
MICRO PROCESSORS AND INTERFACING 

V Semester – IT IARE-R18   

A.Y: 2020-2021 

Course Code – AECB55 (Open Elective-1) 

INSTITUTE OF AERONAUTICAL ENGINEERING 

                                     Prepared By 
                              B. Lakshmi Prasanna 



SYLLABUS 

2 

MODULE-I 
INTRODUCTION TO 8 BIT AND 16 BIT 
MICROPROCESSOR 

MODULE-II OPERATION OF 8086 AND INTERRUPTS. 

MODULE-III INTERFACING WITH 8086. 

MODULE-IV ADVANCED MICRO PROCESSORS 

MODULE-V 8051 MICROCONTROLLER ARCHITECTURE 



COURSE  OUTCOMES 

 
  

 
 

3 

CO1 
Outline the internal architecture of 8085, 8086 and 8051 

microcomputers to study the functionality. 

CO2 
Illustrate the organization of registers and memory in 8086 for 

programming and memory allocation within processor.  

CO3 

 

Explain various addressing modes and instruction set of target 

microprocessor and microcontroller useful for writing assembly 

language programs.  

CO4 
Distinguish between minimum mode and maximum mode operation of 

8086 microprocessor with timing diagrams.  

CO5 

 

Interpret the functionality of various types of interrupts and their 

structure for controlling the processor or controller and program 

execution flow. 



COURSE  OUTCOMES 

 
  

 
 

4 

CO6 

Demonstrate the internal architecture and various modes of 

operation of the devices used for interfacing memory and I/O devices 

with microprocessor.  

CO7 
Choose an appropriate data transfer scheme and hardware to 

perform serial data transfer among the devices.  

CO8 

 

Outline the salient features of 80286, 80386 and RISC processors in 

relation to basic 8086 microprocessor. 

CO9 
Illustrate the paging operation and segmentation of advanced 

microprocessors for memory management.  

CO10 

 

Interpret the internal building blocks and registers of 8051 

microcontroller used to perform serial data transfer, timer operation, 

interfacing of memory and I/O devices.  

CO11 

 

Build necessary hardware and software interface using microcomputer 

based systems to provide solution for real world problems.  



MODULE-I   
 Introduction to 8 bit and 16 bit 

Microprocessor 

3 



COURSE  OUTCOMES 

 
  

 
 

6 

CO1 
Outline the internal architecture of 8085, 8086 and 8051 

microcomputers to study the functionality. 

CO2 
Illustrate the organization of registers and memory in 8086 for 

programming and memory allocation within processor.  

CO3 

 

Explain various addressing modes and instruction set of target 

microprocessor and microcontroller useful for writing assembly 

language programs.  



 

 An over view of 8085   

7 



Introduction to processor: 

 A processor is the logic circuitry that responds to and  
processes the basic instructions that drives a computer. 

 

 The term processor has generally replaced the term central  
processing unit . The processor in a personal computer or  
embedded in small devices is often called a microprocessor. 

 

 The processor (CPU, for Central Processing Unit) is the  
computer's brain. It allows the processing of numeric data,  
meaning information entered in binary form, and the  
execution of instructions stored in memory. 

8 



Evolution of Microprocessor: 

9 

 Microprocessor is a program-controlled device, which  fetches 
the instructions from memory, decodes and  executes the 
instructions. Most Micro Processor are single-  chip devices. 

 Microprocessor is a backbone of computer system. which is  
called CPU 

 Microprocessor speed depends on the processing speed  
depends on DATA BUS WIDTH. 

 A common way of categorizing microprocessors is by  
the no. of bits that their ALU can Work with at a time 



 The address bus is unidirectional because the address  
information is always given by the Micro Processor to  
address a memory location of an input 
/ output devices. 

 The data bus is Bi-directional because the same bus is used  
for transfer of data between Micro Processor and memory  or 
input / output devices in both the direction. 

 It has limitations on the size of data. Most  
Microprocessor does not support floating-point  
operations. 

 Microprocessor contain ROM chip because it 
contain instructions to execute data. 

 Storage capacity is limited. It has a volatile memory. In  
secondary storage device the storage capacity is larger. It is  a 
nonvolatile memory. 

10 



Primary devices are: RAM (Read / Write memory, High  Speed, 
Volatile Memory) / ROM (Read only memory, Low  Speed, Non 
Voliate Memory) 
Secondary devices are: Floppy disc / Hard disk 

Compiler: 

Compiler is used to translate the high-level language  
program into machine code at a time. It doesn’t require  
special instruction to store in a memory, it stores  
automatically. The Execution time is less compared to  
Interpreter 

11 



8085 MICROPROCESSOR  

 •It is an 8-bit microprocessor designed by Intel in 1977. 
It has the following configuration −(FEATURES) 
•8-bit data bus 
•16-bit address bus, which can address up to 64KB 
•A 16-bit program counter 
•A 16-bit stack pointer 
•Six 8-bit registers arranged in pairs: BC, DE, HL 
•Requires +5V supply to operate. 
 
 

12 



It is a single chip  with 40 pins. 

 It has multiplexed address and data bus(AD0 - AD7) 

 The maximum clock frequency is 3 MHz while  minimum 

frequency is 500 KHz. 

 It provides 74 instruction with 5 different addressing  modes. 



Pin Diagram of 8085 



PIN DESCRIPTION 

Address bus 
A15-A8, it carries the most significant 8-bits of memory/IO address. 
Data bus 
AD7-AD0, it carries the least significant 8-bit address and data bus. 
Power supply 
There are 2 power supply signals VCC & VSS. VCC indicates +5v power 
supply and VSS indicates ground signal. 

 



Control and status signals 
There are 3 control signal and 3 status signals. 
Three control signals are RD’, WR’ & ALE. 
RD’ − When it is enabled, CPU reads the data available on data bus 
send by memory or I/O device. 
WR’ − When it is enabled ,CPU write the data on to the data bus from 
memory or I/O device . 
ALE − It is a multiplexed signal .When the pulse goes high, it indicates 
address. When the pulse goes down it indicates data. 
Three status signals are IO/M’, S0 & S1. 
IO/M’ 
This signal is used to differentiate between IO and Memory 
operations, i.e. when it is high indicates IO operation and when it is 
low then it indicates memory operation. 
 
 

16 



S1 & S0 
These signals are used to identify the type of current operation. 
 
 
 
 
 
 
 
 

17 



Clock signals 
There are 3 clock signals, i.e. X1, X2, CLK OUT. 
X1, X2 − A crystal (RC, LC N/W) is connected at these two pins 
and is used to set frequency of the internal clock generator. This 
frequency is internally divided by 2. 
CLK OUT − This signal is used as the system clock for devices 
connected with the microprocessor. 
Interrupts & externally initiated signals 
Interrupts are the signals generated by external devices to 
request the microprocessor to perform a task. There are 5 
interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR.  
 

18 



INTA’ − It is an interrupt acknowledgment signal. 
RESET IN’ − This signal is used to reset the microprocessor by 
setting the program counter to zero. 
RESET OUT − This signal is used to reset all the connected devices 
when the microprocessor is reset. 
READY − This signal indicates that the device is ready to send or 
receive data. If READY is low, then the CPU has to wait for READY 
to go high. 
HOLD − This signal indicates that another master is requesting the 
use of the address and data buses. 
HLDA (HOLD Acknowledge) − It indicates that the CPU has 
received the HOLD request and it will gives the bus in the next 
clock cycle. HLDA is set to low after the HOLD signal is removed. 
 

