple Memory Device

 Any memory device must contain address lines and Input, output lines, selection

input, control input to perform read or write operation. All memory devices have address inputs

that select memory location within the memory device. These lines are labeled as AO AN. The

number of address lines indicates the total memory capacity of the memory device. A 1K memory

requires 10 address lines A0-A9. Similarly a 1MB requires 20 lines A0-A19 (in the case of 8086).

The memory devices may have separate I/O lines or a common set of bidirectional I/O lines.

Using these lines data can be transferred in either direction. Whenever output buffer is activated

the operation is read whenever input buffers are activated the operation is write. These lines are

labelled as I/O ... I/On or DODn. The size of a memory location is dependent upon the

number of data bits. If the numbers of data lines are eight D0 - D7 then 8 bits or 1 byte of data can

be stored in each location. Similarly if numbers of data bits are 16 (D0 - D15) then the memory

size is 2 bytes. For example 2K x 8 indicates there are 2048 memory locations and each memory

location can store 8 bits of data.

 Memory devices may contain one or more inputs which are used to select the memory

device or to enable the memory device. This pin is denoted by CS (Chip select) or CE (Chip

enable). When this pin is at logic '0' then only the memory device performs a read or a write

operation. If this pin is at logic ‘1’ the memory chip is disabled. If there are more than one CS

input then all these pins must be activated to perform read or write operation.

 All memory devices will have one or more control inputs. When ROM is used we find

OE output enable pin which allows data to flow out of the output data pins. To perform this task

both CS and OE must be active. A RAM contains one or two control inputs. They are R / W or

RD and WR . If there is only one input R/ W then it performs read operation when R/ W pin is

at logic 1. If it is at logic 0 it performs write operation. Note that this is possible only when CS is

also active.

 Memory Interface using RAMS, EPROMS and EEPROMS

Semiconductor Memory Interfacing:

Semiconductor memories are of two types, viz. RAM (Random Access Memory) and ROM

(Read Only Memory).

Static RAM Interfacing:

The semiconductor RAMs are of broadly two types-static RAM and dynamic RAM. The

semiconductor memories are organized as two dimensional arrays of memory locations. For

example, 4K x 8 or 4K byte memory contains 4096 locations, where each location contains 8-bit

data and only one of the 4096 locations can be selected at a time. Obviously, for addressing 4K

bytes of memory, twelve address lines are required. In general, to address a memory location out

of N memory locations , we will require at least n bits of address, i.e. n address lines where n =

Log2 N. Thus if the microprocessor has n address lines, then it is able to address at the most N

locations of memory, where 2
n
 = N. However, if out of N locations only P memory locations are

to be interfaced, then the least significant p address lines out of the available n lines can be

directly connected from the microprocessor to the memory chip while the remaining (n-p) higher

order address lines may be used for address decoding (as inputs to the chip selection logic). The

memory address depends upon the hardware circuit used for decoding the chip select (CS). The

output of the decoding circuit is connected with the CS pin of the memory chip. The general

procedure of static memory interfacing with 8086 is briefly described as follows:

1. Arrange the available memory chips so as to obtain 16-bit data bus width. The upper 8-

bit bank is called ‘odd address memory bank’ and the lower 8-bit bank is called ‘even address

memory bank’.

2. Connect available memory address lines of memory chips with those of the

microprocessor and also connect the memory RD and WR inputs to the corresponding

processor control signals. Connect the 16-bit data bus of the memory bank with that of the

microprocessor 8086.

3. The remaining address lines of the microprocessor, BHE and A0 are used for decoding

the required chip select signals for the odd and even memory banks. CS of memory is derived

from the O/P of the decoding circuit.

As a good and efficient interfacing practice, the address map of the system should be

continuous as far as possible, i.e. there should be no windows in the map. A memory location

should have a single address corresponding to it, i.e. absolute decoding should be preferred, and

minimum hardware should be used for decoding. In a number of cases, linear decoding may be

used to minimise the required hardware. Let us now consider a few example problems on

memory interfacing with 8086.

NEED FOR DMA

 DMA stands for Direct Memory Access. It is designed by Intel to transfer data at the fastest rate.

 If large amount of data is involved in I/O transfer these delays are going to be large, entire

process will be slowed down if I/O transfer takes place through CPU.This difficulty can be

overcome by isolating CPU and allow memory and I/O device perform the data transfer directly.

Such an operation is called DMA.Since CPU is not involved in DMA it requires separate

controller to perform these operations. This controller is called DMA controller.

DMA DATA TRANSFER METHOD

Initially, when any device has to send data between the device and the memory, the device has to

send DMA request (DRQ) to DMA controller.

The DMA controller sends Hold request (HRQ) to the CPU and it waits for the CPU to assert

the HLDA.

Then the microprocessor tri-states all the data bus, address bus, and control bus. The CPU leaves

the control over bus and acknowledges the HOLD request through HLDA signal to DMA

controller.

After receiving HLDA signal DMA controller gives DACK to the peripheral device which has

requested DMA

When DMA is not performed Switches are connected such that Microprocessor is connected

to Address bus,Data Bus and control bus.

When DMA is performed the switches changes the position where address bus and control

bus are connected to DMA controller and data bus gets isolated by CPU and is connected only

in between I/O and Memory.Such process is called DMA.

Features of 8257

• It has four channels which can be used over four I/O devices.

• Each channel has 16-bit address register and 14-bit counter register.

• Each channel can transfer data up to 64kb.

• Each channel can be programmed independently.

• Each channel can perform read transfer, write transfer and verify transfer

 operations.

• It generates MARK signal to the peripheral device that 128 bytes have been

 transferred.

• Its frequency ranges from 250Hz to 3MHz.

• It operates in 2 modes, i.e., Master mode and Slave mode.

• Slave mode:Where CPU and DMA controller Interact.

• Master mode:Where DMA controller connects memory and I/O device.

• The DMA controller which is widely used in microprocessor is Intel 8257 DMA

 controller with 40 pin Dual in line package.

Block diagram of Intel 8257

8257 is programmable DMA controller.

It consists of 4 DMA channels,control logic,data bus buffer,Read/write logic,Priority

Resolver.The 8257 performs the DMA operation over four independent DMA channels.Each of

four channels of 8257 has DMA address register and terminal count register.DMA address

register is 16-bit Terminal count register has 14-bit count number and 2-bit code indicating DMA

transfer.

There are two common registers for all the channels, namely, mode set register and status

register.

Thus there are a total of ten registers.

Register Organization of 8257

DMA Address Register

Each DMA channel has one DMA address register. The function of this register is to store the

address of the starting memory location, which will be accessed by the DMA channel. The device

that wants to transfer data over a DMA channel, will access the block of the memory with the

starting address stored in the DMA Address Register.Terminal Count Register:Each of the four

DMA channels of 8257 has one terminal count register (TC).The low order 14-bits of the terminal

count register are initialised with the binary equivalent of the number of required DMA cycles.

After each DMA cycle, the terminal count register content will be decremented by one and finally

it becomes zero after the required number of DMA cycles are over.In 1 DMA operation

maximum number of bytes that can transfer are 2
14

 which is 16KB of information.

Mode Set register bit Format

The mode set register is used for programming the 8257 as per the requirements of the system.

The function of the mode set register is to enable the DMA channels individually and also to set

the various modes of operation.

The bits Do-D3 enable one of the four DMA channels of 8257. for example, if Do is ‘1’, channel

0 is enabled.

If D6 TC STOP bit is set, the selected channel is disabled after the terminal count condition is

reached, and it further prevents any DMA cycle on the channel.

If D7 Autoload bit is set,Count will be once again loaded into count register and DMA transfer

will be permitted for same number of bytes once again.This autoload is available only for channel

2.

If D4 is set, rotating priority is enabled, otherwise, fixed priority is enabled. Rotating priority

means the channels has a circular sequence.After each DMA cycle the priority of the channel

changes.The channel which has just been serviced will have the lowest priority.

If D5 Extended Write bit is set,Memory write and I/O write will happen one clock ahead of

operation.So that both memory device and I/O device would know that Write operation is being

performed.

Status register bit Format:

The lower order 4-bits of this register contain the terminal count status for the four individual

channels. If any of these bits is set, it indicates that the specific channel has reached the terminal

count condition.The update flag is set every time, the channel 2 registers are loaded with contents

of the channel 3 registers. This register can only read.

Data Bus Buffer, Read/Write Logic,Control Unit, Priority Resolver

In the slave mode, the read/write logic accepts the I/O Read or I/O Write signals, decodes the Ao-

A3 lines and either writes the contents of the data bus to the addressed internal register or reads

the contents of the selected register depending upon whether IOW or IOR signal is activated.In

master mode, the read/write logic generates the IOR and IOW signals to control the data flow to

or from the selected peripheral.

The control logic controls the sequences of operations and generates the required control signals

like AEN, ADSTB, MEMR,MEMW, TC and MARK along with the address lines A4-A7, in

master mode.The priority resolver resolves the priority of the four DMA channels depending

upon whether normal priority or rotating priority is programmed.

Pin Diagram of 8257 DMA Controller

Signal Description of 8257

DRQo-DRQ3 : DMA request
These are the four individual channel DMA request inputs, used by the peripheral devices for

requesting the DMA services. The DRQo has the highest priority while DRQ3 has the lowest

one, if the fixed priority mode is selected.

DACKo’-DACK3’:DMA Acknowledgement
These are the active-low DMA acknowledge lines, which updates the requesting peripheral

about the status of their request by the CPU. These lines can also act as strobe lines for the

requesting devices.

Do-D7:

These are bidirectional, data lines used to interface the system bus with the internal data bus

of 8257.The address is transferred over Do-D7 during the first clock cycle of the DMA cycle.

During the rest of the period, data is available on the data bus.

IOR’:I/O Read
This is an active-low bidirectional input line . In slave mode, this acts as input signal.It is used

by the CPU to read internal registers of 8257. In master mode it acts as output.It is used to

read data from a peripheral during a memory write cycle.

IOW’ :I/O Write
This is an active low bidirectionl line that acts as input in slave mode to load the contents of

the data bus to the 8-bit mode register or upper/lower byte of a 16-bit DMA address register

or terminal count register. In the master mode, it is a control output that loads the data to a

peripheral during DMA memory read cycle (write to peripheral).

CLK:
 It is a clock frequency signal which is required for the internal operation of 8257.

RESET :
 This signal is used to RESET the DMA controller by disabling all the DMA channels.

Ao-A3: (Address bus)
These are the four least significant address lines. In the slave mode, they act as an input,

which selects one of the registers to be read or written. In the master mode, they are the four

least significant memory address output lines generated by 8257.

CS: Chip Select
It is an active-low chip select line. In the Slave mode, it enables the read/write operations

to/from 8257. In the master mode, it disables the read/write operations to/from 8257.

A4-A7 :

This is the higher nibble of the lower byte address generated by 8257 during the master mode

of DMA operation.

READY:
 It is an active-high asynchronous input signal, which makes DMA ready by inserting wait

states.

HRQ: Hold Request
 This signal is used to receive the hold request signal from the output device. In the slave

mode, it is connected with a DRQ input line 8257. In Master mode, it is connected with

HOLD input of the CPU.

HLDA :Hold Acknowledgement
It is the hold acknowledgement signal which indicates the DMA controller that the bus has

been granted to the requesting peripheral by the CPU when it is set to 1.

MEMR’: Memory Read
This active –low memory read output is used to read data from the addressed memory

locations during DMA read cycles.

MEMW’ :Memory Write
This active-low three state output is used to write data to the addressed memory location

during DMA write operation.

Vcc
It is the power signal which is required for the operation of the circuit.

ADSTB :Address Strobe
This signal is used to convert the higher byte of the memory address generated by the DMA

controller into the latches.

AEN:Address Enable
This signal is used to disable the address bus/data bus.

TC:Terminal Count
It stands for ‘Terminal Count’, which indicates the present DMA cycle to the present

peripheral devices.

MARK
The mark will be activated after each 128 cycles or integral multiples of it from the

beginning. It indicates the current DMA cycle is the 128th cycle since the previous MARK

output to the selected peripheral device.

INTERFACING WITH 8237/8257

Interfacing 8257 with 8086

Once a DMA controller is initialised by a CPU property, it is ready to take control of the system

bus on a DMA request, either from a peripheral or itself (in case of memory-to-memory transfer).

The DMA controller sends a HOLD request to the CPU and waits for the CPU to assert the

HLDA signal. The CPU relinquishes the control of the bus before asserting the HLDA

signal.Once the HLDA signal goes high, the DMA controller activates the DACK signal to the

requesting peripheral and gains the control of the system bus. The DMA controller is the sole

master of the bus, till the DMA operation is over. The CPU remains in the HOLD status (all of its

signals are tristate except HOLD and HLDA), till the DMA controller is the master of the bus.

PROGRAMMABLE INTERRUPT CONTROLLER 8259A

 8259 microprocessor is defined as Programmable Interrupt Controller (PIC) microprocessor.

There are 5 hardware interrupts and 2 hardware interrupts in 8085 and 8086 respectively. But by

connecting 8259 with CPU, we can increase the interrupt handling capability. 8259 combines the

multi interrupt input sources into a single interrupt output. Interfacing of single PIC provides 8

interrupts inputs from IR0-IR7.

 For example, interfacing of 8085 and 8259 increases the interrupt handling capability of 8085

microprocessor from 5 to 8 interrupt levels.

Features of 8259 PIC microprocessor –

1. It is a LSI chip which manages 8 levels of interrupts i.e. it is used to implement 8 level interrupt

systems.

2. It can be cascaded in a master slave configuration to handle up to 64 levels of interrupts.

3. It can identify the interrupting device.

4. It can resolve the priority of interrupt requests i.e. it does not require any external priority
resolver.

5. It can be operated in various priority modes such as fixed priority and rotating priority.

6. The interrupt requests are individually mask-able.

7. The operating modes and masks may be dynamically changed by the software at any time during

execution of programs.

8. It accepts requests from the peripherals, determines priority of incoming request, checks whether

the incoming request has a higher priority value than the level currently being serviced and

issues an interrupt signal to the microprocessor.

9. It provides 8 bit vector number as an interrupt information.

10. It does not require clock signal.
11. It can be used in polled as well as interrupt modes.
12. The starting address of vector number is programmable.

13. It can be used in buffered mode.

BLOCK DIAGRAM OF 8259 PIC MICROPROCESSOR

The Block Diagram consists of 8 blocks which are – Data Bus Buffer, Read/Write Logic,

Cascade Buffer Comparator, Control Logic, Priority Resolver and 3 registers- ISR, IRR,
IMR.

1. Data bus buffer –

This Block is used as a mediator between 8259 and 8085/8086 microprocessor by acting as a

buffer. It takes the control word from the 8085 (let say) microprocessor and transfer it to the

control logic of 8259 microprocessor. Also, after selection of Interrupt by 8259 microprocessor,

it transfer the opcode of the selected Interrupt and address of the Interrupt service sub routine to

the other connected microprocessor. The data bus buffer consists of 8 bits represented as D0-D7

in the block diagram. Thus, shows that a maximum of 8 bits data can be transferred at a time.

2. Read/Write logic –

This block works only when the value of pin CS is low (as this pin is active low). This block is

responsible for the flow of data depending upon the inputs of RD and WR. These two pins are

active low pins used for read and write operations.

3. Control logic –

It is the centre of the microprocessor and controls the functioning of every block. It has pin INTR

which is connected with other microprocessor for taking interrupt request and pin INT for giving

the output. If 8259 is enabled, and the other microprocessor Interrupt flag is high then this causes

the value of the output INT pin high and in this way 8259 responds to the request made by other

microprocessor.

4. Interrupt request register (IRR) –

It stores all the interrupt level which are requesting for Interrupt services.

5. Interrupt service register (ISR) –

It stores the interrupt level which are currently being executed.

6. Interrupt mask register (IMR) –

It stores the interrupt level which have to be masked by storing the masking bits of the interrupt

level.

7. Priority resolver –

It examines all the three registers and set the priority of interrupts and according to the priority of

the interrupts, interrupt with highest priority is set in ISR register. Also, it reset the interrupt level

which is already been serviced in IRR.

8. Cascade buffer –

To increase the Interrupt handling capability, we can further cascade more number of pins by

using cascade buffer. So, during increment of interrupt capability, CSA lines are used to control

multiple interrupt structure.