19 



Serial I/O signals 
There are 2 serial signals, i.e. SID and SOD and these signals are 
used for serial communication. 
SOD (Serial output data line) − The output SOD is set/reset as 
specified by the SIM instruction. 
SID (Serial input data line) − The data on this line is loaded into 
accumulator whenever a RIM instruction is executed. 
 

20 



8085 ARCHITECTURE 

21 

8085 ARCHITECTURE 



8085 Microprocessor – Functional Units 

8085 consists of the following functional units − 
Accumulator 
It is an 8-bit register used to perform arithmetic, logical, I/O & 
LOAD/STORE operations. It is connected to internal data bus & ALU. 
Arithmetic and logic unit 
As the name suggests, it performs arithmetic and logical operations 
like Addition, Subtraction, AND, OR, etc. on 8-bit data. 
General purpose register 
There are 6 general purpose registers in 8085 processor, i.e. B, C, D, 
E, H & L. Each register can hold 8-bit data. 
These registers can work in pair to hold 16-bit data and their pairing 
combination is like B-C, D-E & H-L. 

 
 

22 



Program counter 
It is a 16-bit register used to store the memory address location of 
the next instruction to be executed. Microprocessor increments the 
program counter whenever an instruction is being executed, so that 
the program counter points to the memory address of the next 
instruction that is going to be executed. 
Stack pointer 
It is also a 16-bit register works like stack, which is always 
incremented/decremented by 2 during push & pop operations. 
Temporary register 
It is an 8-bit register, which holds the temporary data of arithmetic 
and logical operations. 
 

23 



Flag register 
It is an 8-bit register having five 1-bit flip-flops, which holds either 0 
or 1 depending upon the result stored in the accumulator. 
These are the set of 5 flip-flops − 

i. Sign (S) 
ii. Zero (Z) 
iii. Auxiliary Carry (AC) 
iv. Parity (P) 
v. Carry (C) 

 
 

24 



25 



Instruction register and Instruction decoder 
It is an 8-bit register. When an instruction is fetched from memory 
then it is stored in the Instruction register. Instruction decoder 
decodes the information present in the Instruction register. 
Timing and control unit 
It provides timing and control signal to the microprocessor to 
perform operations. Following are the timing and control signals, 
which control external and internal circuits − 
Control Signals: READY, RD’, WR’, ALE 
Status Signals: S0, S1, IO/M’ 
DMA Signals: HOLD, HLDA 
RESET Signals: RESET IN’, RESET OUT 
 

26 



Interrupt control 
As the name suggests it controls the interrupts during a process. 
When a microprocessor is executing a main program and 
whenever an interrupt occurs, the microprocessor shifts the 
control from the main program to process the incoming 
request. After the request is completed, the control goes back 
to the main program. 
There are 5 interrupt signals in 8085 microprocessor: INTR, RST 
7.5, RST 6.5, RST 5.5, TRAP. 
Serial Input/output control 
It controls the serial data communication by using these two 
instructions: SID (Serial input data) and SOD (Serial output data). 
 

27 



Address buffer and address-data buffer 
The content stored in the stack pointer and program counter is 
loaded into the address buffer and address-data buffer to 
communicate with the CPU. The memory and I/O chips are 
connected to these buses; the CPU can exchange the desired 
data with the memory and I/O chips. 
Address bus and data bus 
Data bus carries the data to be stored. It is bidirectional, 
whereas address bus carries the location to where it should be 
stored and it is unidirectional. It is used to transfer the data & 
Address I/O devices. 
 

28 



Architecture of 8086  

microprocessor 

29 



Architecture : 

30 



 8086 Microprocessor is divided into two functional units,  i.e., 
EU(Execution Unit) and BIU (Bus Interface Unit). 

EU (Execution Unit): 

• Execution unit gives instructions to BIU stating from where  
to fetch the data and then decode and execute those  
instructions. 

•  Its function is to control operations on data using the  
instruction decoder & ALU. 

• EU has no direct connection with system buses as shown  in 
the above figure, it performs operations over data  through 
BIU. 

31 



 BIU(Bus Interface Unit): 

BIU takes care of all data and addresses transfers on the buses for  

the  EU  like   sending  addresses,  fetching   instructions   from   the 

memory, reading data from the ports and the memory as well as  

writing data to the ports and the memory. EU has no direction  

connection with System Buses so this is possible with the BIU. EU 

and BIU are connected with the Internal Bus. 

32 



Instruction queue 

33 

• BIU contains the instruction queue. BIU gets up to 6 bytes  of 

next instructions and stores them in the instruction  queue. 

When EU executes instructions and is ready for its  next 

instruction, then it simply reads the instruction from  this 

instruction queue resulting in increased execution  speed. 



 Segment register: 

• BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the 

addresses of instructions and data in memory, which are  

used by the processor to access memory locations. 

• It also contains 1 pointer register IP, which holds the  

address of the next instruction to executed by the EU. 

34 



 Register  

 organization of 8086   

 

35 



AX & DX registers: 

 In 8 bit multiplication, one of the operands must be in AL. 

The other operand can be a byte in memory location or in  

another 8 bit register. The resulting 16 bit product is stored  in 

AX, with AH storing the MS byte. 

 In 16 bit multiplication, one of the operands must be in AX.  

The other operand can be a word in memory location or in  

another 16 bit register. The resulting 32 bit product is stored  in 

DX and AX, with DX storing the MS word and AX storing  the LS 

word. 

36 



BX register : 

• In instructions where we need to specify in a general  

purpose register the 16 bit effective address of a memory  

location, the register BX is used (register indirect). 

37 



CX register : 

 In Loop Instructions, CX register will be always used as the 

implied counter. In I/O instructions, the 8086 receives into or  

sends out data from AX or AL depending as a word or byte 

operation. 

 In  these  instructions  the  port  address,  if  greater than FFH  

has to be given as the contents of DX register. 

 Ex : IN AL, DX 
DX register will have 16 bit address of the I/P device 

38 



 Segment register: 

  BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the  

addresses of instructions and data in memory, which are used  by 

the processor to access memory locations. 

 It also contains 1 pointer register IP, which holds the address  of 

the next instruction to executed by the EU. 

39 



 

 8086 flag register   

40 



Flag Register 

 Flag Register contains a group of status bits called flags that  
indicate the status of the CPU or the result of arithmetic  
operations. 

 There are two types of flags: 

 The status flags which reflect the result of executing an  
instruction. The programmer cannot set/reset these flags  
directly. 

 
 The control flags enable or disable certain CPU operations.  

The programmer can set/reset these bits to control the  CPU's 
operation. 

41 



 Nine individual bits of the status register are used as control  

flags (3 of them) and status flags (6 of them).The remaining  7 

are not used. 

 

 

 A flag can only take on the values 0 and 1. We say a flag is  set 

if it has the value 1.The status flags are used to record  specific 

characteristics of arithmetic and of logical  instructions. 

42 



8086 flag register 

43 



 Control Flags: There are three control flags 

 
 The Direction Flag (D): Affects the direction of moving data  

blocks by such instructions as MOVS, CMPS and SCAS. The  
flag values are 0 = up and 1 = down and can be set/reset by  
the STD (set D) and CLD (clear D) instructions. 