SP/EN (Slave program/Enable buffer) pin is when set to high, works in master mode else in slave

mode. In Non Buffered mode, SP/EN pin is used to specify whether 8259 work as master or slave

and in Buffered mode, SP/EN pin is used as an output to enable data bus.

Vcc and Gnd:It is the Power supply and ground pins. +5V power supply is used in this chip.

D7-D0:For communication with the processor, there are Eight bi-directional data pins.

RD*:It is active low-input pin activated by the processor to read the information status from the

8259.

WR*:It is an active low-input pin which is activated by the processor to write the control

information to 8259.

CS*:For selecting the chip it is used .It is an active low input pin.

A0:An address input pin used along with RD* and WR* which is used to identify the various

command words within 8259.

IR0-IR7:There are Eight asynchronous interrupt request inputs. These interrupt requests can be

programmed for level-trigger or edge-triggered mode.

INT: A strong active high-output pin which interrupts the processor. Always connected to the

INTR interrupt input of 8086. The process is interrupted whenever the interrupting device

delivers a signal to 8259.

INTA*:It is termed as an active low-input pin. The 8259 receives the signal from INTA* to the

output of 8086. 8086 sends the three consecutive INTA* signals, the 8259 sends a 3-byte

CALL instruction to the 8086 via D7-0 pins(Data Bus). The two bytes termed as second and third

bytes of the CALL instruction contains the ISR address which depends on the IR input of 8259

that is going to be serviced.

CAS2-0:These are cascaded lines. Used only when there are multiple 8259s in the system. The

interrupt control system might have a master 8259 and maximum eight Slave 8259s.

SP*/EN*:SP*/EN* stands for “slave program/enable buffer”. This pin serves dual

function. When the 8259A is in buffered mode, this pin is an output that controls the data bus

transceivers in a large microprocessor-based system. When the 8259A is not in buffered mode,

this pin programs the device as a master (1) or a slave (0).

Command Words of 8259A

 Initialization Command Words(ICWs)

 Operation Command Words(OCWs)

The Programming 8259 requires two types of command words. Initialization Command Words

(ICWs) and Operational Command Words (OCWs).

The Programming 8259 can be initialized with four ICWs; the first two are compulsory, and the

other two are optional based on the modes being used. These words must be issued in a given

sequence. If we want to change any 1 bit,all the four ICWs should be initialised again.

After initialization, the 8259A can be set up to operate in various modes by using three different

OCWs; however, they are not necessary to be issued in a specific sequence.

Initialization sequence(ICWs) of 8259A

ICWs

ICW1 : A write command issued to the 8259 with A0 = 0 and D4 = 1 is interpreted as ICW1,

which starts the initialization sequence.

ICW2: A write command following ICW1, with A0 = 1 is interpreted as ICW2. ICW2 is used to

initialise interrupt vector number. A8,A9,A10 should be compulsory 000

IR0 selected should be like 40,48,50,58 etc.Hence last 3 bits will be zero and most significant bits

are filled in T3 to T7.

ICW3:ICW3 is read only when there are more than one 8259As in the system.i.e;cascading is

used .In ICW1 if SNGL=0 cascading is used .

Master:This says to the master where the slave is present.

If S0=I;To IR0 slave is connected.

If S5=I;To IR5 slave is connected.

Slave:Slave identification

Since 8 slaves are possible ID0,ID1,ID2 are required.

ID0,ID1,ID2=000;Slave 0 is identified.

ICW4:The use of this command word depends on the IC4 bit of ICW1.If IC4=1,ICW4 is

used.In 8086 ICW4 is compulsory.In 8085 it is optional.

SFNM: If SFNM=1 Special Fully Nested Mode is selected.

BUF: If BUF=1 the buffered mode is selected.

If BUF=0 non buffered mode is selected.

M/S:If M/S=1 8259A is a master.

If M/S=0 8259A is a slave.

AEOI:If AEOI=1 Automatic end of interrupt mode is selected.

If AEOI=0 end of interrupt mode is selected.

mPM:If mPM=1 8086/88 operation is selected.

If mPM=0 8085 operation is selected.

ICW4

OCWs

OCW1: It says which interrupt should be masked.If M3=1Interrupt connected to this pin will be

masked.i.e;not accepted.If M3=0 unmask.

OCW2: If L0,L1,L2=000 IR0 is selected.

R (Rotate), SL (Select-Level), EOI(End Of Interrupt Modes)

OCW3:

SMM:Special Mask mode

ESMM:Enable Special Mask mode

RR:Read IRR

RIS:Read ISR

P:Polling mode

CASCADING OF INTERRUPT CONTROLLER AND ITS IMPORTANCE

Cascading is necessary to connect more number of Devices which produces interrupts.The

cascade pins (CAS0, CAS1 and CAS2) from the master are connected to the corresponding pins

of the slave.For the slave 8259, the SP (low) / EN (low) pin is tied low to let the device know that

it is a slave.The SP (low) / EN (low) pin can be used as input or output signal.

In non-buffered mode it is used as input signal and tied to logic-I in master 8259 and logic-0 in

slave 8259.In buffered mode it is used as output signal to disable the data buffers while data is

transferred from 8259A to the CPU.

CAS2-CAS0 (Cascade lines): The CAS2-0 lines form a local 8259A bus to control multiple

8259As in master-slave configuration, i.e., to identify a particular slave 8259A to be accessed

for transfer of vector information. These pins are automatically set as output pins for master

8259A and input pins for a slave 8259A once the chips are programmed as master or slave

Cascading of interrupt controller importance.The 8259A can be easily interconnected in a

system of one master with up to eight slaves to handle up to 64 priority levels. The master

controls the slaves through the 3 line cascade bus. The cascade bus acts like chip selects to the

slaves during the INTA sequence. In a cascade configuration, the slave interrupt outputs are

connected to the master interrupt request inputs.

Interfacing 8259A with 8086

Operating modes of 8259A

FULLY NESTED MODE:

General purpose mode / default mode.

IR0 to IR7 are arranged from highest to lowest.

IR0 -> Highest ;IR7 -> Lowest

AUTOMATIC ROTATION MODE:

In this mode, a device after being serviced, receives the lowest priority.

SPECIFIC ROTATION MODE:

Similar to automatic rotation mode, except that the user can select any IR for the lowest priority,

thus fixing all other priorities

END OF INTERRUPT (EOI):

After the completion of an interrupt service, the corresponding ISR bits needs to be reset to

update the information in the ISR. This is called EOI command.

NON SPECIFIC EOI COMMAND:(manually)

When this command is sent to 8259A, it resets the highest priority ISR bit.

SPECIFIC EOI COMMAND:(manually)

This command specifies which ISR bit is to reset.

AUTOMATIC EOI:

In this mode, no command is necessary.

During the end of interrupt acknowledge cycle, the ISR bit is reset.

Used for master only

SPECIAL MASK MODE

When a mask bit is set in OCW, it inhibits further interrupts at that level and enables interrupt

from other levels, which are not mastered.

EDGE AND LEVEL TRIGGERED MODE

Decides whether the interrupt should be edge triggered or level triggered.

If bit LTIM of ICW1=0, they are edge triggered, otherwise level triggered.

READING 8259A STATUS

Used to read the status of the internal registers of 8259A.

Reading is possible only in no polled mode.

OCW3, is used to read IRR and ISR and OCW1 for IMR.

POLL COMMAND

The INT output is neglected, though it functions normally by not connecting INT output or by

masking INT input of the microprocessor.

This mode is entered by setting p=1 in OCW3.

A poll command may give more than 64 priority levels.

SPECIAL FULLY NESTED MODE

Used in more complicated systems.

Similar to, normal nested mode.

BUFFERED MODE

When the 8259A is used in the system in which bus driving buffers are used on the data buses,

the problem of enabling the buffers arises.

The 8259A sends a buffer enable signal on SP’/EN’ pin.

CASCADE MODE

The slave INT outputs are connected with master IR inputs. When a slave request line is activated

and acknowledged, the master will enable the slave to release the vector addresses during the

second pulses of INTA sequence.

The cascade lines are normally low and contain slave addresses codes from the trailing edge of

the first INTA pulse to the trailing edge of the second INTA pulse.

SERIAL DATA TRANSFER SCHEMES

SERIAL COMMUNICATION

INTRODUCTION

Serial communication is common method of transmitting data between a computer and a

peripheral device such as a programmable instrument or even another computer. Serial

communication transmits data one bit at a time, sequentially, over a single communication line

to a receiver. Serial is also a most popular communication protocol that is used by many devices

for instrumentation. This method is used when data transfer rates are very low or the data must

be transferred over long distances and also where the cost of cable and synchronization

difficulties makes parallel communication impractical. Serial communication is popular because

most computers have one or more serial ports, so no extra hardware is needed other than a cable

to connect the instrument to the computer or two computers together.

SERIAL AND PARALLEL TRANSMISSION

Let us now try to have a comparative study on parallel and serial communications to

understand the differences and advantages & disadvantages of both in detail.

We know that parallel ports are typically used to connect a PC to a printer and are rarely

used for other connections. A parallel port sends and receives data eight bits at a time over eight

separate wires or lines. This allows data to be transferred very quickly. However, the setup looks

more bulky because of the number of individual wires it must contain. But, in the case of a serial

communication, as stated earlier, a serial port sends and receives data, one bit at a time over one

wire. While it takes eight times as long to transfer each byte of data this way, only a few wires

are required. Although this is slower than parallel communication, which allows the

transmission of an entire byte at once, it is simpler and can be used over longer distances. So, at

first sight it would seem that a serial link must be inferior to a parallel one, because it can

transmit less data on each clock tick. However, it is often the case that, in modern technology,

serial links can be clocked considerably faster than parallel links, and achieves a

higher data rate.

Even in shorter distance communications, serial computer buses are becoming more

common because of a tipping point where the disadvantages of parallel busses (clock skew,

interconnect density) outweigh their advantage of simplicity. The serial port on your PC is a

full-duplex device meaning that it can send and receive data at the same time. In order to be able

to do this, it uses separate lines for transmitting and receiving data.

 From the above discussion we could understand that serial communications have many

advantages over parallel one like:

 Requires fewer interconnecting cables and hence occupies less space.

 "Cross talk" is less of an issue, because there are fewer conductors compared to

that of parallel communication cables.

 Many IC s and peripheral devices have serial interfaces.

 Clock skew between different channels is not an issue.

 Cheaper to implement.

Clock skew:

Clock skew is a phenomenon in synchronous circuits in which the clock signal sent from

the clock circuit arrives at different components at different times, which can be caused by many

things, like:

 Wire-interconnect length

 Temperature variations

 Variation in intermediate devices

 capacitive coupling

 Material imperfections

SERIAL DATA TRANSMISSION MODES

 When data is transmitted between two pieces of equipment, three communication modes of

operation can be used.

 Simplex: In a simple connection, data is transmitted in one direction only. For example, from a

computer to printer that cannot send status signals back to the computer.

 Half-duplex: In a half-duplex connection, two-way transfer of data is possible, but only in one

direction at a time.

 Full duplex: In a full-duplex configuration, both ends can send and receive data simultaneously,

which technique is common in our PCs.

SERIAL DATA TRANSFER SCHEMS

 Like any data transfer methods, Serial Communication also requires coordination between the

sender and receiver. For example, when to start the transmission and when to end it, when one

particular bit or byte ends and another begins, when the receiver's capacity has been exceeded,

and so on. Here comes the need for synchronization between the sender and the receiver. A

protocol defines the specific methods of coordinating transmission between a sender and

receiver. For example a serial data signal between two PCs must have individual bits and bytes

that the receiving PC can distinguish. If it doesn't, then the receiving PC can't tell where one

byte ends and the next one begin or where one bit ends and begins. So the signal must be

synchronized in such a way that the receiver can distinguish the bits and bytes as the transmitter

intends them to be distinguished.

 There are two ways to synchronize the two ends of the communication.

1. Synchronous data transmission

2. Asynchronous data transmission

ASYNCHRONOUS AND SYNCHRONOUS DATA TRANSFER SCHEMES

Synchronous Data Transmission

The synchronous signaling methods use two different signals. A pulse on one signal line

indicates when another bit of information is ready on the other signal line.

In synchronous transmission, the stream of data to be transferred is encoded and sent on

one line, and a periodic pulse of voltage which is often called the "clock" is put on another line,

that tells the receiver about the beginning and the ending of each bit.

 Advantages: The only advantage of synchronous data transfer is the Lower overhead and thus,

greater throughput, compared to asynchronous one.

Disadvantages:

 Slightly more complex

 Hardware is more expensive

Asynchronous data transmission

The asynchronous signaling methods use only one signal. The receiver uses transitions on

that signal to figure out the transmitter bit rate (known as auto baud) and timing. A pulse from

the local clock indicates when another bit is ready. That means synchronous transmissions use

an external clock, while asynchronous transmissions are use special signals along the

transmission medium. Asynchronous communication is the commonly prevailing

communication method in the personal computer industry, due to the reason that it is easier to

implement and has the unique advantage that bytes can be sent whenever they are ready,

a no need to wait for blocks of data to a c c u m u l a t e .

Advantages:

 Simple and doesn't require much synchronization on both communication sides.

 The timing is not as critical as for synchronous transmission; therefore hardware

can be made cheaper.

 Set-up is very fast, so well suited for applications where messages are generated

at irregular intervals, for example data entry from the keyboard.

Disadvantages:

One of the main disadvantages of asynchronous technique is the large relative overhead,

where a high proportion of the transmitted bits are uniquely for control purposes and thus carry

no useful information.

8251 USART ARCHITECTURE AND INTERFACING

8251A-PROGRAMMABLE COMMUNICATION INTERFACE

(8251A-USART-Universal Synchronous/Asynchronous Receiver/Transmitter)

INTRODUCTION

 A USART is also called a programmable communications interface (PCI). When information is

to be sent by 8086 over long distances, it is economical to send it on a single line. The 8086 has

to convert parallel data to serial data and then output it. Thus lot of microprocessor time is

required for such a conversion.

 Similarly, if 8086 receives serial data over long distances, the 8086 has to internally convert this

into parallel data before processing it. Again, lot of time is required for such a conversion. The

8086 can delegate the job of conversion from serial to parallel and vice versa to the 8251A

USART used in the system.

 The Intel8251A is the industry standard Universal Synchronous/Asynchronous

Receiver/Transmitter (USART), designed for data communications with Intel microprocessor

families such as 8080, 85, 86 and

88. The 8251A converts the parallel data received from the processor on the D7-0 data pins into

serial data, and transmits it on TxD (transmit data) output pin of 8251A. Similarly, it converts

the serial data received on RxD (receive data) input into parallel data, and the processor reads it

using the data pins D7-0.

FEATURES

 Compatible with extended range of Intel microprocessors.

 It provides both synchronous and asynchronous data transmission.

 Synchronous 5-8 bit characters.

 Asynchronous 5-8 bit characters.

 It has full duplex, double buffered transmitter and receiver.

 Detects the errors-parity, overrun and framing errors.

 All inputs and outputs are TTL compatible.

 Available in 28-pin DIP package.

ARCHITECTURE

 The 8251A is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial

data communication. As a peripheral device of a microcomputer system, the 8251 receives

parallel data from the CPU and transmits serial data after conversion. This device also receives

serial data from the outside and transmits parallel data to the CPU after conversion. The internal

block diagram of 8251A is shown in fig below.

 Data Bus Buffer: This bidirectional, 8-bit buffer used to interface the 8251A to the system data

bus and also used to read or write status, command word or data from or to the 8251A.

 Read/Write control logic: The Read/Write Control logic interfaces the 8251A with

microprocessor, determines the functions of the 8251A according to the control word written

into its control register and monitors the data flow. This section has three registers and they are

control register, status register and data buffer.

 When the reset is high, it forces 8251A into the idle mode.

 The clock input is necessary for 8251A for communication with microprocessor

and this clock does not control either the serial transmission or the reception rate.

 Transmitter section: The transmitter section accepts parallel data from microprocessor and

converts them into serial data. The transmitter section is double buffered, i.e., it has a buffer

register to hold an 8-bit parallel data and another register called output register to convert the

parallel data into serial bits. When output register is empty, the data is transferred from buffer to

output register. Now the processor can again load another data in buffer register.

 If buffer register is empty, then TxRDY is goes to high.

 If output register is empty then TxEMPTY goes to high.

 The clock signal controls the rate at which the bits are transmitted by the

USART.

 The clock frequency can be 1,16 or 64 times the baud rate.

 Receiver Section: The receiver section accepts serial data and converts them into parallel data.