 
 The Interrupt Flag (I): Dictates whether or not system  

interrupts can occur. Interrupts are actions initiated by  
hardware block such as input devices that will interrupt the  
normal execution of programs. The flag values are 0 =  disable 
interrupts or 1 = enable interrupts and can be  manipulated by 
the CLI (clear I) and STI (set 
I) instructions. 

44 



 The Trap Flag (T): Determines whether or not the CPU is  
halted after the execution of each instruction. When this  flag 
is set (i.e. = 1), the programmer can single step through  his 
program to debug any errors. When this flag = 0 this  feature is 
off. This flag can be set by the INT 3 instruction. 

 Status Flags: There are six status flags 

 
 The Carry Flag (C): This flag is set when the result of an  

unsigned arithmetic operation is too large to fit in the  
destination register. This happens when there is an end  carry 
in an addition operation or there an end borrows in a  
subtraction operation. A value of 1 
= carry and 0 = no carry. 

45 



 The Overflow Flag (O): This flag is set when the result of a  signed 
arithmetic operation is too large to fit in the  destination register 
(i.e. when an overflow occurs). Overflow 

46 

same sign (i.e. can occur when adding two numbers with the  
both positive or both negative). A value of 1 
= overflow and 0 = no overflow. 

 The Sign Flag (S): This flag is set when the result of an  arithmetic 
or logic operation is negative. This flag is a copy of  the MSB of 
the result (i.e. the sign bit). A value of 1 means  negative and 0 = 
positive. 



 The Zero Flag (Z): This flag is set when the result of an  
arithmetic or logic operation is equal to zero. A value of 1  
means the result is zero and a value of 0 means the result is  
not zero. 

 
 The Auxiliary Carry Flag (A): This flag is set when an  operation 

causes a carry from bit 3 to bit 4 (or a borrow  from bit 4 to bit 
3) of an operand. A value of 1 = carry and 0 
= no carry. 

 
 The Parity Flag (P): This flags reflects the number of 1s in the  

result of an operation. If the number of 1s is even its value =  1 
and if the number of 1s is odd then its value = 0. 

47 



Addressing Modes of 8086 

48 



Addressing Modes of 8086: 

 Addressing mode indicates a way of locating data or  operands. 
Depending up on the data type used in the  instruction and 
the memory addressing modes, any  instruction may belong to 
one or more addressing modes or  same instruction may not 
belong to any of the addressing  modes. 

 
 The addressing mode describes the types of operands and  

the way they are accessed for executing an instruction.  
According to the flow of instruction execution, the  
instructions may be categorized as 

 

 Sequential control flow instructions and 
 Control transfer instructions. 

49 

Addressing Modes 



 Sequential control flow instructions are the instructions  which 
after execution, transfer control to the next  instruction 
appearing immediately after it (in the sequence)  in the 
program. For example the arithmetic, logic, data  transfer and 
processor control instructions are Sequential  control flow 
instructions. 

 
 The control transfer instructions on the other hand transfer  

control to some predefined address or the address somehow  
specified in the instruction, after their execution. For  example 
INT, CALL, RET & JUMP instructions fall under this  category. 

50 

Addressing Modes 



 The addressing modes for Sequential and control flow  
instructions are explained as follows. 

 
 Immediate addressing mode: 

 In this type of addressing, immediate data is a part of  
instruction, 
and appears in the form of successive byte or bytes. 

Example: MOV AX, 0005H. 

 
 In the above example, 0005H is the immediate data 

. The immediate data may be 8- bit or 16-bit in size. 

51 

Addressing Modes 



Direct addressing mode: 

 In the direct addressing mode, a 16-bit memory address  
(offset) 
directly specified in the instruction as a part of it. 

Example: MOV AX, [5000H]. 

 
Register addressing mode: 

 In the register addressing mode, the data is stored in a  
register and it is referred using the particular register. All  
the registers, except IP, may be used in this mode. 

Example: MOV BX, AX 

52 

Addressing Modes 



Register indirect addressing mode: 

 
 Sometimes, the address of the memory location which  

contains data or operands is determined in an indirect way,  
using the offset registers. The mode of addressing is known  as 
register indirect mode. 

 
 In this addressing mode, the offset address of data is in  

either BX or SI or DI Register. The default segment is either  
DS or ES. 
Example: MOV AX, [BX]. 

53 

 

Addressing Modes 



 Indexed addressing mode: 

 In this addressing mode, offset of the operand is stored one  
of the index registers. DS & ES are the default segments for  
index registers SI & DI respectively. 

Example: MOV AX, [SI] 

 Here, data is available at an offset address stored in SI in DS. 

 
 Register relative addressing mode: 

 In this addressing mode, the data is available at an effective  
address formed by adding an 8-bit or 16-bit displacement  
with the content of any one of the register BX, BP, SI & DI in  
the default (either in DS & ES) segment. 

Example: MOV AX, 50H [BX] 

54 

Addressing Modes 



 Based indexed addressing mode: 

 The effective address of data is formed in this addressing  
mode, by adding content of a base register (any one of BX or  
BP) to the content of an index register (any one of SI or DI).  
The default segment register may be ES or DS. 
Example: MOV AX, [BX][SI] 

 
 Relative based indexed: 

 The effective address is formed by adding an 8 or 16-bit  
displacement with the sum of contents of any of the base  
registers (BX or BP) and any one of the index registers, in a  
default segment. 
Example: MOV AX, 50H [BX] [SI] 

55 

Addressing Modes 



 Addressing Modes for control transfer instructions: 

 
 Intersegment 

 Intersegment direct 

 Intersegment indirect 

 
 Intrasegment 

 Intrasegment direct 

 Intrasegment indirect 

56 

Addressing Modes 



 Intersegment direct: 
 

 In this mode, the address to which the control is to be  
transferred is in a different segment. This addressing mode  
provides a means of branching from one code segment to  
another code segment. Here, the CS and IP of the  destination 
address are specified directly in the instruction. 

 
Example: JMP 5000H: 2000H; 

 

 Jump to effective address 2000H in segment 5000H. 

57 

Addressing Modes 



 Intersegment indirect: 

 In this mode, the address to which the control is to be  
transferred lies in a different segment and it is passed to the  
instruction indirectly, i.e. contents of a memory block  
containing four bytes, 
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The  
starting address of the memory block may be referred using  
any of the addressing modes, except immediate mode. 

• Example: JMP [2000H]. 

Jump to an address in the other segment specified at 
effective address 2000H in DS. 

58 

Addressing Modes 



 Intrasegment direct mode: 

59 

 In this mode, the address to which the control is to be 
transferred lies in the same segment in which the control  
transfers instruction lies and appears directly in the instruction  as 
an immediate displacement value. In this addressing mode,  the 
displacement is computed relative to the content of the  
instruction pointer. 

Addressing Modes 



 The effective address to which the control will be transferred is  
given by the sum of 8 or 16 bit displacement and current  content 
of IP. In case of jump instruction, if the signed  displacement (d) is 
of 8-bits (i.e. -128<d<+127), it as short jump  and if it is of 16 bits 
(i.e. - 32768<d<+32767), it is termed as  long jump. 

 
Example: JMP SHORT LABEL. 