The receiver section is double buffered, i.e., it has an input register to receive serial data and

convert to parallel, and a buffer register to hold the parallel data. When the RxD line goes low,

the control logic assumes it as a START bit, waits for half a bit time and samples the line again.

If the line is still low, then the input register accepts the following bits, forms a character and

loads it into the buffer register. The microprocessor reads the parallel data from the buffer

register.

 When the input register loads a parallel data to buffer register, the RxRDY line

goes high.

 The clock signal controls the rate at which bits are received by the USART.

 During asynchronous mode, the signal SYNDET/BRKDET will indicate the

break in the data transmission. During synchronous mode, the signal

SYNDET/BRKDET will indicate the reception of synchronous character.

 MODEM Control: The MODEM control unit allows to interface a MODEM to 8251A and to

establish data communication through MODEM over telephone lines. This unit takes care of

handshake signals for MODEM interface.

PIN DIAGRAM OF 8251A

D0 to D7 (l/O terminal): This is bidirectional data bus which receives control words and

transmits data from the CPU and sends status words and received data to CPU.

RESET (Input terminal): A "High" on this input forces the 8251 into "reset status." The device

waits for the writing of "mode instruction." The min. reset width is six clock inputs during the

operating status of CLK.

CLK (Input terminal): CLK signal is used to generate internal device timing. CLK signal is

independent of RXC or TXC. However, the frequency of CLK must be greater than 30 times the

RXC and TXC at Synchronous mode and Asynchronous "x1" mode, and must be greater than 5

times at Asynchronous "x16" and "x64" mode.

WR (Input terminal): This is the "active low" input terminal which receives a signal for writing

transmit data and control words from the CPU into the 8251.

RD (Input terminal): This is the "active low" input terminal which receives a signal for reading

receive data and status words from the 8251.

C/ D (Input terminal): This is an input terminal which receives a signal for selecting data or

command words and status words when the 8251 is accessed by the CPU. If C/D = low, data will

be accessed. If C/D = high, command word or status word will be accessed.

CS (Input terminal): This is the "active low" input terminal which selects the 8251 at low level

when the CPU accesses. Note: The device won’t be in "standby status"; only setting CS = High.

TXD (output terminal): This is an output terminal for transmitting data from which serial-

converted data is sent out. The device is in "mark status" (high level) after resetting or during a

status when transmit is disabled. It is also possible to set the device in "break status" (low level)

by a command.

TXRDY (output terminal): This is an output terminal which indicates that the 8251is ready to

accept a transmitted data character. But the terminal is always at low level if CTS = high or the

device was set in "TX disable status" by a command. Note: TXRDY status word indicates that

transmit data character is receivable, regardless of CTS or command. If the CPU writes a data

character, TXRDY will be reset by the leading edge or WR signal.

TXEMPTY (Output terminal): This is an output terminal which indicates that the 8251 has

transmitted all the characters and had no data character. In "synchronous mode," the terminal is

at high level, if transmit data characters are no longer remaining and sync characters are

automatically transmitted. If the CPU writes a data character, TXEMPTY will be reset by the

leading edge of WR signal. Note : As the transmitter is disabled by setting CTS "High" or

command, data written before disable will be sent out. Then TXD and TXEMPTY will be

"High". Even if a data is written after disable, that data is not sent out and TXE will be "High”.

After the transmitter is enabled, it sent out. (Refer to Timing Chart of Transmitter Control and

Flag Timing)

TXC (Input terminal): This is a clock input signal which determines the transfer speed of

transmitted data. In "synchronous mode," the baud rate will be the same as the frequency of

TXC. In "asynchronous mode", it is possible to select the baud rate factor by mode instruction. It

can be 1, 1/16 or 1/64 the TXC. The falling edge of TXC sifts the serial data out of the 8251.

RXD (input terminal): This is a terminal which receives serial data.

RXRDY (Output terminal): This is a terminal which indicates that the 8251 contains a

character that is ready to READ. If the CPU reads a data character, RXRDY will be reset by the

leading edge of RD signal. Unless the CPU reads a data character before the next one is received

completely, the preceding data will be lost. In such a case, an overrun error flag status word will

be set.

RXC (Input terminal): This is a clock input signal which determines the transfer speed of

received data. In "synchronous mode," the baud rate is the same as the frequency of RXC. In

"asynchronous mode," it is possible to select the baud rate factor by mode instruction. It can be

1, 1/16, 1/64 the RXC.

SYNDET/BD (Input or output terminal): This is a terminal whose function changes according

to mode. In "internal synchronous mode." this terminal is at high level, if sync characters are

received and synchronized. If a status word is read, the terminal will be reset. In "external

synchronous mode, "this is an input terminal. A "High" on this input forces the 8251 to start

receiving data characters.

In "asynchronous mode," this is an output terminal which generates "high level “output upon the

detection of a "break" character if receiver data contains a "low-level" space between the stop

bits of two continuous characters. The terminal will be reset, if RXD is at high level. After Reset

is active, the terminal will be output at low level.

DSR (Input terminal): This is an input port for MODEM interface. The input status of the

terminal can be recognized by the CPU reading status words.

DTR (Output terminal): This is an output port for MODEM interface. It is possible to set the

status of DTR by a command.

CTS (Input terminal): This is an input terminal for MODEM interface which is used for

controlling a transmit circuit. The terminal controls data transmission if the device is set in "TX

Enable" status by a command. Data is transmittable if the terminal is at low level.

RTS (Output terminal): This is an output port for MODEM interface. It is possible to set the

status RTS by a command.

8251A USART INTERFACING WITH 8086

PROGRAMMING THE 8251A

 Prior to starting a data transmission or reception, the 8251A must be loaded with a set of

control words generated by the microprocessor. These control signals define the complete

functional definition of the 8251A and must immediately follow a reset operation (internal or

external). The control words are split into two formats.

1. Mode instruction

2. Command instruction

 Mode instruction: Mode instruction is used for setting the function of the 8251A. Mode

instruction will be in "wait for write" at either internal reset or external reset. That is, the

writing of a control word after resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:

• Synchronous/asynchronous mode

• Stop bit length (asynchronous mode)

• Character length

• Parity bit

• Baud rate factor (asynchronous mode)

• Internal/external synchronization (synchronous mode)

• Number of synchronous characters (Synchronous mode)

 The bit configuration of mode instruction format is shown in Figures below. In the case of

synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters

were written, a function will be set because the writing of sync characters constitutes part of

mode instruction.

Fig. Mode instruction format, Asynchronous mode

Fig. Mode instruction format, Synchronous mode

Command Instruction: Command is used for setting the operation of the 8251. It is possible to

write a command whenever necessary after writing a mode instruction and sync characters.

Items to be set by command are as follows:

• Transmit Enable/Disable

• Receive Enable/Disable

• DTR, RTS Output of data.

• Resetting of error flag.

• Sending to break characters

• Internal resetting

• Hunt mode (synchronous mode)

Status Word: It is possible to see the internal status of the 8251 by reading a status word. The

format of status word is shown below.

 Fig. Status word

TTL TO RS 232C AND RS232C TO TTL CONVERSION.

RECOMMENDED STANDARD -232C (RS-232C)

 RS-232 was first introduced in 1962 by the Radio Sector of the Electronic Industries Association

(EIA). RS-232 (Recommended standard-232) is a standard interface approved by the Electronic

Industries Association (EIA) for connecting serial devices. In other words, RS-232 is a long-

established standard that describes the physical interface and protocol for relatively low-speed serial

data communication between computers and related devices. An industry trade group, the Electronic

Industries Association (EIA), defined it originally for teletypewriter devices. In 1987, the EIA

released a new version of the standard and changed the name to EIA-232-D. Many people,

however, still refer to the standard as RS-232C, or just RS-232. RS-232 is the interface that your

computer uses to talk to and exchange data with your modem and other serial devices. The serial

ports on most computers use a subset of the RS-232C standard.

 RS-232C is defined as the “Interface between data terminal equipment and data communications

equipment using serial binary data exchange.” This definition defines data terminal equipment

(DTE) as the computer, while data communications equipment (DCE) is the modem. A modem

cable has pin-to-pin connections, and is designed to connect a DTE device to a DCE device. In

addition to communications between computer equipment over telephone lines, RS-232C is now

widely used for direct connections between data acquisition devices and computer systems. As in

the definition of RS-232, the computer is data transmission equipment (DTE). RS-232C cables are

commonly available with 4, 9 or 25-pin wiring. The 25-pin cable connects every pin; the 9-pin

cables do not include many of the uncommonly used connections; 4-pin cables provide the bare

minimum connections, and have jumpers to provide “handshaking” for those devices that require

it.

 An RS-232 serial port was once a standard feature of a personal computer, used for

connections to modems, printers, mice, data storage, uninterruptible power supplies, and other

peripheral devices. However, the low transmission speed, large voltage swing, and large standard

connectors motivated development of the Universal Serial Bus, which has displaced RS-232 from

most of its peripheral interface roles.

 In RS-232, user data is sent as a time-series of bits. Both synchronous and asynchronous

http://en.wikipedia.org/wiki/Electronic_Industries_Alliance
http://en.wikipedia.org/wiki/Electronic_Industries_Alliance
http://en.wikipedia.org/wiki/Serial_port
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Printer_(computing)
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Uninterruptible_power_supplies
http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://en.wikipedia.org/wiki/Time-series
http://en.wikipedia.org/wiki/Bit

transmissions are supported by the standard. In addition to the data circuits, the standard defines a

number of control circuits used to manage the connection between the DTE and DCE. Each data or

control circuit only operates in one direction, which is, signaling from a DTE to the attached DCE

or the reverse. Since transmit data and receive data are separate circuits, the interface can operate

in a full duplex manner, supporting concurrent data flow in both directions.

 The RS-232 standard defines the voltage levels that correspond to logical one and logical zero

levels for the data transmission and the control signal lines. Valid signals are either in the range of

+3 to +15 volts for logic 0 or the range -3 to -15 volts for logic 1, the range between -3 to +3 volts is

not a valid RS-232 level. For data transmission lines (TxD, RxD and their secondary channel

equivalents) logic one is defined as a negative voltage, the signal condition is called "mark." Logic

zero is positive and the signal condition is termed "space." The 9-pin RS-232C standard is shown in

figure below.

TTL TO RS-232C AND RS-232C TO TTL CONVERSION

 The RS-232C standard does not define elements as the character encoding or the framing of

characters, or error detection protocols. Details of character format and transmission bit rate

are controlled by the serial port hardware, often a single integrated circuit called a

USART that converts data from parallel to asynchronous start-stop serial form. Details

of voltage levels, slew rate, and short-circuit behavior are typically controlled by a line driver

(MC 1488) that converts from the USART's logic levels (TTL levels) to RS-232 compatible

signal levels, and a receiver (MC 1489) that converts RS-232 compatible signal levels to the

http://en.wikipedia.org/wiki/Full_duplex
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/UART
http://en.wikipedia.org/wiki/Asynchronous_start-stop
http://en.wikipedia.org/wiki/Line_driver
http://en.wikipedia.org/wiki/Logic_level

USART's logic levels (TTL levels). The figure shows the conversion of TTL to RS-232C and

Rs-232C to TTL levels.

Fig. (a). TTL to Rs-232C and Fig. (b). RS-232C to TTL Conversion

INTRODUCTION TO HIGH SPEED SERIAL COMMUNICATION STANDARDS

 In telecommunication and computer science, serial communication is the process

of sending data one bit at a time, sequentially, over a communication channel or computer

bus. This is in contrast to parallel communication, where several bits are sent as a whole, on a

link with several parallel channels. Serial communication is used for all long-haul

communication and most computer networks, where the cost of cable and synchronization

difficulties make parallel communication impractical. Serial computer buses are becoming

more common even at shorter distances, as improved signal integrity and transmission speeds

in newer serial technologies have begun to outweigh the parallel bus's advantage of simplicity.

 Examples of serial communication standards are:

 Morse code telegraphy

 RS-232 (low-speed, implemented by serial ports)

http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Communication_channel
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Parallel_communication
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Cable
http://en.wikipedia.org/wiki/Synchronization
http://en.wikipedia.org/wiki/Signal_integrity
http://en.wikipedia.org/wiki/Morse_code
http://en.wikipedia.org/wiki/Telegraphy
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Serial_port

 RS-422

 RS-423

 RS-485

 I²C

 SPI

 ARINC 818 Avionics Digital Video Bus

 Atari SIO (Joe Decuir credits his work on Atari SIO as the basis of USB)

 Universal Serial Bus (moderate-speed, for connecting peripherals to computers)

 FireWire

 Ethernet

 Fibre Channel (high-speed, for connecting computers to mass storage devices)

 InfiniBand (very high speed, broadly comparable in scope to PCI)

 MIDI control of electronic musical instruments

 DMX512 control of theatrical lighting

 SDI-12 industrial sensor protocol

 CoaXPress industrial camera protocol over Coax

 Serial Attached SCSI

 Serial ATA

 Space Wire Spacecraft communication network

 Hyper Transport

 PCI Express

 SONET and SDH (high speed telecommunication over optical fibers)

 T-1, E-1 and variants (high speed telecommunication over copper pairs)

 MIL-STD-1553A/B

UNIVERSAL SERIAL BUS

INTRODUCTION

 Universal Serial Bus (USB) is an industry standard developed in the mid-1990s that defines

the cables, connectors and communications protocols used in a bus for connection,

http://en.wikipedia.org/wiki/RS-422
http://en.wikipedia.org/wiki/RS-423
http://en.wikipedia.org/wiki/RS-485
http://en.wikipedia.org/wiki/I%C2%B2C
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/ARINC_818
http://en.wikipedia.org/wiki/Atari_SIO
http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://en.wikipedia.org/wiki/FireWire
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Fibre_Channel
http://en.wikipedia.org/wiki/InfiniBand
http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect
http://en.wikipedia.org/wiki/MIDI
http://en.wikipedia.org/wiki/DMX512
http://en.wikipedia.org/wiki/SDI-12
http://en.wikipedia.org/wiki/CoaXPress
http://en.wikipedia.org/wiki/Serial_Attached_SCSI
http://en.wikipedia.org/wiki/Serial_ATA
http://en.wikipedia.org/wiki/SpaceWire
http://en.wikipedia.org/wiki/HyperTransport
http://en.wikipedia.org/wiki/PCI_Express
http://en.wikipedia.org/wiki/Synchronous_Optical_Networking
http://en.wikipedia.org/wiki/Synchronous_Optical_Networking
http://en.wikipedia.org/wiki/T-carrier
http://en.wikipedia.org/wiki/E-carrier
http://en.wikipedia.org/wiki/MIL-STD-1553
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Bus_(computing)

communication and power supply between computers and electronic devices.

 USB was designed to standardize the connection of computer peripherals (including

keyboards, pointing devices, digital cameras, printers, portable media players, disk drives and

network adapters) to personal computers, both to communicate and to supply electric power. It

has become commonplace on other devices, such as smart phones, PDAs and video game

consoles. USB has effectively replaced a variety of earlier interfaces, such as serial and

parallel ports, as well as separate power chargers for portable devices.

 As of 2008, approximately 6 billion USB ports and interfaces were in the global marketplace,

and about 2 billion were being sold each year. The icon and cable of USB is shown in fig

below.

HISTORY

 A group of seven companies began the development of USB in 1994:

Compaq, DEC, IBM, Intel, Microsoft, NEC and Nortel. The goal was to make it

fundamentally easier to connect external devices.

HISTORY

 A group of seven companies began the development of USB in 1994:

Compaq, DEC, IBM, Intel, Microsoft, NEC and Nortel. The goal was to make it

fundamentally easier to connect external devices to PCs by replacing the multitude of

connectors at the back of PCs, addressing the usability issues of existing interfaces, and

simplifying software configuration of all devices connected to USB, as well as permitting

greater data rates for external devices. A team including Ajay Bhatt worked on the standard at

Intel. The first integrated circuits supporting USB were produced by Intel in 1995.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer_peripheral
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Portable_media_player
http://en.wikipedia.org/wiki/Disk_drive
http://en.wikipedia.org/wiki/Network_interface_controller
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Electric_power
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Serial_port
http://en.wikipedia.org/wiki/Parallel_port
http://en.wikipedia.org/wiki/Power_charger
http://en.wikipedia.org/wiki/Compaq
http://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/NEC
http://en.wikipedia.org/wiki/Nortel
http://en.wikipedia.org/wiki/Compaq
http://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/NEC
http://en.wikipedia.org/wiki/Nortel
http://en.wikipedia.org/wiki/Ajay_Bhatt
http://en.wikipedia.org/wiki/Integrated_circuit

VERSIONS

 USB 1 (Full Speed): Released in January 1996, USB 1 specified data rates of 1.5 Mbit/s

(Low-Bandwidth) and 12 Mbit/s (Full-Bandwidth).