60 

Addressing Modes 



 Intrasegment indirect mode: 

 In this mode, the displacement to which the control is to  be 
transferred is in the same segment in which the  control 
transfer instruction lies, but it is passed to the  instruction 
directly. Here, the branch address is found as  the content of 
a register or a memory location. 

61 

mode may be used in unconditional  This addressing  
branch  
instructions. 

 Example: JMP [BX]; Jump to effective address stored in BX. 

Addressing Modes 



Instruction set of 

8086 

62 



 The Instruction set of 8086 microprocessor is classified  
into 7 Types, they are:- 

• Data transfer instructions 

• Arithmetic& logical instructions 

• Program control transfer instructions 

• Machine Control Instructions 

• Shift / rotate instructions 

• Flag manipulation instructions 

• String instructions 

63 

INSTRUCTION SET OF 8086 



Data Transfer instructions 

 Data transfer instruction, as the name suggests is for the  
transfer of data from memory to internal register, from  internal 
register to memory, from one register to another  register, from 
input port to internal register, from internal  register to output 
port etc 

 

MOV instruction 

 It is a general purpose instruction to transfer byte or word  
from register to register, memory to register, register to  
memory or with immediate addressing. 

64 



 General Form: 
 MOV destination, source 
 Here the source and destination needs to be of the same 

size, 
that is both 8 bit or both 16 bit. 

 MOV instruction does not affect any flags. 

 
Example:- 

 MOV BX, 00F2H; load the immediate number 00F2H in BX 
register 

 

65 



MOV [589H], BX; 
Copy the  16  bit content of  BX register on to the memory 
location, 
which at a displacementof 589H from the data segment  

base. 

MOV DS, CX;Move the content of CX to DS  

PUSH instruction 

 The PUSH instruction decrements the stack pointer by two  
and 
copies the word from source to the location where stack  
pointer now points. Here the source must of word size  data. 
Source can be a general purpose register, segment  register 
or a memory location. 

66 



The PUSH instruction first pushes the most significant byte to 

67 

sp-1, then the least significant to the sp-2. Push instruction  
does not affect any flags. 



; Decrements SP by 2, copy content of CX to the 

68 

Example:- 

 PUSH CX  
stack 
 

 POP instruction 

The POP instruction copies a word from the stack location  
pointed by the stack pointer to the destination. The  
destination can be a General purpose register, a segment  
register or a memory location. Here after the content is  
copied the stack pointer is automatically incremented by  two. 

  The execution pattern is similar to that of the PUSH  

instruction. Example: POP CX; Copy a word from the top of  

the stack to CX and increment SP by 2. 



Move 8 bit data from 30F8H port  

Move 16 bit data from 30F8H port  

Copy contents of AL to 8 bit port 047H 

69 

 IN & OUT instructions 

 The IN instruction will copy data from a port to the  accumulator. 
If 8 bit is read the data will go to  AL andif 16 bit  then to 
AX. Similarly OUT instruction is used to copy data from  
accumulator to an output port. 

 Both IN and OUT instructions can be done using direct  
and indirect addressing modes. 

Example: 

 IN AL, 0F8H; Copy a byte from the port 0F8H to AL 

 MOV DX, 30F8H;Copy port address in DX 

 IN AL, DX; 

 IN AX, DX; 

 OUT 047H, AL; 

 MOV DX, 30F8H;Copy port address in DX 



XCHG instruction 

 The XCHG instruction exchanges contents  of the destination and  
source. Here destination and source can be register and register 

70 

but XCHG cannot interchange or register and memory location,  
the value of 2 memory locations. 

General Format 

 XCHG Destination, Source  

Example: 

 XCHG BX, CX; exchange word in CX with the word inBX 

 XCHG AL, CL; exchange byte in CL with the byte in AL 

 XCHG AX, SUM[BX];here physical address, which isDS+SUM+[BX].  
The content at physical address and the content of AX are  
interchanged. 



Instruction set of 8086  

(Arithmetic Instructions in 8086) 

71 



Arithmetic Instructions: ADD, ADC, INC, AAA, DAA 

72 

Mnemonic Meaning Format Operation Flags 

affected 

ADD Addition ADD D,S (S)+(D)  (D) 

carry  (CF) 

ALL 

ADC Add with 

carry 

ADC D,S (S)+(D)+(CF)  (D) 

carry  (CF) 

ALL 

INC Incrementby 

one 

INC D (D)+1  (D) ALL but CY 

AAA ASCII adjust 

for addition 

AAA If the sum is >9, AH 

is incremented by 1 

AF,CF 

DAA Decimal 
adjust for  

addition 

DAA Adjust AL for decimal 

Packed BCD 

ALL 



Arithmetic Instructions–SUB, SBB, DEC, AAS, DAS, NEG 

73 

Mnemonic Meaning Format Operation Flags 
affected 

SUB Subtract SUB D,S (D) - (S)  (D) 
Borrow  (CF) 

All 

SBB Subtract 
with  

borrow 

SBB D,S (D) - (S) - (CF)  (D) All 

DEC Decrement 

by one 

DEC D (D) - 1  (D) All but CF 

NEG Negate NEG D All 

DAS Decimal 

adjust for 

subtraction 

DAS Convert the result in AL to 

packed decimal format 

All 

AAS ASCII 

adjust for 

subtraction 

AAS (AL) difference 

(AH) dec by 1 if borrow 

CY,AC 



Multiplication and Division 

74 



75 



Instruction set of 8086  (Logical 

Instructions in 8086) 

76 



AND instruction 

 This instruction logically ANDs each bit of the source 

byte/word with the corresponding bit in the destination  and 

stores the result in destination. The source can be an  

immediate number, register or memory location, register  can 

be a register or memory location. 

 The CF and OF flags are both made zero, PF, ZF, SF are 

affected by the operation and AF is undefined. 

77 



 General Format: 

 AND Destination, Source  

Example: 

78 

;suppose BL=1000 0110 and AL = 1100  
after the operation BL would be BL= 

 AND BL, AL  
1010 then  
1000 0010. 

 AND CX, AX ;CX <= CX AND AX 

 AND CL, 08 ;CL<= CL AND (0000 1000) 



OR instruction 

79 

 This instruction logically ORs each bit of the source 
byte/word with the corresponding bit in the destination  and 
stores the result in destination. The source can be an  
immediate number, register or memory location, register  can 
be a register or memory location. 

 
 The CF and OF flags are both made zero, PF, ZF, SF are 

affected by the operation and AF is undefined. 

 
 General Format: 

 OR Destination, Source 



Example: 

80 

1100 1010 then after the 
operation 

 OR BL, AL; suppose BL=1000 0110 and 

AL =  BL would be BL= 1100 1110. 

 OR CX, AX;CX <= CX AND AX 
 

 OR CL, 08;CL<= CL AND (0000 1000) 
 

NOT instruction 

 The NOT instruction complements (inverts) the contents of an operand 
register  or a memory location, bit by bit. The examples are as follows: 

 

Example: 
 

 NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX= (0100)2= 
(4)16). 

 

 NOT [5000H] 



XOR instruction 

 The XOR operation is again carried out in a similar way to the  
AND and OR operation. The constraints on the operands are  also 
similar. The XOR operation gives a high output, when the  2 input 
bits are dissimilar. Otherwise, the output is zero. The  example 
instructions are as follows: 

 
Example: 

○ XOR AX,0098H 

○ XOR AX,BX 

○ XOR AX,[5000H] 

81 



 Shift / Rotate Instructions 

 Shift instructions move the binary data to the left or right  

by shifting them within the register or memory location.  