 USB 2.0 (High Speed): USB 2.0: Released in April 2000. Added higher maximum

signaling rate of 480 Mbit/s (effective throughput up to 35 MB/s or 280 Mbit/s) (now called

"Hi-Speed").

 USB 3.0 (Super Speed): USB 3.0 was released in November 2008. The standard claims a

theoretical "maximum" transmission speed of up to 5 Gbit/s (625 MB/s). USB 3.0 reduces the

time required for data transmission, reduces power consumption, and is backward compatible

with USB 2.0.

SYSTEM DESIGN

 The design architecture of USB is asymmetrical in its topology, consisting of a host, a

multitude of downstream USB ports, and multiple peripheral devices connected in a tiered-

star topology. Additional USB hubs may be included in the tiers, allowing branching into a

tree structure with up to five tier levels. A USB host may implement multiple host controllers

and each host controller may provide one or more USB ports. Up to 127 devices, including

hub devices if present may be connected to a single host controller. USB devices are linked in

series through hubs. One hub—built into the host controller—is the root hub. USB device

communication is based on pipes (logical channels). A pipe is a connection from the host

controller to a logical entity, found on a device, and named an endpoint. Because pipes

http://en.wikipedia.org/wiki/Asymmetry
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Peripheral_device
http://en.wikipedia.org/wiki/Star_topology
http://en.wikipedia.org/wiki/USB_hub
http://en.wikipedia.org/wiki/Communication_endpoint

correspond 1- to-1 to endpoints, the terms are sometimes used interchangeably. A USB device

can have up to 32 endpoints, though USB devices seldom have this many endpoints. An

endpoint is built into the USB device by the manufacturer and therefore exists permanently,

while a pipe may be opened and closed.

INTERFACING STANDARDS

 Serial I/O is used to interface various devices or for connecting various equipment to the

system. Common understanding is necessary among various manufacturers such that a standard

notation is followed for interfacing these components. These standards may be provided by IEEE

or by any standard professional organization. The serial I/O standards must specify clearly

voltage levels, speed of data transfer, length of cables etc. In serial I/O data can be transmitted as

either current or voltage 20 mA or 60 mA current loops are used if data is transmitted using

current. Current flow takes place when the system is at logic 1. The current flow is stopped when

the system is at logic 0. In the current loop method the signals are relatively noise-free and they

are best suited for long distance transmission.

 RS-232 is developed long before which is used for communication between terminals and

modems. Using RS-232C data can be transmitted as voltage. The data terminals equipment and

data communication equipment are used to communicate using RS-232C cable. RS-232C is not

compatible with TTL logic and cannot be used for long distance transmission.

RS-232C Serial Data Standard

OVERVIEW:

Modems were developed so that terminals could use phone lines to communicate with

distant computers. As we stated earlier, modems and other devices used to send serial data are

often referred to as data communication equipment or DCE. The terminals or computers that are

sending or receiving the data are referred to as data terminal equipment or DTE. In response to

the need for signal and handshake standards between DTE and DCE, the Electronic Industries

Association (EIA) developed EIA standard RS-232C. This standard describes the function of 25

signal and handshake pins for serial-data transfer. It also describes the voltage levels, impedance

levels, rise and fall times, maximum bit rate, and maximum capacitance for these signal lines.

RS-232C specifies 25 signal pins, and it specifies that the DTE connector should be a

male and the DCE connector should be a female. A specific connector is not given, but the most

commonly used connectors are the DB-25P male shown in Figure 14-7a. For systems where

many of the 25 pins are not needed, a 9-pin DIN connector such as the DE-9P male connector

shown in Figure 14-7b is used.

The voltage levels for all RS-232C signals are as follows. A logic high, or mark, is a

voltage between -3V and -15 V under load (-25 V no load). A logic low or space is a voltage

between +3 V and +15 V under load (+ 25 V no load). Voltages such as ±12 V are commonly

used.

RS-232C to TTL INTERFACING:

Obviously a USART such as the 8251A is not directly compatible with RS-232C signal

levels. The standard way to interface between RS-232C and TTL levels is with MCI488 quad

TTL-to-RS-232C drivers and MCI489 quad RS-232C-to-TTL receivers shown in Figure 14-8.

The MCI488s require + and - supplies, but the MCI489s require only+ 5 V. Note the

capacitor to ground on the outputs of the MCI488 drivers is to reduce cross talk between adjacent

wires, the rise and fall times for RS-232C signals are limited to 30 V/µs.

RS-232C SIGNAL DEFINITIONS

Figure shows the signal names, signal direction, and a brief description for each of the 25

pins denned for RS-232C. For most applications only a few of these pins are used.

Note that the signal direction is specified with respect to the DGE, this convention is part of the

standard. Note that there is both a chassis ground (pin 1) and a signal ground (pin 7). To prevent

large ac-induced ground currents in the signal ground, these two should be connected together

only at the power supply in the terminal or the computer.

The TxD, RxD, and handshake signals shown with common names in Figure 14-9 are the ones

most often used for simple systems. These signals control what is called the primary or forward

communications channel of the modem. Some modems allow communication over a secondary or

backward channel, which operates in the reverse direction from the forward channel and at a

much lower baud rate. Pins 12, 13, 14, 16, and 19 are the data and handshake lines for this

backward channel. Pins 15, 17, 21, and 24 are used for synchronous data communication.

MODULE –IV

ADVANCED MICRO PROCESSORS

INTRODUCTION TO 80286:

INTEL 80286

The 80286 is the first member of the family of advanced microprocessors with memory

management and protection abilities.

Features

 The 80286 microprocessor is an advanced version of the 8086 microprocessor that is

designed for multi user and multitasking environments.

 The 80286 addresses 16 M Byte of physical memory and 1G Bytes of virtual memory by

using its memory-management system.

 The 80286 is basically an 8086 that is optimized to execute instructions in fewer clocking

periods than the 8086.

 Various versions of 80286 are available that runs on 12.5 MHz , 10 MHz and 8 MHz

clock frequencies.

 Like the 80186, the 80286 doesn’t incorporate internal peripherals; instead it contains a

memory management unit (MMU).

 The 80286 operates in both the real and protected modes

 In the real mode, the 80286 addresses a 1MByte memory address space and is virtually

identical to 8086.

 In the protected mode, the 80286 addresses a 16MByte memory space.

80286-ARCHITECTURE

The CPU contain four functional blocks

1. Address Unit (AU)

2. Bus Unit (BU)

3. Instruction Unit (IU)

4. Execution Unit (EU)

Address Unit: The address unit is responsible for calculating the physical address of instructions

and data that the CPU wants to access. Also the address lines derived by this unit may be used to

address different peripherals. The physical address computed by the address unit is handed over

to the bus unit (BU) of the CPU.

Bus Unit: Major function of the bus unit is to fetch instruction bytes from the memory.

Instructions are fetched in advance and stored in a queue to enable faster execution of the

instructions. The bus unit also contains a bus control module that controls the prefetcher module.

These prefetched instructions are arranged in a 6-byte instructions queue. The 6- byte prefetch

queue forwards the instructions arranged in it to the instruction unit (IU).

Instruction Unit: The instruction unit (IU) accepts instructions from the prefetch queue and an

instruction decoder decodes them one by one. The decoded instructions are latched onto a

decoded instruction queue. The output of the decoding circuit drives a control circuit in the

execution unit.

Execution Unit: The execution unit (EU) is responsible for executing the instructions received

from decoded instruction queue. The decoded instruction queue sends the data part of the

instruction over the data bus. The EU contains the register bank used for storing the data as

scratch pad, or used as special purpose registers. The ALU, the heart of the EU, carries out all the

arithmetic and logical operations and sends the results over the data bus or back to the register

bank.

Register Organization of 80286

The 80286 CPU contains almost the same set of registers, as in 8086, namely

1. Eight 16-bit general purpose registers

2. Four 16-bit segment registers

3. Status and control registers

4. Instruction Pointer

The flag register reflects the results of logical and arithmetic instructions.

D2, D4, D6, D7 and D11 are called as status flag bits. The bits D8 (TF) and D9 (IF) are used for

controlling machine operation and thus they are called control flags. The additional fields

available in 80286 flag registers are:

1. IOPL - I/O Privilege Field (bits D12 and D13)

2. NT - Nested Task flag (bit D14)

3. PE - Protection Enable (bit D16, is set to select the protected mode of operation. The 80286

could not return to real mode without a hardware reset)

4. MP - Monitor Processor Extension (bit D17, is set to indicate that the arithmetic coprocessor

is present in the system)

5. EM - Processor Extension Emulator (bit D18, Is set to cause a type 7 interrupt for each

ESC instruction. We often use this interrupt to emulate, with software, the function of the

coprocessor. Emulation reduces the system cost, but it often requires at least 100 times longer

executing the emulated coprocessor instructions.)

6. TS – Task Switch (bit D19, If TS = 1, a numeric coprocessor instruction causes a type 7

(coprocessor not available) interrupt.)

Machine Status Word (MSW)

The machine status word consists of four flags – PE, MP, EM and TS of the four lower order bits

D19 to D16 of the upper word of the flag register. The LMSW and SMSW instructions are

available in the instruction set of 80286 to write and read the MSW in real address mode.

Real Address Mode

• Act as a fast 8086

• Instruction set is upwardly compatible

• It addresses only 1 M byte of physical memory using A0-A19.

• In real addressing mode of operation of 80286, it just acts as a fast 8086. The instruction set is

upward compatible with that of 8086.

The 80286 addresses only 1Mbytes of physical memory using A0- A19. The lines A20-A23 are

not used by the internal circuit of 80286 in this mode. In real address mode, while addressing the

physical memory, the 80286 uses BHE along with A0- A19. The 20-bit physical address is again

formed in the same way as that in 8086. The contents of segment registers are used as segment

base addresses.

As in 8086, the physical memory is organized in terms of segments of 64Kbyte maximum size.

An exception is generated, if the segment size limit is exceeded by the instruction or the data. The

overlapping of physical memory segments is allowed to minimize the memory requirements for a

task. The 80286 reserves two fixed areas of physical memory for system initialization and

interrupt vector table. In the real mode the first 1Kbyte of memory starting from address 0000H

to 003FFH is reserved for interrupt vector table.

Also the addresses from FFFF0H to FFFFFH are reserved for system initialization. The program

execution starts from FFFFH after reset and initialization. The interrupt vector table of 80286 is

organized in the same way as that of 8086. Some of the interrupt types are reserved for

exceptions, single-stepping and processor extension segment overrun, etc. When the 80286 is

reset, it always starts the execution in real address mode.

Fig: Real address mode Address calculation

PROTECTED VIRTUAL ADDRESS MODE (PVAM)

80286 is the first processor to support the concepts of virtual memory and memory management.

The virtual memory does not exist physically it still appears to be available within the system.

The concept of VM is implemented using Physical memory that the CPU can directly access and

secondary memory that is used as storage for data and program, which are stored in secondary

memory initially.

The Segment of the program or data required for actual execution at that instant is fetched from

the secondary memory into physical memory. After the execution of this fetched segment, the

next segment required for further execution is again fetched from the secondary memory, while

the results of the executed segment are stored back into the secondary memory for further

references. This continues till the complete program is executed.

During the execution the partial results of the previously executed portions are again fetched into

the physical memory, if required for further execution. The procedure of fetching the chosen

program segments or data from the secondary storage into physical memory is called swapping.

The procedure of storing back the partial results or data back on the secondary storage is called

unswapping. The virtual memory is allotted per task.

The 80286 is able to address 1 G byte (230 bytes) of virtual memory per task. The complete

virtual memory is mapped on to the 16Mbyte physical memory. If a program larger than 16Mbyte

is stored on the hard disk and is to be executed, if it is fetched in terms of data or program

segments of less than 16Mbyte in size into the program memory by swapping sequentially as per

sequence of execution.

Whenever the portion of a program is required for execution by the CPU, it is fetched from the

secondary memory and placed in the physical memory is called swapping in of the program. A

portion of the program or important partial results required for further execution may be saved

back on secondary storage to make the PM free for further execution of another required portion

of the program is called swapping out of the executable program.

80286 uses the 16-bit content of a segment register as a selector to address a descriptor stored in

the physical memory. The descriptor is a block of contiguous memory locations containing

information of a segment, like segment base address, segment limit; segment type, privilege level,

segment availability in physical memory; descriptor type and segment use another task.

Physical address calculation in PVAM

SALIENT FEATURES OF 80386

INTEL 80386

Features:

 32-bit general and offset registers.

 16-byte prefetch queue.

 Memory Management Unit with a Segmentation Unit and a Paging Uni.t

 32-bit Address and Data Bus.

 4-Gbyte Physical address space.

 64-Tbyte virtual address space.

 i387 numerical coprocessor with IEEE standard-754-1985 for floating

point arithmetic.

 64K 8-, 16-, or 32-bit ports.

 Implementation of real, protected and virtual 8086 modes.

 The protection mode operation provides paging, virtual addressing, multilevel

protection and multitasking capabilities.

ARCHITECTURE:

OR

The Internal Architecture of 80386 is divided into 3 sections.

• Central processing unit

• Memory management unit

• Bus interface unit

Central processing unit is further divided into Execution unit and Instruction unit. Execution

unit has 8 General purpose and 8 Special purpose registers which are either used for handling data

or calculating offset addresses. The Instruction unit decodes the op code bytes received from the

16-byte instruction code queue and arranges them in a 3- instruction decoded instruction queue.

After decoding them pass it to the control section for deriving the necessary control signals.

• The barrel shifter increases the speed of all shifts and rotate operations.

• The multiply / divide logic implements the bit-shift-rotate algorithms to complete the

operations in minimum time. Even 32- bit multiplications can be executed within one

microsecond by the multiply /divide logic.

• The Memory management unit consists of a Segmentation unit and a Paging unit.

• Segmentation unit allows the use of two address components, viz. segment and offset for

revocability and sharing of code and data. Segmentation unit allows segments of size 4Gbytes at

max. The Segmentation unit provides a 4 level protection mechanism for protecting and isolating

the system code and data from those of the application program.

• The Paging unit organizes the physical memory in terms of pages of 4kbytes size each.

Paging unit works under the control of the segmentation unit, i.e. each segment is further divided

into pages. The virtual memory is also organizes in terms of segments and pages by the memory

management unit. Paging unit converts linear addresses into physical addresses. The advantage of

paging scheme is that the complete segment of a task need not be in the physical memory at any

time. Only a few pages of the segments, which are required currently for the execution, need to be

available in the physical memory. Thus the memory requirement of the task is substantially

reduced, relinquishing the available memory for other tasks. Whenever the other pages of task are

required for execution, they may be fetched from the secondary storage. The previous page which

is executed need not be available in the memory, and hence the space occupied by them may be

relinquished for other tasks. Thus paging mechanism provides an effective technique to manage

the physical memory for multitasking systems.

• The control and attribute PLA checks the privileges at the page level. Each of the pages

maintains the paging information of the task. The limit and attribute PLA checks segment limits

and attributes at segment level to avoid invalid accesses to code and data in the memory segments.

• The Bus control unit has a prioritizer to resolve the priority of the various bus requests. This

controls the access of the bus. The address driver drives the bus enable and address signal A0 –

A31. The pipeline and dynamic bus sizing unit handle the related control signals.

• The data buffers interface the internal data bus with the system bus.

REAL AND PROTECTED MODE

Real Address Mode of 80386

After reset, the 80386 starts from memory location FFFFFFF0H under the real address mode. In

the real mode,80386 works as a fast 8086 with 32-bit registers and data types.

In real mode, the default operand size is 16 bit but 32- bit operands and addressing modes may be

used with the help of override prefixes.

The segment size in real mode is 64k, hence the 32-bit effective addressing must be less than

0000FFFFFH. The real mode initializes the 80386 and prepares it for protected mode.