They also can perform multiplication of powers of 2+n  and 

division of powers of 2-n. 

 There are two type of shifts logical shifting and  

arithmetic shifting, later is used with signed numbers  

while former with unsigned. 

82 



 SHL/SAL instruction 

 Both the instruction shifts each bit to left, and places the MSB in  
CF and LSB is made 0. The destination can be of byte size or of  
word size, also it can be a register or a memory location. Number  
of shifts is indicated by the count. 

 All flags are affected. 

 General Format: 

 SAL/SHL destination, count 

Example: 

 MOV BL, B7H; 

 BL is made B7HSAL BL, 1; 

 shift the content of BL register one place to left. 

 Before execution, 

 CY B7,B6 B5 B4 B3 B2  B1 B0 

83 



 SHR instruction 

 This instruction shifts each bit in the specified destination to the  
right and 0 is stored in the MSB position. The LSB is shifted into  the 
carry flag. The destination can be of byte size or of word size,  also it 
can be a register or a memory location. Number of shifts is  
indicated by the count. 

 All flags are affected 

 General Format: SHR destination, count 

Example: 

 MOV BL, B7H;BL is made B7H 

 SHR BL, 1;shift the content of BL register one place to the right. 

 Before execution, 

B7 B6 B5 B4 B3 B2  B1 B0 CY 

84 



 After execution, 

 B7 B6 B5 B4 B3 B2 B1 B0 CY 

 ROL instruction 

 This instruction rotates all the bits in a specified byte or word to  
the left some number of bit positions. MSB is placed as a new  
LSB and a new CF. The destination can be of byte size or of  word 
size, also it can be a register or a memory location.  Number of 
shifts is indicated by the count. 

 All flags are affected 

85 



 General Format: ROL destination, count 

Example: 

 MOV BL, B7H;BL is made B7H 

 CY B7 B6 B5 B4 B3 B2 B1 B0 

 ROL BL, 1;rotates the content of BL register one place to 
the left. 

 
Before execution, 

 CY B7 B6 B5 B4 B3 B2 B1 B0 

86 



 ROR instruction 

 This instruction rotates all the bits in a specified byte or  word 
to the right some number of bit positions. LSB is  placed as a 
new MSB and a new CF. The destination can be  of byte size or 
of word size, also it can be a register or a  memory location. 
Number of shifts is indicated by the  count. 

 General Format: ROR destination, 

 
count Example: 

 MOV BL, B7H; BL is made B7H 
 ROR BL, 1;shift the content of BL register one place  

to the right. 
 Before execution, 
 B7 B6 B5 B4 B3 B2 B1 B0 CY 

87 



 RCR instruction 

 This instruction rotates all the bits in a specified byte or  word 
to the right some number of bit positions along with  the carry 
flag. LSB is placed in a new CF and previous carry is  placed in 
the new MSB. The destination can be of byte size  or of word 
size, also it can be a register or a memory  location. Number of 
shifts is indicated by the count. 

 
 All flags are affected 
 General Format: RCR destination, count  

Example: 
 MOV BL, B7H;BL is made B7H 
 RCR BL, 1;shift the content of BL register one place to the  

right. 

88 



instruction set of 8086 

(String Instructions) 

89 



String Instruction Basics 
 

 Source DS:SI, Destination ES:DI 

 
– You must ensure DS and ES are correct 

– You must ensure SI and DI are offsets into DS  
and ES 
respectively 

 
 Direction Flag (0 = Up, 1 = Down) 

 
– CLD - Increment addresses (left to right) 

– STD - Decrement addresses (right to 

90 



String Control Instructions 

 
1) MOVS/ MOVSB/ MOVSW 

Dest string name, src stringname 

This instruction moves data byte or word from location  
in DS 
to location in ES. 

 
2) REP / REPE / REPZ / REPNE / REPNZ 

91 

until specified conditions Repeat string instructions  
exist. 

This is prefix a instruction. 



String Control Instructions 

92 

4)SCAS / SCASB / SCASW 
Scan a string byte or string word. 
Compares byte in AL or word in AX. String address is to be 
loaded in DI. 

5)STOS / STOSB / STOSW 
Store byte or word in a string. 
Copies a byte or word in AL or AX to memory location 
pointed by 
DI. 

6)LODS / LODSB /LODSW 
Load a byte or word in AL or AX 

Copies byte or word from memory location pointed by SI 
into AL or 
AX register. 



5. Program Execution TransferInstructions 

93 

 instructions are similar to branching or looping instructions. These 

 
instructions include unconditional jump or loop instructions. 

 
 Classification: 

 
 Unconditional transfer instructions 

 
 Conditional transfer instructions 

 
 Iteration control instructions 

 
 Interrupt instructions 



Unconditional transferinstructions 
 

 CALL: Call a procedure, save return address onstack 

 
 RET: Return from procedure to the main program. 

JMP: Goto specified address to get next instruction  CALL 

instruction: The CALL instruction is used to transfer 

 
execution of program to a subprogram or procedure. 

94 



CALL instruction 

95 

 Near call 

1.Direct Near CALL: The destination address is specified in the 
instruction itself. 

2. Indirect Near CALL: The destination address is specified in any 16-  

bit register, except IP. 

 Far call 

1.Direct Far CALL: The destination address is specified in the  
instruction itself. It will be in different Code Segment. 

2.Indirect Far CALL: The destination address is specified in twoword 

memory locations pointed by a register. 



JMP instruction 

82 

The processor jumps to the specified location rather than  
the 

instruction after the JMP instruction. 

 Intra segment jump 

Inter segment jump  

RET 

RET instruction will return execution from a procedure to 
The next instruction after the CALL instruction in the 
calling  program. 



Conditional Transfer Instructions 

97 

• JA/JNBE: Jump if above / jump if not below or equal 

 
• JAE/JNB: Jump if above /jump if notbelow 

 
• JBE/JNA: Jump if below or equal/ Jump if not above 

 
• JC: jump if carry flag CF=1 

 
• JE/JZ: jump if equal/jump if zero flag ZF=1 

 
• JG/JNLE: Jump if greater/ jump if not less than or equal. 



Conditional Transfer Instructions 

 

• JGE/JNL: jump if greater than or equal/ jump if not less 
than 

 
• JL/JNGE: jump if less than/ jump if not greater than or  

equal 

 
• JLE/JNG: jump if less than or equal/ jump if not greater  

than 

 
• JNC: jump if no carry (CF=0). 

 
• JNE/JNZ: jump if not equal/ jump if not zero(ZF=0) 

98 



Conditional Transfer Instructions 

 
• JNO: jump if no overflow(OF=0) 

 
• JNP/JPO: jump if not parity/ jump if parity  

odd(PF=0) 

 
• JNS: jump if not sign(SF=0) 

 
• JO: jump if overflow flag(OF=1) 

 
• JP/JPE: jump if parity/jump if parityeven(PF=1) 

 
• JS: jump if sign(SF=1). 

99 



Iteration Control Instructions 

100 

 These instructions are used to execute a series of instructions for 

certain number of times. 
 