Memory Addressing in Real Mode: In the real mode, the 80386 can address at the most 1Mbytes

of physical memory using address lines A0-A19.Paging unit is disabled in real addressing mode,

and hence the real addresses are the same as the physical addresses. To form a physical memory

address, appropriate segment registers contents (16-bits) are shifted left by four positions and then

added to the 16-bit offset address formed using one of the addressing modes, in the same way as

in the 80386 real address mode. The segment in 80386 real mode can be read, write or executed,

i.e. no protection is available. Any fetch or access past the end of the segment limit generate

exception 13 in real address mode. The segments in 80386 real mode may be overlapped or non

overlapped.The interrupt vector table of 80386 has been allocated 1Kbyte space starting from

00000H to 003FFH.

Protected Mode of 80386

All the capabilities of 80386 are available for utilization in its protected mode of operation.The

80386 in protected mode support all the software written for 80286 and 8086 to be executed

under the control of memory management and protection abilities of 80386. The protected mode

allows the use of additional instruction, addressing modes and capabilities of 80386.

ADDRESSING IN PROTECTED MODE: In this mode, the contents of segment registers are

used as selectors to address descriptors which contain the segment limit, base address and access

rights byte of the segment.

The effective address (offset) is added with segment base address to calculate linear address. This

linear address is further used as physical address, if the paging unit is disabled, otherwise the

paging unit converts the linear address into physical address. The paging unit is a memory

management unit enabled only in protected mode. The paging mechanism allows handling of

large segments of memory in terms of pages of 4Kbyte size.The paging unit operates under the

control of segmentation unit. The paging unit if enabled converts linear addresses into physical

address, in protected mode.

SEGMENTATION

DESCRIPTOR TABLES: These descriptor tables and registers are manipulated by the operating

system to ensure the correct operation of the processor, and hence the correct execution of the

program. Three types of the 80386 descriptor tables are listed as follows:

• GLOBAL DESCRIPTOR TABLE (GDT)

• LOCAL DESCRIPTOR TABLE (LDT)

• INTERRUPT DESCRIPTOR TABLE (IDT)

DESCRIPTORS: The 80386 descriptors have a 20-bit segment limit and 32-bit segment address.

The descriptor of 80386 are 8-byte quantities access right or attribute bits along with the base and

limit of the segments.

• Descriptor Attribute Bits: The A (accessed) attributed bit indicates whether the segment has

been accessed by the CPU or not. The TYPE field decides the descriptor type and hence the

segment type. The S bit decides whether it is a system descriptor (S=0) or code/data segment

descriptor (S=1).

BASE Base Address of the segment

LIMIT The length of the segment

P Present Bit - 1 = Present, 0 = not present

S Segment Descriptor-0 = System Descriptor

1 = Code or data segmented descriptor

TYPE Type of segment

G Granularity Bit- 1= Segment length is page granular

0 = Segment length is byte granular

D Default Operation size

0 Bit must be zero

AVL Available field for user or OS

The DPL field specifies the descriptor privilege level.

The D bit specifies the code segment operation size. If D=1, the segment is a 32-bit operand

segment, else, it is a 16-bit operand segment. The P bit (present) signifies whether the segment is

present in the physical memory or not. If P=1, the segment is present in the physical memory. The

G (granularity) bit indicates whether the segment is page addressable. The zero bit must remain

zero for compatibility with future process. The AVL (available) field specifies whether the

descriptor is for user or for operating system.

The 80386 has five types of descriptors listed as follows:

1. Code or Data Segment Descriptors.

2. System Descriptors.

3. Local descriptors.

4. TSS (Task State Segment) Descriptors.

5. GATE Descriptors.

The 80386 provides a four level protection mechanism exactly in the same way as the 80286

does.

PAGING

Paging Operation:

Paging is one of the memory management techniques used for virtual memory multitasking

operating system. The segmentation scheme may divide the physical memory into a variable size

segments but the paging divides the memory into a fixed size pages. The segments are supposed

to be the logical segments of the program, but the pages do not have any logical relation with the

program. The pages are just fixed size portions of the program module or data.

The advantage of paging scheme is that the complete segment of a task need not be in the

physical memory at any time. Only a few pages of the segments, which are required currently for

the execution need to be available in the physical memory. Thus the memory requirement of the

task is substantially reduced, giving up the available memory for other tasks.

 Whenever the other pages of task are required for execution, they may be fetched from the

secondary storage. The previous page which are executed, need not be available in the memory,

and hence the space occupied by them may be give up for other tasks. Thus paging mechanism

provides an effective technique to manage the physical memory for multitasking systems.

 Paging Unit: The paging unit of 80386 uses a two level table mechanism to convert a linear

address provided by segmentation unit into physical addresses. The paging unit converts the

complete map of a task into pages, each of size 4K. The task is further handled in terms of its

page, rather than segments. The paging unit handles every task in terms of three components

namely page directory, page tables and page itself.

Page Directory : This is at the most 4Kbytes in size. Each directory entry is of 4 bytes, thus a

total of 1024 entries are allowed in a directory.

The upper 10 bits of the linear address are used as an index to the corresponding page directory

entry. The page directory entries point to page tables.

Page Tables: Each page table is of 4Kbytes in size and many contain a maximum of 1024 entries.

The page table entries contain the starting address of the page and the statistical information

about the page.

The upper 20 bit page frame address is combined with the lower 12 bit of the linear address. The

address bits A12- A21 are used to select the 1024 page table entries. The page table can be shared

between the tasks. The P bit of the above entries indicate, if the entry can be used in address

translation. If P=1, the entry can be used in address translation, otherwise it cannot be used. The P

bit of the currently executed page is always high. The accessed bit A is set by 80386 before any

access to the page.

If A=1, the page is accessed, else unaccessed. The D bit (Dirty bit) is set before a write operation

to the page is carried out. The D-bit is undefined for page director entries. The OS reserved bits

are defined by the operating system software. The User / Supervisor (U/S) bit and read/write bit

are used to provide protection. These bits are decoded to provide protection under the 4 level

protection model. The level 0 is supposed to have the highest privilege, while the level 3 is

supposed to have the least privilege. This protection provide by the paging unit is transparent to

the segmentation unit.

SALIENT FEATURES OF PENTIUM:

 An improvement over the architecture found in the 80486 microprocessor

 It is Compatible with 8086, 80286, 80386, 80486

 It Has all the features of 80486 plus some additional enhancements

Additional features

1. 64 bit data bus :

 8 bytes of data information can be transferred to and from memory in a single bus cycle

 Supports burst read and burst write back cycles

 Supports pipelining

2. Instruction cache :

 8 KB of dedicated instruction cache

 Two Integer execution units, one Floating point execution unit

 Dual instruction pipeline

 256 lines between instruction cache and prefetch buffers; allows 32 bytes to be transferred from

cache to buffer

3. Data cache :

 8 KB dedicate data cache gives data to execution units

 32 byte lines

4. Two parallel integer execution units :

 Allows the execution of two instructions to be executed simultaneously in a single processor

clock

5. Floating point unit : It includes

 Faster internal operations

 Local advanced programmable interrupt controller

 Speeds up up to 5 times for common operations including add, multiply and load, than 80486

6. Branch Prediction Logic :

 To reduce the time required for a branch caused by internal delays

 When a branch instruction is encountered, microprocessor begins prefetch instruction at the

branch address

7. Data Integrity and Error Detection :

 Has significant error detection and data integrity capability

 Data parity checking is done on byte – byte basis

 Address parity checking and internal parity checking features are added

8. Dual Integer Processor :

 Allows execution of two instructions per clock cycle

9. Functional redundancy check :

 To provide maximum error detection of the processor and interface to the processor

 A second processor ‘checker’ is used to execute in lock step with the ‘master’ processor

 It checks the master’s output and compares the value with the internal computed values

 An error signal is generated in case of mismatch

10. Superscalar architecture :

 Three execution units

 One execution unit executes floating point instructions

 The other two (U pipe and V pipe) execute integer instructions

 Parallel execution of several instructions – superscalar processor

BRANCH PREDICTION:

The Pentium processor includes branch prediction logic, allowing it to avoid pipeline stalls if it

correctly predicts whether or not the branch will be taken when the branch instruction is executed.

When a branch operation is correctly predicted, no performance penalty is incurred. However,

when branch prediction is not correct, a three cycle penalty is incurred if the branch is executed

in the U pipeline and a four cycle penalty if the branch is in the V pipeline. The prediction

mechanism is implemented using a four-way, set-associative cache with 256 entries. This is

referred to as the branch target buffer, or BTB. The directory entry for each line contains the

following information. A valid bit that indicates whether or not the entry is in use. History bits

that track how often the branch has been taken each time that it entered the pipeline before. The

source memory address that the branch instruction was fetched from. The branch target buffer, or

BTB, is a look-aside cache that sits off to the side of the D1 stages of the two pipelines and

monitors for branch instructions.

The first time that a branch instruction enters either pipeline, the BTB uses its source memory

address to perform a lookup in the cache. Since the instruction has not been seen before, this

result in a BTB miss. This essentially means that the branch prediction logic has no history on the

instruction. It therefore predicts that the branch will not be taken and does not instruct the

prefetcher to alter program flow. Even unconditional jumps will be predicted as not-taken the

first time that they are seen by the BTB. When the instruction reaches the execution stage, the

branch will either be taken or not taken. If taken, the next instruction to be executed should be

the one fetched from the branch target address. If the branch is not taken the next instruction

executed should be the one fetched from the next sequential memory address after the branch

instruction. When the branch is taken for the first time, the execution unit provides feedback to

the branch prediction logic. The branch target address is sent back and recorded in the BTB. A

directory entry is made containing the source memory address that the branch instruction was

fetched from and the history bits are set to indicate that the branch has been strongly taken. The

history bits can indicate one of four possible states.

1. Strongly Taken: The history bits are initialized to this state when the entry is first made. In

addition, if a branch marked weakly taken is taken again, it is upgraded to strongly taken

stage. When a branch marked strongly taken is not taken the next time, it is downgraded to

weakly taken.

2. Weakly Taken: It is upgraded to the strongly taken state when a branch marked weakly taken

is taken again. When the corresponding marked branch is not taken, then it is downgraded to

weakly not taken state. In D1 stage, a hit on strongly or weakly taken entry will result in a

positive prediction. (i.e., the branch is predicted taken)

3. Weakly Not Taken: If a branch marked weakly not taken is taken again, it is upgraded to the

weakly taken state. When a branch marked weakly not taken is not taken the next time, it is

downgraded to strongly not taken.

4. Strongly Not Taken: If a branch marked strongly not taken is taken again it is upgraded to the

weakly not taken state. When a branch marked strongly not taken is not taken the next time, it

remains in the strongly not taken state. In D1 Stage, a hit on weakly not taken or Strongly not

taken entry will result in a negative prediction (i.e., the branch is predicted not taken)

If branch predicted taken, the BTB supplies the branch target address back to the prefetcher and

indicates that a positive prediction is being made. In response, the prefetcher switches to the

opposite prefetch queue and immediately begins to prefetch from memory starting at the branch

target address. The instructions fetched are supplied to the instruction pipelines immediately

behind the branch instruction. When the branch instruction reaches the execution stage, the

branch will either be taken or not. The results of the branch are fed back to the BTB and the

entry’s history bits are upgraded or downgraded accordingly. The following list defines the

BTB actions taken in each case when the branch instruction reaches the execution stage.

1. If the branch was correctly predicted taken, the entry’s history bits are upgraded. The correct

instructions are already in the pipelines behind the branch instruction.

 2. If the branch was incorrectly predicted taken, the entry is downgraded. The instructions in

the pipelines behind the branch are incorrect and must be flushed. The branch prediction logic

instructs the prefetcher to switch back to the other queue and resume sequential code fetches.

 3. If the branch was correctly predicted not taken and there is a corresponding entry in the

BTB, downgrade the entry’s history bits. (If there isn’t a corresponding entry in the BTB, do

not make an entry in the BTB.) 4. If the branch was incorrectly predicted not taken and there is

a corresponding entry in the BTB, upgrade the entry’s history bits. (If there isn’t a

corresponding entry in the BTB, make an entry and mark it strongly taken.

OVERVIEW OF RISC PROCESSORS:

The architecture of the Central Processing Unit (CPU) operates the capacity to function from “Instruction

Set Architecture” to where it was designed. The architectural design of the CPU is Reduced instruction

set computing (RISC) and Complex instruction set computing (CISC). CISC has the capacity to perform

multi-step operations or addressing modes within one instruction set. It is the CPU design where one

instruction works several low-level acts. For instance, memory storage, loading from memory, and an

arithmetic operation. Reduced instruction set computing is a Central Processing Unit design strategy

based on the vision that basic instruction set gives a great performance when combined with a

microprocessor architecture which has the capacity to perform the instructions by using some

microprocessor cycles per instruction. This article discusses the RISC and CISC architecture with

appropriate diagrams. The hardware part of the Intel is named as Complex Instruction Set Computer

(CISC), and Apple hardware is Reduced Instruction Set Computer (RISC).

What is RISC and CISC?

A complex instruction set computer is a computer where single instructions can perform numerous low-

level operations like a load from memory, an arithmetic operation, and a memory store or are

accomplished by multi-step processes or addressing modes in single instructions, as its name propose

“Complex Instruction Set ”.

A reduced instruction set computer is a computer which only uses simple commands that can be divided

into several instructions which achieve low-level operation within a single CLK cycle, as its name propose

“Reduced Instruction Set ”

RISC Architecture

The term RISC stands for ‘’Reduced Instruction Set Computer’’. It is a CPU design plan based on simple

orders and acts fast.

This is small or reduced set of instructions. Here, every instruction is expected to attain very small jobs. In

this machine, the instruction sets are modest and simple, which help in comprising more complex

commands. Each instruction is about the similar length; these are wound together to get compound tasks

done in a single operation. Most commands are completed in one machine cycle. This pipelining is a

crucial technique used to speed up RISC machines.

RISC Architecture

Reduced Instruction Set Computer is a microprocessor that is designed to carry out few instructions at the

similar time. Based on small commands, these chips need fewer transistors, which make the transistors

inexpensive to design and produce. The features of RISC include the following

 The demand of decoding is less

 Few data types in hardware

 General purpose register Identical

 Uniform instruction set

 Simple addressing nodes

Also, while writing a program, RISC makes it easier by letting the computer programmer to eliminate

needless codes and stops wasting of cycles.

CISC Architecture

The term CISC stands for ‘’Complex Instruction Set Computer’’. It is a CPU design plan based on single

commands, which are skilled in executing multi-step operations.

CISC computers have small programs. It has a huge number of compound instructions, which takes a long

time to perform. Here, a single set of instruction is protected in several steps; each instruction set has

additional than 300 separate instructions. Maximum instructions are finished in two to ten machine cycles.

In CISC, instruction pipelining is not easily implemented.

CISC Architecture

The CISC machines have good acts, based on the overview of program compilers; as the range of

innovative instructions are simply obtainable in one instruction set. They design compound instructions in

the single, simple set of instructions. They achieve low-level processes, that makes it easier to have huge

addressing nodes and additional data types in the hardware of a machine. But, CISC is considered less

efficient than RISC, because of its incompetence to eliminate codes which lead to wasting of cycles. Also,

microprocessor chips are difficult to understand and program for, because of the complexity of the

hardware.

Comparison between CISC and RISC

Advantages and Disadvantages of RISC and CISC Processors:

The Advantages of RISC architecture

 RISC(Reduced instruction set computing)architecture has a set of instructions, so high-level language

compilers can produce more efficient code

 It allows freedom of using the space on microprocessors because of its simplicity.

 Many RISC processors use the registers for passing arguments and holding the local variables.

 RISC functions use only a few parameters, and the RISC processors cannot use the call instructions,

and therefore, use a fixed length instruction which is easy to pipeline.

 The speed of the operation can be maximized and the execution time can be minimized.

Very less number of instructional formats, a few numbers of instructions and a few addressing modes

are needed.

The Disadvantages of RISC architecture

 Mostly, the performance of the RISC processors depends on the programmer or compiler as the

knowledge of the compiler plays a vital role while changing the CISC code to a RISC code

 While rearranging the CISC code to a RISC code, termed as a code expansion, will increase the size.

And, the quality of this code expansion will again depend on the compiler, and also on the machine’s

instruction set.

 The first level cache of the RISC processors is also a disadvantage of the RISC, in which these

processors have large memory caches on the chip itself. For feeding the instructions, they require very

fast memory systems.

Advantages of CISC architecture

 Microprogramming is easy assembly language to implement, and less expensive than hard wiring a

control unit.

 The ease of micro coding new instructions allowed designers to make CISC machines upwardly

compatible:

 As each instruction became more accomplished, fewer instructions could be used to implement a

given task.

Disadvantages of CISC architecture

 The performance of the machine slows down due to the amount of clock time taken by different

instructions will be dissimilar

 Only 20% of the existing instructions is used in a typical programming event, even though there are

various specialized instructions in reality which are not even used frequently.

 The conditional codes are set by the CISC instructions as a side effect of each instruction which takes

time for this setting – and, as the subsequent instruction changes the condition code bits – so, the

compiler has to examine the condition code bits before this happens.

http://en.wikipedia.org/wiki/Reduced_instruction_set_computing

FEATURES OF RISC:

 One instruction per cycle: A machine cycle is the time taken to fetch two operands from registers,

perform the ALU operation on them and store the result in a register. Thus, RISC instruction

execution takes about the same time as the micro-instructions on CISC machines. With such simple

instruction execution rather than micro-instructions, it can use fast logic circuits for control unit,

thus increasing the execution efficiency further.

 Register-to-register operands: In RISC machines the operation that access memories are LOAD

and STORE. All other operands are kept in registers. This design feature simplifies the instruction

set and, therefore, simplifies the control unitAnother benefit is that RISC encourages the

optimization of register use, so that frequently used operands remain in registers.

Design Issues of RISC Processors:

 Simple addressing modes: Another characteristic is the use of simple addressing modes. The RISC

machines use simple register addressing having displacement and PC relative modes. More complex

modes are synthesized in software from these simple ones. Again,

 Simple instruction formats: RISC uses simple instruction formats. Generally, only one or a few

instruction formats are used. In such machines the instruction length is fixed and aligned on word

boundaries. In addition, the field locations can also be fixed.

 Performance using optimizing compilers: As the instructions are simple the compilers can be

developed for efficient code organization also maximizing register utilization etc. Sometimes even

the part of the complex instruction can be executed during the compile time.

 High performance of Instruction execution: While mapping of HLL to machine instruction the

compiler favours relatively simple instructions. In addition, the control unit design is simple and it

uses little or no microinstructions, thus could execute simple instructions faster than a comparable

CISC. Simple instructions support better possibilities of using instruction pipelining.

 VLSI Implementation of Control Unit: A major potential benefit of RISC is the VLSI

implementation of microprocessor. The VLSI Technology has reduced the delays of transfer of

information among CPU components that resulted in a microprocessor. The delays across chips are

higher than delay within a chip; thus, it may be a good idea to have the rare functions built on a

separate chip. RISC chips are designed with this consideration. A VLSI processor is difficult to

develop, as the designer must perform circuit design, layout, and modeling at the device level. With

reduced instruction set architecture, this processor is far easier to build.

Design Issues of RISC Processors:

(i)Register Windowing:

(ii)Massive Pipelining:

(iii)Single Cycle Instruction Execution:

MODULE –V

8051 MICROCONTROLLER ARCHITECTURE

THE 8051 ARCHITECTURE

Different aspects of a microprocessor/controller:

• Hardware :Interface to the real world

• Software :order how to deal with inputs

The necessary tools for a microprocessor/controller:

• CPU: Central Processing Unit

• I/O: Input /Output

• Bus: Address bus & Data bus

• Memory: RAM & ROM

• Timer

• Interrupt

• Serial Port

• Parallel Port

Microprocessors:

General-purpose microprocessor :

• CPU for Computers

• No RAM, ROM, I/O on CPU chip itself

• Example：Intel‟s x86, Motorola‟s 680x0

 General purpose of microprocessor or Block diagram

Microcontroller :

• A smaller computer

• On-chip RAM, ROM, I/O ports...

• Example：Motorola‟s 6811, Intel‟s 8051, Zilog‟s Z8 and PIC 16X

Difference between Microprocessor and Microcontroller

Microcontroller Microprocessor

Microcontrollers are used to execute a single task

within an application.

Microprocessors are used for big applications.

Its designing and hardware cost is low. Its designing and hardware cost is high.

Easy to replace. Not so easy to replace.

It is built with CMOS technology, which requires

less power to operate.

Its power consumption is high because it has to control

the entire system.

It consists of CPU, RAM, ROM, I/O ports. It doesn’t consist of RAM, ROM, I/O ports. It uses its

pins to interface to peripheral devices.

 Types of Microcontrollers

Microcontrollers are divided into various categories based on memory, architecture, bits and instruction

sets. Following is the list of their types −Bit

Based on bit configuration, the microcontroller is further divided into three categories.

 8-bit microcontroller − This type of microcontroller is used to execute arithmetic and logical

operations like addition, subtraction, multiplication division, etc. For example, Intel 8031 and

8051 are 8 bits microcontroller.

 16-bit microcontroller − This type of microcontroller is used to perform arithmetic and logical

operations where higher accuracy and performance is required. For example, Intel 8096 is a 16-bit

microcontroller.

 32-bit microcontroller − This type of microcontroller is generally used in automatically

controlled appliances like automatic operational machines, medical appliances, etc.

Memory

Based on the memory configuration, the microcontroller is further divided into two categories.

 External memory microcontroller − This type of microcontroller is designed in such a way that

they do not have a program memory on the chip. Hence, it is named as external memory

microcontroller. For example: Intel 8031 microcontroller.

 Embedded memory microcontroller − This type of microcontroller is designed in such a way

that the microcontroller has all programs and data memory, counters and timers, interrupts, I/O

ports are embedded on the chip. For example: Intel 8051 microcontroller.

Instruction Set

Based on the instruction set configuration, the microcontroller is further divided into two categories.

 CISC − CISC stands for complex instruction set computer. It allows the user to insert a single

instruction as an alternative to many simple instructions.

 RISC − RISC stands for Reduced Instruction Set Computers. It reduces the operational time by

shortening the clock cycle per instruction.

Applications of Microcontrollers

Microcontrollers are widely used in various different devices such as −

 Light sensing and controlling devices like LED.

 Temperature sensing and controlling devices like microwave oven, chimneys.

 Fire detection and safety devices like Fire alarm.

 Measuring devices like Volt Meter.

Three criteria in Choosing a Microcontroller :

1. meeting the computing needs of the task efficiently and cost effectively

• speed, the amount of ROM and RAM, the number of I/O ports and timers,

size, packaging, power consumption

• easy to upgrade

• cost per unit

2. availability of software development tools

• assemblers, debuggers, C compilers, emulator, simulator, technical support

3. wide availability and reliable sources of the microcontrollers.

 Block Diagram:

The basic features 8051 Core:

• 8-bit CPU optimized for control applications

• Capability for single bit Boolean operations.

• Supports up to 64K of program memory.

• Supports up to 64K of program memory.

• 4 K bytes of on-chip program memory.

• Newer devices provide more.

• 128 or 256 bytes of on-chip data RAM.

• Four 8 bit ports.

• Two 16-bit timer/counters.

• UART.

• Interrupts.

• On-chip clock oscillator

8051 Microcontroller Architecture

Let us now discuss the architecture of 8051 Microcontroller.

In the following diagram, the system bus connects all the support devices to the CPU. The system bus

consists of an 8-bit data bus, a 16-bit address bus and bus control signals. All other devices like program

memory, ports, data memory, serial interface, interrupt control, timers, and the CPU are all interfaced

together through the system bus.

The pin diagram of 8051 microcontroller looks as follows −

 Pins 1 to 8 − These pins are known as Port 1. This port doesn’t serve any other functions. It is

internally pulled up, bi-directional I/O port.

 Pin 9 − It is a RESET pin, which is used to reset the microcontroller to its initial values.

 Pins 10 to 17 − These pins are known as Port 3. This port serves some functions like interrupts,

timer input, control signals, serial communication signals RxD and TxD, etc.

 Pins 18 & 19 − These pins are used for interfacing an external crystal to get the system clock.

 Pin 20 − This pin provides the power supply to the circuit.

 Pins 21 to 28 − These pins are known as Port 2. It serves as I/O port. Higher order address bus

signals are also multiplexed using this port.

 Pin 29 − This is PSEN pin which stands for Program Store Enable. It is used to read a signal from

the external program memory.

 Pin 30 − This is EA pin which stands for External Access input. It is used to enable/disable the

external memory interfacing.

 Pin 31 − This is ALE pin which stands for Address Latch Enable. It is used to demultiplex the

address-data signal of port.

 Pins 32 to 39 − These pins are known as Port 0. It serves as I/O port. Lower order address and data

bus signals are multiplexed using this port.

 Pin 40 − This pin is used to provide power supply to the circuit.

8051 microcontrollers have 4 I/O ports each of 8-bit, which can be configured as input or output.

Hence, total 32 input/output pins allow the microcontroller to be connected with the peripheral

devices.

 Pin configuration, i.e. the pin can be configured as 1 for input and 0 for output as per the logic state.

o Input/output (I/O) pin − All the circuits within the microcontroller must be connected to one of its

pins except P0 port because it does not have pull-up resistors built-in.

o Input pin − Logic 1 is applied to a bit of the P register. The output FE transistor is turned off and the

other pin remains connected to the power supply voltage over a pull-up resistor of high resistance.

 Port 0 − The P0 (zero) port is characterized by two functions −

o When the external memory is used then the lower address byte (addresses A0A7) is applied on it,

else all bits of this port are configured as input/output.

o When P0 port is configured as an output then other ports consisting of pins with built-in pull-up

resistor connected by its end to 5V power supply, the pins of this port have this resistor left out.

Input Configuration

If any pin of this port is configured as an input, then it acts as if it “floats”, i.e. the input has unlimited

input resistance and in-determined potential.

Output Configuration

When the pin is configured as an output, then it acts as an “open drain”. By applying logic 0 to a port bit,

the appropriate pin will be connected to ground (0V), and applying logic 1, the external output will keep

on “floating”.

In order to apply logic 1 (5V) on this output pin, it is necessary to build an external pullup resistor.

Port 1

P1 is a true I/O port as it doesn’t have any alternative functions as in P0, but this port can be configured as

general I/O only. It has a built-in pull-up resistor and is completely compatible with TTL circuits.

Port 2

P2 is similar to P0 when the external memory is used. Pins of this port occupy addresses intended for the

external memory chip. This port can be used for higher address byte with addresses A8-A15. When no

memory is added then this port can be used as a general input/output port similar to Port 1.

Port 3

In this port, functions are similar to other ports except that the logic 1 must be applied to appropriate bit of

the P3 register.

Pins Current Limitations

 When pins are configured as an output (i.e. logic 0), then the single port pins can receive a current

of 10mA.

 When these pins are configured as inputs (i.e. logic 1), then built-in pull-up resistors provide very

weak current, but can activate up to 4 TTL inputs of LS series.

 If all 8 bits of a port are active, then the total current must be limited to 15mA (port P0: 26mA).

 If all ports (32 bits) are active, then the total maximum current must be limited to 71mA.

Interrupts are the events that temporarily suspend the main program, pass the control to the external

sources and execute their task. It then passes the control to the main program where it had left off.

8051 has 5 interrupt signals, i.e. INT0, TFO, INT1, TF1, RI/TI. Each interrupt can be enabled or disabled

by setting bits of the IE register and the whole interrupt system can be disabled by clearing the EA bit of

the same register.

IE (Interrupt Enable) Register

This register is responsible for enabling and disabling the interrupt. EA register is set to one for enabling

interrupts and set to 0 for disabling the interrupts. Its bit sequence and their meanings are shown in the

following figure.

EA IE.7
It disables all interrupts. When EA = 0 no interrupt will be acknowledged and EA = 1

enables the interrupt individually.

- IE.6 Reserved for future use.

- IE.5 Reserved for future use.

ES IE.4 Enables/disables serial port interrupt.

ET1 IE.3 Enables/disables timer1 overflow interrupt.

EX1 IE.2 Enables/disables external interrupt1.

ET0 IE.1 Enables/disables timer0 overflow interrupt.

EX0 IE.0 Enables/disables external interrupt0.

IP (Interrupt Priority) Register

We can change the priority levels of the interrupts by changing the corresponding bit in the Interrupt

Priority (IP) register as shown in the following figure.

 A low priority interrupt can only be interrupted by the high priority interrupt, but not interrupted

by another low priority interrupt.

 If two interrupts of different priority levels are received simultaneously, the request of higher

priority level is served.

 If the requests of the same priority levels are received simultaneously, then the internal polling

sequence determines which request is to be serviced.

- IP.6 Reserved for future use.

- IP.5 Reserved for future use.

PS IP.4 It defines the serial port interrupt priority level.

PT1 IP.3 It defines the timer interrupt of 1 priority.

PX1 IP.2 It defines the external interrupt priority level.

PT0 IP.1 It defines the timer0 interrupt priority level.

PX0 IP.0 It defines the external interrupt of 0 priority level.

TCON Register

TCON register specifies the type of external interrupt to the microcontroller.

REGISTER SET OF 8051

A register is a small place in a CPU that can store small amounts of the data used for performing various

operations such as addition and multiplication and loads the resulting data on the main memory. Registers

contain the address of the memory location where the data is to be stored. The size of the register is very

important for modern controllers. For instance, for a 64-bit register, a CPU tries to add two 32-bit numbers

and gives a 64-bit result.

Types of Registers

The 8051 microcontroller contains mainly two types of registers:

 General-purpose registers (Byte addressable registers)

 Special function registers (Bit addressable registers)

 8051 RAM Memory

The 8051 microcontroller consists of 256 bytes of RAM, which is divided into two ways, such as

128 bytes for general purpose and 128 bytes for special function registers (SFR) memory. The

memory which is used for general purpose is called as RAM, and the memory used for SFR

contains all the peripheral related registers like Accumulator, ‘B’ register, Timers or Counters,

and interrupt related registers.

General Purpose Registers

As we discussed earlier in this article that there are four different bank registers with each bank

having 8 addressable 8-bit registers, and only one bank register can be accessed at a time. But, by

https://www.elprocus.com/arm-based-projects/
https://www.elprocus.com/8051-microcontroller-architecture-and-applications/

changing the bank register’s number in the flag register, we can access other bank registers,

which have been discussed earlier on this paper along with interrupt concept in 8051.

Special Function Registers

The special function registers including the Accumulator, Register B, Data pointer, PCON, PSW,

etc., are designed for a predetermined purpose during manufacturing with the address 80H to

FFH, and this area cannot be used for the data or program storage purpose. These registers can be

implemented by bit address and byte address registers.

The most widely used registers of the 8051 are A (accumulator), B, R0-R7, DPTR (data pointer),

and PC (program counter). All these registers are of 8-bits, except DPTR and PC.

Storage Registers in 8051

We will discuss the following types of storage registers here −

 Accumulator

 R register

 B register

 Data Pointer (DPTR)

 Program Counter (PC)

 Stack Pointer (SP)

Accumulator

The accumulator, register A, is used for all arithmetic and logic operations. If the accumulator is

not present, then every result of each calculation (addition, multiplication, shift, etc.) is to be

stored into the main memory. Access to main memory is slower than access to a register like the

accumulator because the technology used for the large main memory is slower (but cheaper) than

that used for a register.

The "R" Registers

The "R" registers are a set of eight registers, namely, R0, R1 to R7. These registers function as

auxiliary or temporary storage registers in many operations. Consider an example of the sum of

10 and 20. Store a variable 10 in an accumulator and another variable 20 in, say, register R4. To

process the addition operation, execute the following command −

ADD A,R4

https://www.elprocus.com/types-of-interrupts-in-8051-microcontroller-and-interrupt-programming/

After executing this instruction, the accumulator will contain the value 30. Thus "R" registers are

very important auxiliary or helper registers. The Accumulator alone would not be very useful if

it were not for these "R" registers. The "R" registers are meant for temporarily storage of values.

Let us take another example. We will add the values in R1 and R2 together and then subtract the

values of R3 and R4 from the result.

MOV A,R3 ;Move the value of R3 into the accumulator

ADD A,R4 ;Add the value of R4

MOV R5,A ;Store the resulting value temporarily in R5

MOV A,R1 ;Move the value of R1 into the accumulator

ADD A,R2 ;Add the value of R2

SUBB A,R5 ;Subtract the value of R5 (which now contains R3 + R4)

As you can see, we used R5 to temporarily hold the sum of R3 and R4. Of course, this is not the

most efficient way to calculate (R1 + R2) – (R3 + R4), but it does illustrate the use of the "R"

registers as a way to store values temporarily.