 LOOP: Loop through a sequence of instructions until CX=0. 

instructions while  LOOPE/LOOPZ : Loop through a sequence of 

ZF=1 and instructions CX = 0. 

 LOOPNE/LOOPNZ : Loop through a sequence of instructions while  

ZF=0 and CX =0. 

 JCXZ : jump to specified 



Interrupt Instructions 

101 

Two types of interrupt instructions: 

 
 Hardware Interrupts (External Interrupts) 

 
 Software Interrupts (Internal Interrupts and 

Instructions) 

 
Hardware Interrupts: 

 
• INTR is a maskable hardware interrupt. 

 
• NMI is a non-maskable interrupt. 



Software Interrupts 

• INT : Interrupt program execution, call serviceprocedure 

 INTO : Interrupt program execution if OF=1 

• IRET: Return from interrupt service procedure to main  
program. 

102 



High Level Language Interface Instructions 

103 

ENTER : enter procedure. 

within specified array 

LEAVE: Leave procedure. 

BOUND: Check if effective address 

 
bounds. 



Processor ControlInstructions 

104 

I. Flag set/clearinstructions 

 

 STC: Set carry flag CF to 1 
 

 CLC: Clear carry flag CF to0 
 

 CMC: Complement the state of the carry flagCF 
 

 STD: Set direction flag DF to 1 (decrement stringpointers) 
 

 CLD: Clear direction flag DF to0 

 STI: Set interrupt enable flag to 1(enable INTRinput) 
 

 CLI: Clear interrupt enable Flag to 0 (disable INTRinput) 



II. External Hardware synchronizationinstructions 

105 

HLT: Halt (do nothing) until interrupt or reset. 

 
WAIT: Wait (Do nothing) until signal on the test pin islow. 

from 

ESC: Escape to external coprocessor such as 8087 or 8089. 

 
LOCK: An instruction prefix. Prevents another processor 

 
taking the bus while the adjacent instruction executes. 

NOP: No operation. This instruction simply takes up three clock 

 
cycles and does no processing. 



Assembler Directives 

106 



Assembler Directives 

107 

 ASSUME 

 DB 

 DD 

 DQ 

 DT 

 DW 

- 

- 

- 

- 

- 

Defined Byte.  

Defined Double Word  

Defined Quad Word  

Define Ten Bytes  

Define Word 



 ASSUME Directive- The ASSUME directive is used to tell the  
assembler that the name of the logical segment should be used for  
a specified segment. The 8086 works directly with only 4 physical  
segments: a Code segment, a data segment, a stack segment, and  
an extra segment. 

Example: 

ASUME CS:CODE ;This tells the assembler that the logical segment  
named CODE contains the instruction statements for the program  
and should be treated as a code segment. 

ASSUME DS:DATA ;This tells the assembler that for any instruction  
which refers to a data in the data segment, data will found in the  
logical segment DATA. 

108 



 DB - DB directive is used to declare a byte- type variable orto 
store a byte in memory location. 

 Example: 

1. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes,  
named as PRICE and initialize. 

2. NAME DB ‘ABCDEF’ ;Declare an array of 6 
bytes and initialize with ASCII code for letters 

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage  
in memory and give it the name as TEMP, but leave the 100  
bytes uninitialized. Program instructions will load values into  
these locations. 

109 



of type word or 

110 

 DW-The DW directive is used to define a variable 
to reserve storage location of type word in memory. 

 Example: 

 MULTIPLIER DW 437Ah ; this declares a variable of type word and 
value named it as MULTIPLIER. This variable is initialized with the 

437Ah when it is loaded into memory to run. 

  EXP1 DW 1234h, 3456h, 5678h ; this declares an array of  
3 words and initialized with specified values. 

 

  STOR1 DW 100 DUP(0); Reserve an array of 100 words of  
memory and initialize all words with 0000.Array is named as STOR1. 



  END-END directive is placed after the last statement of a  
program to tell the assembler that this is the end of the  
program module. The assembler will ignore any statement  after 
an END directive. 

 
  ENDP-ENDP directive is used along with the name of the  

procedure to indicate the end of a procedure to the  assembler 

111 

procedure 

 
the End 

;Some 

 
for the 

Example: 

 SQUARE_NUM PROCE ; It start the 

steps to find the square root of a number 

  SQUARE_NUM ENDP ;Hear it is  
procedure 



 END 

 ENDP 

 ENDS 

 EQU 

 EVEN - 

 EXTRN - 

112 

End Program 

- End Procedure 

- End Segment 

Equ-ate 

Align on Even Memory Address 



with name of the 

113 

 ENDS - This ENDS directive is used  
segment to 
indicate the end of that logic segment. 

;Hear it Start the logic Example: CODE SEGMENT 
segment 

containing code ; 

 CODE ENDS ;End of segment named as CODE 

 
 GLOBAL - Can be used in place of a PUBLIC directive or in place  

of an EXTRN directive. 



 GROUP-Used to tell the assembler to group the logical statements  
named after the directive into one logical group segment,  allowing 
the contents of all the segments to be accessed from the  same 
group segment base. 

 

 INCLUDE - Used to tell the assembler to insert a block of source 
code from the named file into the current source module. 

 

 LABEL- Used to give a name to the current value in the location  
counter. 

 NAME- Used to give a specific name to each assembly module  

when programs consisting of several modules are written.  E.g.: 

NAME PC_BOARD 

114 



 OFFSET- Used to determine the offset or displacement of a  
named data item or procedure from the start of the segment  
which contains it. 

E.g.: MOV BX, OFFSET PRICES 

 ORG- The location counter is set to 0000 when the assembler  
starts reading a segment. The ORG directive allows setting a  
desired value at any point in the program. 

E.g.: ORG 2000H 

115 

identify the start of a 

SMART_DIVIDE PROC 

 PROC- Used to  

procedure. E.g.:  

FAR 

 PTR- Used to assign a specific type to a variable or to a  

label. E.g.: INC BYTE PTR[BX] tells the 



 PUBLIC- Used to tell the assembler that a specified name or  
label will be accessed from other modules. 

 SEGMENT- Used to indicate the start of a logical segment.  

E.g.: CODE SEGMENT indicates to the assembler the start of  a

logical segment called CODE 

 SHORT- Used to tell the assembler that only a 1  

byte displacement is needed to code a jump instruction.  

E.g.: JMP SHORT NEARBY_LABEL 

 TYPE - Used to tell the assembler to determine the type of a  
specified variable. 

E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to  
increment BX to point to the next word in an array of  words. 

116 



Procedures and Macros 

117 



Procedures: 

 While writing programs, it may be the case that a particular  
sequence of instructions is used several times. To avoid  
writing the sequence of instructions again and again in the  
program, the same sequence can be written as a separate  
subprogram called a procedure. 

 
Defining Procedures: 

 Assembler provides PROC and ENDP directives in order to  
define procedures. The directive PROC indicates beginning  of 
a procedure. Its general form is: 

Procedure_name PROC [NEAR|FAR] 

118 



Passing parameters to and from procedures: 

The data values or addresses passed between  
procedures and main program are called parameters.  
There are four ways of passing parameters: 

 Passing parameters in registers 

 Passing parameters in dedicated memory locations 

 Passing parameters with pointers passed in registers 

 Passing parameters using the stack 

119 



MACROS: 

 When the repeated group of instruction is too short or not  
suitable to be implemented as a procedure, we use a MACRO.  
A macro is a group of instructions to which a name is given.  
Each time a macro is called in a program, the assembler will  
replace the macro name with the group of instructions. 