The "B" Register

The "B" register is very similar to the Accumulator in the sense that it may hold an 8-bit (1-byte)

value. The "B" register is used only by two 8051 instructions: MUL AB and DIV AB. To

quickly and easily multiply or divide A by another number, you may store the other number in

"B" and make use of these two instructions. Apart from using MUL and DIV instructions, the

"B" register is often used as yet another temporary storage register, much like a ninth R register.

The Data Pointer

The Data Pointer (DPTR) is the 8051’s only user-accessible 16-bit (2-byte) register. The

Accumulator, R0–R7 registers and B register are 1-byte value registers. DPTR is meant for

pointing to data. It is used by the 8051 to access external memory using the address indicated by

DPTR. DPTR is the only 16-bit register available and is often used to store 2-byte values.

The Program Counter

The Program Counter (PC) is a 2-byte address which tells the 8051 where the next instruction to

execute can be found in the memory. PC starts at 0000h when the 8051 initializes and is

incremented every time after an instruction is executed. PC is not always incremented by 1. Some

instructions may require 2 or 3 bytes; in such cases, the PC will be incremented by 2 or 3.

Branch, jump, and interrupt operations load the Program Counter with an address other than

the next sequential location. Activating a power-on reset will cause all values in the register to

be lost. It means the value of the PC is 0 upon reset, forcing the CPU to fetch the first opcode

from the ROM location 0000. It means we must place the first byte of upcode in ROM location

0000 because that is where the CPU expects to find the first instruction.

The Stack Pointer (SP)

The Stack Pointer, like all registers except DPTR and PC, may hold an 8-bit (1-byte) value. The

Stack Pointer tells the location from where the next value is to be removed from the stack. When

a value is pushed onto the stack, the value of SP is incremented and then the value is stored at

the resulting memory location. When a value is popped off the stack, the value is returned from

the memory location indicated by SP, and then the value of SP is decremented.

This order of operation is important. SP will be initialized to 07h when the 8051 is initialized. If

a value is pushed onto the stack at the same time, the value will be stored in the internal RAM

address 08h because the 8051 will first increment the value of SP (from 07h to 08h) and then

will store the pushed value at that memory address (08h). SP is modified directly by the 8051 by

six instructions: PUSH, POP, ACALL, LCALL, RET, and RETI.

PSW Register

The program status word (PSW) register is an 8-bit register, also known as flag register. It is of

8-bit wide but only 6-bit of it is used. The two unused bits are user-defined flags. Four of the

flags are called conditional flags, which means that they indicate a condition which results after

an instruction is executed. These four are CY (Carry), AC (auxiliary carry), P (parity),

and OV (overflow). The bits RS0 and RS1 are used to change the bank registers. The following

figure shows the program status word register.

The PSW Register contains that status bits that reflect the current status of the CPU.

CY CA F0 RS1 RS0 OV - P

CY PSW.7 Carry Flag

AC PSW.6 Auxiliary Carry Flag

F0 PSW.5 Flag 0 available to user for general purpose.

RS1 PSW.4 Register Bank selector bit 1

RS0 PSW.3 Register Bank selector bit 0

OV PSW.2 Overflow Flag

- PSW.1 User definable FLAG

P PSW.0 Parity FLAG. Set/ cleared by hardware during instruction cycle to indicate even/odd number of 1

bit in accumulator.

We can select the corresponding Register Bank bit using RS0 and RS1 bits.

RS1 RS2 Register Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH

 CY, the carry flag − This carry flag is set (1) whenever there is a carry out from the D7

bit. It is affected after an 8-bit addition or subtraction operation. It can also be reset to 1 or

0 directly by an instruction such as "SETB C" and "CLR C" where "SETB" stands for set

bit carry and "CLR" stands for clear carry.

 AC, auxiliary carry flag − If there is a carry from D3 and D4 during an ADD or SUB

operation, the AC bit is set; otherwise, it is cleared. It is used for the instruction to

perform binary coded decimal arithmetic.

 P, the parity flag − The parity flag represents the number of 1's in the accumulator

register only. If the A register contains odd number of 1's, then P = 1; and for even

number of 1's, P = 0.

 OV, the overflow flag − This flag is set whenever the result of a signed number operation

is too large causing the high-order bit to overflow into the sign bit. It is used only to

detect errors in signed arithmetic operations.

MODES OF TIMER OPERATION:

8051 Timers/Counters

 Timers/Counters of the 8051 micro controller. The 8051 has two counters/timers which can be

used either as timer to generate a time delay or as counter to count events happening outside the

microcontroller.

 Many of the microcontroller applications require counting of external events such as

frequency of the pulse trains and generation of precise internal time delays between computer

actions. Both these tasks can be implemented by software techniques, but software loops for

counting, and timing will not give the exact result rather more important functions are not done.

To avoid these problems, timers and counters in the micro-controllers are better options for

https://www.elprocus.com/microcontrollers-types-and-applications/

simple and low-cost applications. These timers and counters are used as interrupts in 8051

microcontroller.

There are two 16-bit timers and counters in 8051 microcontroller: timer 0 and timer 1. Both timers

consist of 16-bit register in which the lower byte is stored in TL and the higher byte is stored in

TH. Timer can be used as a counter as well as for timing operation that depends on the source of

clock pulses to counters

A timer is a specialized type of clock which is used to measure time intervals. A timer that counts

from zero upwards for measuring time elapsed is often called a stopwatch. It is a device that

counts down from a specified time interval and used to generate a time delay, for example, an

hourglass is a timer.

A counter is a device that stores (and sometimes displays) the number of times a particular event

or process occurred, with respect to a clock signal. It is used to count the events happening outside

the microcontroller. In electronics, counters can be implemented quite easily using register-type

circuits such as a flip-flop.

Difference between a Timer and a Counter

The points that differentiate a timer from a counter are as follows −

Timer Counter

The register incremented for every

machine cycle.

The register is incremented considering 1 to 0 transitions at its

corresponding to an external input pin (T0, T1).

Maximum count rate is 1/12 of the

oscillator frequency.
Maximum count rate is 1/24 of the oscillator frequency.

A timer uses the frequency of the internal

clock, and generates delay.
A counter uses an external signal to count pulses.

Timers & Counters

https://www.elprocus.com/types-of-interrupts-in-8051-microcontroller-and-interrupt-programming/
https://www.elprocus.com/types-of-interrupts-in-8051-microcontroller-and-interrupt-programming/
https://www.elprocus.com/8051-microcontroller-architecture-and-applications/

Counters and Timers in 8051 microcontroller contain two special function registers: TMOD

(Timer Mode Register) and TCON (Timer Control Register), which are used for activating and

configuring timers and counters.

Timer Mode Control (TMOD): TMOD is an 8-bit register used for selecting timer or counter

and mode of timers. Lower 4-bits are used for control operation of timer 0 or counter0, and

remaining 4-bits are used for control operation of timer1 or counter1.This register is present in

SFR register, the address for SFR register is 89th.

 Timer mode Control (TMOD)

Gate: If the gate bit is set to „0‟, then we can start and stop the “software” timer in the same

way. If the gate is set to „1‟, then we can perform hardware timer.

C/T: If the C/T bit is „1‟, then it is acting as a counter mode, and similarly when set C+

=/T bit is „0‟; it is acting as a timer mode.

Mode select bits: The M1 and M0 are mode select bits, which are used to select the timer

operations. There are four modes to operate the timers.

Mode 0: This is a 13-bit mode that means the timer operation completes with “8192” pulses.

Mode 1: This is a16-bit mode, which means the timer operation completes with maximum

clock pulses that “65535”.

Mode 2: This mode is an 8-bit auto reload mode, which means the timer operation completes

with only “256” clock pulses.

Mode 3: This mode is a split-timer mode, which means the loading values in T0 and

automatically starts the T1.

https://www.elprocus.com/8051-microcontroller-8-16-bit-timers-and-counters/

Mode selection Bits

Timer Control Register (TCON): TCON is another register used to control operations of

counter and timers in microcontrollers. It is an 8-bit register wherein four upper bits are

responsible for timers and counters and lower bits are responsible for interrupts.

TF1: The TF1 stands for „timer1‟ flag bit. Whenever calculating the time-delay in timer1, the

TH1 and TL1 reaches to the maximum value that is “FFFF” automatically.

EX: while (TF1==1)

Whenever the TF1=1, then clear the flag bit and stop the timer.

TR1: The TR1 stands for timer1 start or stop bit. This timer starting can be through software

instruction or through hardware method.

EX:gate=0(start timer 1 through software instruction) TR1=1; (Start timer)

TF0: The TF0 stands for „timer0‟ flag-bit. Whenever calculating the time delay in timer1, the

TH0 and TL0 reaches to a maximum value that is „FFFF‟, automatically.

EX:while (TF0==1) Whenever the TF0=1, then clear the flag bit and stop the timer.

TR0: The TR0 stands for „timer0‟ start or stop bit; this timer starting can be through software

instruction or through hardware method.

EX: gate=0 (start timer 1 through software instruction) TR0=1; (Start timer)

SERIAL PORT OPERATION

8051 Serial Communication:

Sections

1 Basics of serial communication

2 8051 connection to RS232

3 8051 serial communication programming

8051 and PC:

• The 8051 module connects to PC by using RS232.

• RS232 is a protocol which supports half-duplex, synchronous/asynchronous, serial

communication.

• We discuss these terms in following sections.

Simplex vs. Duplex Transmission

• Simplex transmission: the data can sent in one direction.

Example: the computer only sends data to the printer.

• Duplex transmission: the data can be transmitted and receive

Half duplex: if the data is transmitted one way at a time

Full duplex: if the data can go both ways at the same time. Two wire conductors

Parallel vs. Serial:

• Computers transfer data in two ways:

– Parallel

• data is sent a byte or more a time (fast)

• Only short distance between two systems

• The 8-bit data path is expensive

• Example: printer, hard disks

– Serial

• The data is sent one bit at a time (slow)

• Long distance (rarely distortion)

• cheap

• The data can be transferred on the telephone line (by using modem.)

Serial versus Parallel Data Transfer (1/2):

Serial Communication:

• How to transfer data?

– Sender:

• The byte of data must be converted to serial bits using a parallel-in-

serial- out shift register.

• The bit is transmitted over a single data line.

– Receiver

• The receiver must be a serial-in-parallel-out shift register to receive

the serial data and pack them into a byte.

Serial communication uses two methods:

– In synchronous communication, data is sent in blocks of bytes.

UART & USART:

• It is possible to write software to use both methods, but the programs can be tedious

and long.

• Special IC chips are made for serial communication:

– USART (universal synchronous-asynchronous receiver-transmitter)

– UART (universal asynchronous receiver-transmitter)

• The 8051 chip has a built-in UART.

8051 Serial Communication:

• The 8051 has serial communication capability built into it.

– Half-duplex

– Asynchronous mode only.

• How to detect that a character is sent via the line in the asynchronous mode?

– Answer: Data framing!

RS232 Standard:

• RS232 is an interfacing standard which is set by the Electronics Industries

Association (EIA) in 1960.

– RS232 is the most widely used serial I/O interfacing standard.

 – RS232A (1963), RS232B (1965) and RS232C (1969), now is RS232E

• Define the voltage level, pin functionality, baud rate, signal meaning, communication

distance.

RS232 Voltage Level:

• The input and output voltage of RS232 is not of the TTL compatible.

– RS232 is older than TTL.

• We must use voltage converter (also referred to as line driver) such

as MAX232 to convert the TTL logic levels to the RS232 voltage

level, and vice versa.

– MAX232, TSC232, ICL232

MAX232:

• MAX232 IC chips are commonly referred to as line drivers.

RS232 pins:

• Figure shows the RS232 connector DB-25.

• Table shows the pins and their labels for the RS232 cable.

– DB-25P : plug connector (male)

– DB-25S: socket connector (female)

• Figure shows DB9 connector and Table shows the signals.

– IBM version for PC.

• All the RS 232 pin function definitions of Tables and are from the DTE

point of view.

RS232 Connector DB-25:

TxD and RxD pins in the 8051:

• In 8051, the data is received from or transmitted to

– RxD: received data (Pin 10, P3.0)

– TxD: transmitted data (Pin 11, P3.1)

• TxD and RxD of the 8051 are TTL compatible.

• The 8051 requires a line driver to make them RS232 compatible.

– One such line driver is the MAX232 chip.

8051 Pin Diagram:

MAX232 (1/2):

• MAX232 chip converts from RS232 voltage levels to TTL voltage levels, and vice versa.

MAX232 uses a +5V power source which is the same as the source voltage for the 8051.

8051 Serial Communication Programming:

PC Baud Rates:

• PC supports several baud rates.

– You can use netterm, terminal.exe, stty, ptty to send/receive data.

• Hyper terminal supports baud rates much higher than the ones list in the Table.

Baud Rates in the 8051 (1/2):

• The 8051 transfers and receives data serially at many different baud rates by using

UART.

• UART divides the machine cycle frequency by 32 and sends it to Timer 1

to set the baud rate.

• Signal change for each roll over of timer 1

Baud Rates in the 8051:

• Timer 1, mode 2 (8-bit, auto-reload)

• Define TH1 to set the baud rate.

– XTAL = 11.0592 MHz

– The system frequency = 11.0592 MHz / 12 = 921.6 kHz

– Timer 1 has 921.6 kHz/ 32 = 28,800 Hz as source.

– TH1=FDH means that UART sends a bit every 3 timer source.

– Baud rate = 28,800/3= 9,600 Hz

Example:

With XTAL = 11.0592 MHz, find the TH1 value needed to have the following baud rates. (a)

9600 (b) 2400 (c) 1200

Solution:

With XTAL = 11.0592 MHz, we have:

The frequency of system clock = 11.0592 MHz / 12 = 921.6 kHz The frequency sent to timer 1

= 921.6 kHz/ 32 = 28,800 Hz

(a) 28,800 / 3 = 9600 where -3 = FD (hex) is loaded into TH1

(b) 28,800 / 12 = 2400 where -12 = F4 (hex) is loaded into TH1

(c) 28,800 / 24 = 1200 where -24 = E8 (hex) is loaded into TH1 Notice that dividing 1/12th

of the crystal frequency by 32 is the default value upon activation of the 8051 RESET pin.

Registers Used in Serial Transfer Circuit:

• SUBF (Serial data buffer)

• SCON (Serial control register)

• PCON (Power control register)

• You can see Appendix H (pages 416-417) for details.

• PC has several registers to control COM1, COM2.

SBUF Register:

• Serial data register: SBUF

MOV SBUF,#’A’ ;put char ‘A’ to transmit MOV SBUF,A ;send data from A

MOV A,SUBF ;receive and copy to A

– An 8-bit register

– Set the usage mode for two timers

• For a byte of data to be transferred via the TxD line, it must be

placed in the SBUF.

• SBUF holds the byte of data when it is received by the 8051;s

RxD line.

– Not bit-addressable

SCON Register:

Serial control register: SCON

SM0, SM1 Serial port mode specifier

REN(Receive enable) set/cleared by software to enable/disable reception.

TI Transmit interrupt flag.

RI Receive interrupt flag.

SM2 = TB8 = TB8 =0 (not widely used)

SM0, SM1:

• SM1 and SM0 determine the framing of data.

– SCON.6 (SM1) and SCON.7 (SM0)

– Only mode 1 is compatible with COM port of IBM PC.

• SM2 enables the multiprocessor communication for mode 2 & 3.

• We make it 0 since we are not using the 8051 in a multiprocessor environment.

– SM2=0 : Single processor environment

– SM2=1 : multiprocessor environment

REN (Receive Enable):

• SCON.4

• Set/cleared by software to enable/disable reception.

– REN=1

• It enable the 8051 to receive data on the RxD pin of the 8051.

• If we want the 8051 to both transfer and receive data, REN must

be set to 1.

• SETB SCON.4

– REN=0

• The receiver is disabled.

• The 8051 can not receive data.

• CLR SCON.4 TB8 (Transfer Bit 8):

• SCON.3

• TB8 is used for serial modes 2 and 3.

• The 9
th

 bit that will be transmitted in mode 2 & 3.

• Set/Cleared by software.

• SCON.2

• In serial mode 1, RB8 gets a copy of the stop bit when an 8-bit data is received.

TI (Transmit Interrupt Flag):

• SCON.1

• When the 8051 finishes the transfer of the 8-bit character, it raises the TI flag.

• TI is raised by hardware at the beginning of the stop bit in mode 1.

• Must be cleared by software.

RI (Receive Interrupt):

• SCON.0

• Receive interrupt flag. Set by hardware halfway through the stop bit time in mode 1.