 
Defining MACROS: 

 Before using macros, we have to define them. MACRO  directive 
informs the assembler the beginning of a macro. The  general 
form is: 

 Macro_name MACRO argument1, argument2, … 

 Arguments are optional. ENDM informs the assembler the  
end of 

the macro. Its general form is : ENDM 
120 



Procedures Macros 

Accessed by CALL and RET 

mechanism during program execution 

Accessed by name given to macro 

when 

defined during assembly 

Machine code for instructions only put 

in memory once 

Machine code generated for 

instructions 

each time called 

Parameters are passed in registers,  

memory locations or stack 

Parameters passed as part of statement  

which calls macro 

Procedures uses stack Macro does not utilize stack 

A procedure can be defined anywhere 

in program using the directives PROC  

and ENDP 

A macro can be defined anywhere in 

program using the directives MACRO  

and ENDM 

Procedures takes huge memory for 

CALL(3 bytes each time CALL is  

used) instruction 

Length of code is very huge if macro’s 

are called for more number of times 

121 

Differences 



 

 Assembly language 

programs involving 

logical, Branch & Call 

instructions   

 

122 



Write an assembly language program for addition of two 8- 

bit numbers using 8086 microprocessors. 

123 

DATA SEGMENT  

A1 DB 50H  

A2 DB 51H  

RES DB ? 

DATA ENDS  

CODE SEGMENT 

ASSUME CS: CODE, DS:DATA 

START: MOV AX,DATA  

MOV DS,AX 

MOV AL,A1  

MOV BL,A2 

ADD AL,BL  

MOV RES,AL  

MOV AX,4C00H  

INT 21H 

CODE ENDS  

END START 



Write an assembly language program to find the factorial of given  

number using 8086 microprocessors. 

124 

DATA SEGMENT  

FIRST DW 03H  

SEC DW 01H 

DATA ENDS  

CODE SEGMENT 

ASSUME CS:CODE,DS:DATA 

START: MOV AX,DATA  

MOV DS,AX 

MOV AX,SEC  

MOV CX,FIRST 

L1: MUL CX  

DEC CX  

JCXZ L2  

JMP L1 

L2: INT 3H  

CODE ENDS  

END START 



Write an assembly language program to find the sum of squares  

using 8086 microprocessors. 

125 

DATA SEGMENT  

NUM DW 5H  

RES DW ? 

DATA ENDS  

CODE SEGMENT 

ASSUME CS: CODE, DS: DATA 

START: MOV AX,DATA  

MOV DS,AX  

MOV CX,NUM  

MOV BX,00 

L1: MOV AX,CX 

MUL CX 

ADD BX,AX 

DEC CX  

JNZ L1 

MOV RES,BX 

INT 3H 

CODE ENDS  

END START 



Programs using logical ,Branch and call instructions. 

Data segment 

126 

Mov [di],ax  

Int 03h  

Code ends  

End 

Org 2000h  

N1 dw 5678h  

N2 dw 2345h  

Data ends 

Code segment 

Assume cs:code,ds:dats 

Mov ax,data  

Mov ds,ax  

Mov DI,2040h 

Mov ax,N1 

AND ax,bx 

Assembly language programs 



2)Data segment 

 Org 2000h 

 N1 dw 5678h 

 N2 dw 2345h 

 Data ends 

 Code segment 

 Assume cs:code,ds:dats 

 Mov ax,data 

 Mov ds,ax 

 Mov DI,2040h 

 Mov ax,N1 

 MOV bx,N2 

 OR ax,bx 

 Mov [di],ax 

 Int 03h 

 Code ends 

 End 

127 

Assembly language programs 



3)Data segment 

128 

 Org 2000h 

 N1 dw 5678h 

 N2 dw 2345h 

 Data ends 

 Code segment 

 Assume cs:code,ds:dats 

 Mov ax,data 

 Mov ds,ax 

 Mov DI,2040h 

 Mov ax,N1 

 MOV bx,N2 

 xor ax,bx 

 Mov [di],ax 

 Int 03h 

 Code ends 

 End 

Assembly language 

programs 



4)Data segment 

 Org 2000h 

 N1 dw 5678h 

 Data ends 

 Code segment 

 Assume cs:code,ds:dats 

 Mov ax,data 

 Mov ds,ax 

 Mov DI,2040h 

 Mov ax,N1 

 SHL ax,04 

 Mov [di],ax 

 Int 03h 

 Code ends 

 End 

129 

Assembly language programs 



Programs using logical ,Branch and call instructions. 

1)Data segment 

130 

. Mov [di],ax 

. Int 03h 

. Code ends 

. End 

 Org 2000h 

 N1 dw 5678h 

 Data ends 

 Code segment 

 Assume cs:code,ds:dats 

 Mov ax,data 

 Mov ds,ax 

 Mov DI,2040h 

 Mov ax,N1 

 SHR ax,04 

Assembly language programs 



2)Data segment 

 Org 2000h 

 N1 dw 5678h 

 Data ends 

 Code segment 

 Assume cs:code,ds:dats 

 Mov ax,data 

 Mov ds,ax 

 Mov DI,2040h 

 Mov ax,N1 

 ROR ax,02 

 Mov [di],ax 

 Int 03h 

 Code ends 

 End 

131 

Assembly language programs 



3)Data segment 

132 

 Org 2000h 

 N1 dw 5678h 

 Data ends 

 Code segment 

 Assume cs:code,ds:dats 

 Mov ax,data 

 Mov ds,ax 

 Mov DI,2040h 

 Mov ax,N1 

 RCR ax,03 

 Mov [di],ax 

 Int 03h 

 Code ends 

 End 

Assembly language 

programs 



4)Data segment 

 Org 2000h 

 N1 dw 5678h 

 Data ends 

 Code segment 

 Assume cs:code,ds:dats 

 Mov ax,data 

 Mov ds,ax 

 Mov DI,2040h 

 Mov ax,N1 

 RCL ax,04 

 Mov [di],ax 

 Int 03h 

 Code ends 

 End 

133 

Assembly language programs 



Sorting 

134 



Assembly language program to sort the given numbers in  

Ascending order 

135 

ASSUME CS: CODE  

CODE SEGMENT 

START: 

UP1: 

UP: 

MOV AX,0000H  

MOV CH, 0004H  

DEC CH 

MOV CL, CH  

MOV SI, 2000H  

MOV AL, [SI]  

INC SI 

CMP AL, [SI] 



DOWN: 

136 

JC DOWN 

XCHG AL,  

[SI] DEC SI 

MOV [SI], AL 

INC SI  

DEC CL  

JNZ UP 

DEC CH 

JNZ UP1 

INT 3 

CODE ENDS 

END START 



Assembly language program to sort the given numbers  

in Descending order 

ASSUME CS: CODE  

CODE SEGMENT  

START: 

137 

UP1: 

UP: 

MOV AX, 0000H 

MOV CH, 0004H 

DEC CH 

MOV CL, CH  

MOV SI, 2000H  

MOV AL, [SI]  

INC SI 

CMP AL, [SI] 



DOWN: 

138 

JNC DOWN  

XCHG AL, [SI]  