Must be cleared by software.

• When the 8051 receives data serially via RxD, it gets rid of the start and stop bits and

place the byte in the SBUF register.

• Then 8051 rises RI to indicate that a byte.

• RI is raised at the beginning of the stop bit.

SCON Serial Port Control Register (Bit Addressable):

INTERRUPT STRUCTURE OF 8051

8051 interrupts

Interrupts are the events that temporarily suspend the main program, pass the control to the

external sources and execute their task. It then passes the control to the main program where it

had left off.

8051 has 5 interrupt signals, i.e. INT0, TFO, INT1, TF1, RI/TI. Each interrupt can be enabled or

disabled by setting bits of the IE register and the whole interrupt system can be disabled by

clearing the EA bit of the same register.

E (Interrupt Enable) Register

This register is responsible for enabling and disabling the interrupt. EA register is set to one for

enabling interrupts and set to 0 for disabling the interrupts. Its bit sequence and their meanings

are shown in the following figure.

IP (Interrupt Priority) Register

We can change the priority levels of the interrupts by changing the corresponding bit in the

Interrupt Priority (IP) register as shown in the following figure.

 A low priority interrupt can only be interrupted by the high priority interrupt, but not

interrupted by another low priority interrupt.

 If two interrupts of different priority levels are received simultaneously, the request

of higher priority level is served.

 If the requests of the same priority levels are received simultaneously, then the

internal polling sequence determines which request is to be serviced.

- IP.6 Reserved for future use.

- IP.5 Reserved for future use.

PS IP.4 It defines the serial port interrupt priority level.

PT1 IP.3 It defines the timer interrupt of 1 priority.

PX1 IP.2 It defines the external interrupt priority level.

PT0 IP.1 It defines the timer0 interrupt priority level.

PX0 IP.0 It defines the external interrupt of 0 priority level.

Interrupt programming in 8051

1. Timer Interrupt Programming: In microcontroller Timer 1 and Timer 0 interrupts

are generated by time register bits TF0 AND TF1. This timer interrupts

programming by C code involves:

o Selecting the configuration of TMOD register and their mode of operation.

o Enables the IE registers and corresponding timer bits in it.

o Choose and load the initial values of TLx and THx by using appropriate

mode of operation.

o Set the timer run bit for starting the timer.

o Write the subroutine for a timer and clears the value of TRx at the end of the

subroutine.

Let's see the timer interrupt programming using Timer0 model for blinking LED

using interrupt method:

 #include< reg51 .h>

 sbit Blink Led = P2^0; // LED is connected to port 2 Zeroth pin

 void timer0_ISR (void) interrupt 1 //interrupt no. 1 for Timer0

 {

 Blink Led=~Blink Led; // Blink LED on interrupt

 TH0=0xFC; // loading initial values to timer

 TL0=0x66;

 }

 void main()

 {

 TMOD=0x0l; // mode 1 of Timer0

 TH0 = 0xFC: // initial value is loaded to timer

 TL0 = 0x66:

 ET0 =1; // enable timer 0 interrupt

 TR0 = 1; // start timer

 while (1); // do nothing

 }

 Interrupts are basically the events that temporarily suspend the main program, pass the

control to the external sources and execute their task. It then passes the control to the

main program where it had left off.

 8051 has five interrupts. These interrupts are INT0, INT1,TO ,T1 , TI/RI. All of the

interrupts can be enabled or disabled by using the IE (interrupt enable) register.

 The interrupt addresses of these interrupts are like below:

Interrupt Address

INT0 0003H

INT1 000BH

T0 0013H

T1 001BH

TI/RI 0023H

 Interrupt Enable (IE)Register

 This register can be used to enable or disable interrupts programmatically. This register is

an SFR. The address is A8H. This byte is bit addressable. So it can be programmed by the

user. The bits in this register has a different meaning. The register structure is looking like

this:

BitAddress AF AE AD AC AB AA A9 A8

Bit Details EA X X ES ET1 EX1 ET0 EX0

 Now, let us see the bit details and different operations when the value is low (0) and

high(1).

Bit

Details

High Value(1) Low Value(0)

EA Least significant 5 bits can decide

enable or disable of these five

interrupts.

Disable all five interrupts. It just

ignores the rest five bits.

ES Enable Serial Port Interrupt Disable Serial Port Interrupt

ET1 Enable Timer1 interrupt Disable Timer1 interrupt

EX1 Enable external interrupt 1

(INT1)

Disable external interrupt 1

(INT1)

ET0 Enable Timer0 interrupt Disable Timer0 interrupt

EX0 Enable external interrupt 0

(INT0)

Disable external interrupt 0

(INT0)

 Interrupt Priority (IP) Register

 All of these five interrupts can be in one or two interrupt level. The priority levels are

level 1 and level 0. Priority level 1 indicates the higher priority, and level 0 indicates

lower priority. This IP register can be used to store the priority levels for each interrupt.

This is also a bit addressable SFR. Its address is B8H.

BitAddress BF BE BD BC BB BA B9 B8

Bit Details X X X PS PT1 PX1 PT0 PX0

 Now, let us see the bit details and different operations when the value is low (0) and

high(1).

Bit

Details

High Value(1) Low Value(0)

PS Set 1 level priority of Serial port

interrupt

Set 0 level priority of Serial port

interrupt

PT1 Set 1 level priority of Timer1

interrupt

Set 0 level priority of Timer1

interrupt

PX1 Set 1 level priority of external

interrupt 1 (INT1)

Set 0 level priority of external

interrupt 1 (INT1)

PT0 Set 1 level priority of Timer0

interrupt

Set 0 level priority of Timer0

interrupt

PX0 Set 1 level priority of external

interrupt 0 (INT0)

Set 0 level priority of external

interrupt 0 (INT0)

 When all of the five interrupts are in same priority level, and if all of the interrupts are

enabled, then the sequence of interrupts will be INT0, T0, INT1, T1, TI/R I.

 Some specific priority register value can be used to maintain the priorities of the

interrupts. Let the value of Priority register is xxx00101 indicates the

sequence INT0, INT1, TI/RI, T1, T0. But all of the sequences are not feasible.

Like INT0, INT1, TI/RI, T1, T0 is not valid.

 External Interrupt

 The external interrupts of 8051 are INT0and. INT1 These interrupts can be programmed

to either edge-triggered or level triggered. The TCON register can be used top rogram

external interrupts to edge or level triggered. The TCON isTimer Control. TCON is

another bit addressable SFR. Here the address is 88H.

Bit Address 8F 8E 8D 8C 8B 8A 89 88

Bit Details TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

 Now, let us see the bit details and different operations when the value is low (0) and

high(1).

Bit

Details

High Value(1) Low Value(0)

IT0 Set (INT0) as negative edge triggered

input.

Set (INT0) as active low level triggered

input.

IT1 Set (INT1) as negative edge triggered

input.

Set (INT1) as active low level triggered

input.

IE0 This will be 1, when INT0is activated as

level triggered.

This will be 0, when INT0is activated as

edge triggered.

IE1 This will be 1, when INT1 is activated as

level triggered.

This will be 0, when INT1 is activated as

edge triggered.

Bit

Details

High Value(1) Low Value(0)

TR0 Set Timer0 as run mode Set Timer0 as stop mode.

TR1 Set Timer1 as run mode Set Timer1 as stop mode.

TF0 High when Timer T0 overflow occurs. After resetting the timer T0 thiswill also

be changed to 0 state

TF1 High when Timer T1 overflow occurs. After resetting the timer T1 this will also

be changed to 0 state.

 The IT0 and IT1 are stands for Interrupt Type. These bits are used to decide whether

the INT0 and INT1 will be level trigged or edge triggered.

 IE0 and IE1 bits are used to indicate the status of external interrupts. These bit can be set

or reset by the microcontroller itself.

 The first four bits are the status information about timers. When TR0 and TR1 are 1, it

indicates the running mode of the timers. These bits provide software control over the

running of timers. Timers can also be controlled by the hardware. The priority of

hardware mode is higher than the software mode.

 The TF0 and TF1 are used to indicate the overflow of timer T0 and T1 respectively.

When over flow occurs these flags are set to 1. When the interrupt is handled by some

interrupt service subroutine (ISS), these will be 0.

 Serial Port Interrupt

 The serial ports can be used either Transmitting mode or reception mode. The interrupt

status for the Transmission is provided by TI, and status for Reception is provided by RI.

These are two bits of SCON(Serial Control). This is also a bit addressable SFR. The

address is98H

Bit Address 9F 9E 9D 9C 9B 9A 99 98

Bit Details SM0 SM1 SM2 REN TB8 RB8 TI RI

 The significance of these bits are as follows

Bit Details Description

SM0 This is Serial Port Mode 0 shift register

SM1 This is Serial Port Mode 1 (8-bit UAR + variable)

SM2 Enable multiprocessor communication in the mode 2 or 3

REN Set or reset by the software to enable or disable the Reception

TB8 It indicates the 9
th

 bit that will be transmitted in mode 2 or 3. It can be set or reset by

the software

RB8 In mode 2 or 3, the 9
th

 bit was received in mode 1.

TI The transmission interrupt flag. It can be set by hardware.

RI The receiver interrupt flag. It can be set by hardware but must be reset by software.

 The interrupt control system of 8051 is like below:

MEMORY AND I/O INTERFACING WITH 8051

Real world interfacing of 8051 with external memory

A single microcontroller can serve several devices. There are two ways to do that is interrupts or

polling. In the interrupt method, whenever any device needs its services, the device notifies the

micro controller interrupts whatever it is doing and serves the device. The program which is

associated with the interrupt is called the interrupt service routine (ISR) or Interrupt handler. In

polling, the microcontrollers continuously monitor the status of several devices and serve each of

them as certain conditions are met. The advantage of interrupts is that microcontroller can serve

many devices. Each device can get the attention of microcontroller based on the priority assigned

to it. For the polling method; it is not possible to assign priority. In interrupt method the

microcontroller can also ignore (mask) a device request for service. This is not possible in

polling method. The polling method wastes much of microcontrollers‟ time by polling devices

that do not need service, so interrupts are preferred.

In 8051 TL is compatible. When its need to interface with Input/output device RS232 use

interface circuit MAX 232.

We have seen that a typical 8051 Microcontroller has 4KB of ROM and 128B of RAM (most

modern 8051 Microcontroller variants have 8K ROM and 256B of RAM).

The designer of an 8051 Microcontroller based system is not limited to the internal RAM and

ROM present in the 8051 Microcontroller. There is a provision of connecting both external RAM

and ROM i.e. Data Memory and Program.

The reason for interfacing external Program Memory or ROM is that complex programs written

in high – level languages often tend to be larger and occupy more memory.

Another important reason is that chips like 8031 or 8032, which doesn‟t have any internal ROM,

have to be interfaced with external ROM.

A maximum of 64B of Program Memory (ROM) and Data Memory (RAM) each can be

interface with the 8051 Microcontroller.

The following image shows the block diagram of interfacing 64KB of External RAM and 64KB

of External ROM with the 8051 Microcontroller.

The 8051 Microcontroller Memory Organization, Internal ROM and RAM and how to interface

external ROM and RAM with 8051 Microcontroller.

Expansion of I/O ports

To perform input/output operation Microcontrollers 8051 possess 4 I/O ports each consisting of

8-bit, which can be configured as input or output. Hence, out of 40 pins only 32 input/output

pins are allowed for the microcontrollers that are connected with the peripheral devices. As

microprocessor does not have inbuilt input/output operation, it can be rectified by using

microcontrollers 8051.

Pin configuration, i.e. the pin can be configured as 1 for input and 0 for output as per the logic

state.

Input/output (I/O) pin – excluding port P0 which does not have pull-up resistors built in, all

other circuits within the microcontroller should be connected to one of its pins.

Input–pinTo a bit of P register logic 1 is applied. The output FE transistor is turned off and the

other pin duly remains connected to the power supply voltage with the help of a pull-up resistor

possessing high resistance.

Port-0The P0 (zero) port performs two functions −Whenever external memory is used then the

lower address byte (addresses A0A7) is applied on it, otherwise all bits of this port are

configured as input/output.

When P0 port is configured as an output then the remaining ports consisting of pins with built-in

pull-up resistor are connected to its end of 5V power supply, the port consisting of pins had left

off this resistor.

Input Configuration

If the port consisting of pin is configured as an input, then it needs to act as “floats”, i.e. the input

is possessed with unlimited input resistance and in-determined potential.

Output Configuration

When the pin is configured as an output, then it acts as an “open drain”. When the logic 0 to a

port bit is applied then the appropriate pin will be connected to ground (0V), and when the logic

1 is applied, the external output would continue to float.

In this output configuration if the logic 1 (5V) power supply is applied then it is very essential to

build an external pull-up resistor for this configuration.

Port 1

P1 is regarded as a true I/O port as it does not consist of any alternative functions as in P0, but

this port could be configured as general I/O only. It has a built-in pull-up resistor and is

completely compatible with TTL circuits.

Port 2

P2 is also called as “quasi-bidirectional port” because of its output pull-up resistors. It acts

similar to P0 when the external memory is applied. Pins of this port used as input/output which

occupy addresses intended for the external memory chip. This port can be used for upper order

address byte with addresses A8-A15 (for external memory). This port acts as general

input/output port when memory is not added then it functions similar to Port 1.

Port 3

Port 3 functions are similar to other ports except that the logic 1 must be applied to bit of the P3

register which should be appropriate. It is multifunctional port and can be used as simple

input/output port.

Pins Current Limitations

When configuration of pins takes place as an output (i.e. logic 0), then the single port pins can

receive a current of 10mA.

When these pins are configured as inputs (i.e. logic 1), very weak current is generated by the

built- in pull-up resistors, but it can be activated up to 4 TTL inputs of LS series.

When all the 8 bits of a port is said to be active, then the total current must be limited to 15mA

(port P0: 26mA).

When all the ports (32 bits) are said to be active, then the total maximum current must be limited

to 71mA.

Interfacing I/O Devices

Every electrical and electronics project designed to develop electronic gadgets that are

frequently used in our day-to-day life utilizes microcontrollers with appropriate interfacing

devices. There are different types of applications that are designed using microcontroller based

projects. In maximum number of applications, the microcontroller is connected with some

external devices called as interfacing devices for performing some specific tasks. For example,

consider security system with a user changeable password project, in which an interfacing

device, keypad is interfaced with microcontroller to enter the password.

Interfacing Devices

Interfacing can be defined as transferring data between microcontrollers and interfacing

peripherals such as sensors, keypads, microprocessors, analog to digital converters or ADC,

LCD displays, motors, external memories, even with other microcontrollers, some other

interfacing peripheral devices and so on or input devices and output devices. These devices that

are interfacing with 8051 microcontroller are used for performing special tasks or functions are

called as interfacing devices.

Interfacing is a technique that has been developed and being used to solve many composite

problems in circuit designing with appropriate features, reliability, availability, cost, power

consumption, size, weight, and so on. To facilitate multiple features with simple circuits,

microcontroller is interfaced with devices such as ADC, keypad, LCD display and so on.

https://www.elprocus.com/microcontroller-based-projects-on-8051-avr-and-pic-microcontroller/
https://www.elprocus.com/microcontroller-based-projects-on-8051-avr-and-pic-microcontroller/
https://www.elprocus.com/analog-to-digital-adc-converter/
https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/
https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/
https://www.elprocus.com/8051-microcontroller-architecture-and-applications/
https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/

Analog to Digital Converter (ADC)

A to D converter is an electronic integrated circuit used for converting the analog signals into a

digital or binary form. Generally, analog to digital converters takes an input voltage from 0 to

10V, -5V to +5V, etc. and thereby converts this analog input into digital output. Most of the

environmental parameters such as temperature, sound, pressure, light, etc. are measurable in

analog form only. If we consider a temperature monitoring system, then obtaining, examining

and handling temperature data from the temperature sensors is unable with the digital measuring

system. Therefore, this system requires an intermediate device for converting the temperature

from analog to digital data, such that for communicating with the digital system containing

microcontrollers and microprocessors.

Intelligent LCD display:

• We examine an intelligent LCD display of two lines,20 char’s.per line,that is

interfaced to the 8051

Pin out of 16*2 LCD

• The displays contains two internal byte wide registers one for commands(RS=0) and the second

for char. To be displayed(RS=1)

https://www.elprocus.com/analog-digital-converters/
https://www.elprocus.com/microprocessor-and-microcontroller/

Interface Intelligent LCD Circuit with 8051