DEC SI 

MOV [SI], AL  

INC SI 

DEC CL  

JNZ UP  

DEC CH  

JNZ UP1  

I NT 3 

CODE ENDS  
END START 



Evaluation of arithmetic expressions 

139 



An Assembly program for performing the following operation 
Z= ((A-B)/10*C) 

 
DATA SEGMENT  
A DB 60 
B DB 20 
C DB 5  
Z DW?  
ENDS 
CODE SEGMENT 
ASSUME DS: DATA CS: CODE 

140 

START: MOV AX, DATA  
MOV DS, AX  
MOV AH, 0  
MOV AL, A 

; Clear content of AX 
; Move A to register AL 



; Subtract AL and B 

; Multiply C to AL 

; Move 10 to register BL 

; Divide AL content by BL 

; Move content of AX to Z 

141 

SUB AL, B  

MUL C  

MOV BL, 10  

DIV BL  

MOV Z, AX 

MOV AH, 4CH 

INT 21H 

ENDS 

END START 



Evaluation of arithmetic expressions 

142 



An Assembly program for performing the following operation 
Z= ((A-B)/10*C) 

 
DATA SEGMENT  
A DB 60 
B DB 20 
C DB 5  
Z DW?  
ENDS 
CODE SEGMENT 
ASSUME DS: DATA CS: CODE 

143 

START: MOV AX, DATA  
MOV DS, AX  
MOV AH, 0  
MOV AL, A 

; Clear content of AX 
; Move A to register AL 



; Subtract AL and B 

; Multiply C to AL 

; Move 10 to register BL 

; Divide AL content by BL 

; Move content of AX to Z 

144 

SUB AL, B  

MUL C  

MOV BL, 10  

DIV BL  

MOV Z, AX 

MOV AH, 4CH 

INT 21H 

ENDS 

END START 



String manipulation 

145 



Program For String Transfer 

146 

; start of data segment DATA SEGMENT 

STR1 DB 'HOW ARE YOU'  

LEN EQU $-STR1 

STR2 DB 20 DUP (0) 

DATA ENDS  

CODE SEGMENT 

; end of data segment 

; start of code segment 

ASSUME CS: CODE, DS: DATA, ES: DATA 

START: MOV AX, DATA ; initialize data segment 

MOV DS, AX 



MOV ES, AX  

LEA SI, STR1  

LEA DI, STR2 

147 

MOV CX, LEN  

CLD 

and 

; initialize extra segment for string operations 

; SI points to starting address of string at ; STR1 

; DI points to starting address of where the string  
has to be transferred 

; load CX with length of the string 

; clear the direction flag for auto increment SI;  
DI 

; the source string is moved to destination  
till CX=0(after every move CX is; 

; terminate the process 

; end of code segment 

REP MOVSB 
address  
decremented) 

MOV AH, 4CH  

INT 21H 

CODE ENDS  

END START 



; start of data segment 

148 

Program To Reverse A String 

DATA SEGMENT 

STR1 DB 'HELLO'  

LEN EQU $-STR1  

STR2 DB 20 DUP (0) 

DATA ENDS 

CODE SEGMENT 

; end of data segment 

; start of code segment 

ASSUME CS: CODE, DS: DATA, ES: DATA 

START: ; initialize data segment MOV AX, DATA  

MOV DS, AX  

MOV ES, AX 



UP: 

149 

LEA SI, STR1 

LEA DI, STR2+LEN-1  

MOV CX, LEN 

CLD 

LODSB  

STD  

STOSB  

LOOP UP 

MOV AH, 4CH  

INT 21H 

CODE ENDS  

END START 



MODULE-II 

 Operation of 8086 and 

Interrupts.   

150 



COURSE  OUTCOMES 

 
  

 
 

151 

CO4 
Distinguish between minimum mode and maximum mode operation of 

8086 microprocessor with timing diagrams.  

CO5 

 

Interpret the functionality of various types of interrupts and their 

structure for controlling the processor or controller and program 

execution flow. 



 

 Pin diagram of 8086  
 

152 



PIN DIAGRAM OF 8086 

153 



8086 operates in single processor or multiprocessor 
configuration to achieve high performance. 
8086 is available in three clock rates 5,8,10 MHZ. 
8086 signals can be categorised in to three groups 
          i)  Signals having common functions in minimum as well as     
              maximum mode. 
          ii)  Signals having special  functions for minimum mode. 
          iii)  Signals having special  functions for maximum mode. 

154 



Signals common to both modes 

AD15-AD0 : (Address/Data lines) 
These are time multiplexed address and data lines, which carry 
address when ALE is high and later function as data lines when 
ALE is low 
Address is available on the address lines during T1 state. 
Data is available on the data bus during T2,T3,TW,T4 clock 
states of machine cycles. 
TW is wait state of machine cycle.  
These lines are active high and float to a tri state during 
interrupt acknowledge and local bus hold acknowledge cycles. 
 

155 



A19/S6,A18/S5,A17/S4,A16/S3: (Address/Status lines) 
These are time multiplexed address and status lines. 
During T1 these are the most significant address lines for memory 
operations . 
During memory or I/O operations status information is available on 
these lines for T2,T3,TW and T4. 
The status of the interrupt enable flag bit is updated at the beginning 
of each clock cycle. 
S4 and S3 indicates which segment register is presently being used 
for memory access. 

156 



 
 
 
 

These lines float to tri-stat during the local bus hold 
acknowledge. 
S6 is always 0. 
S5 is the condition of the interrupt flag . 
Address bits are separated from the status bits using latches 
controlled by ALE signal. 
 
 
 
 
 
 
 
 
 
 
 

157 

S4 S3 indicates 

0 0  Extra Segment(ES) 

0 1 Stack Segment (SS) 

1 0 Code Segment or none(CS) 

1 1 Data Segment (DS) 



BHE’/S7: Bus high enable signal is used to indicate the transfer of 
data over higher order (D15 –D8) data bus. 
BHE’ is low for data transfer over(D15-D8). 
BHE’ is low during T1 for read,write and interrupt acknowledge cycles 
whenever a byte is to be transferred on the higher byte of data 
bus.The status information is available during T2,T3,and T4. 
The signal is active low and tristated during hold. 
The status of this pin is latched along with the address 
information.S7 is always 1. 
. 

158 



159 

RD’:  (Read) 
When this signal is low data can be received from memory or 
input devices. 
RD’ is active low during T2,T3 and Tw of any read cycle. 
RD’ remains tristated during the hold acknowledgement. 
Ready: 
This is the acknowledgement from the slow device or memory 
that they have completed the data transfer.  
The signal is active high. 
If it is at logic low, wait states are inserted into the current bus 
cycle. 



INTR- (Interrupt Request) 
 This is a triggered input.  
This is sampled during the last clock cycles of each instruction to 
determine the availability of the request.  
If any interrupt request is pending, the processor enters the interrupt 
acknowledge cycle.  
 This signal is active high and internally synchronized. 
TEST’: 
This input is examined by a ‘WAIT’ instruction.  
If the TEST’ pin goes low, execution will continue, else the processor 
remains in an idle state.  
The input is synchronized internally during each clock cycle on 
leading edge of clock. 

160 



NMI(Non Maskable Interrupt): 
This is an edge triggered input which causes a type-2 interrupt. 
A transition from low to high initiates the interrupt response at the 
end of the current instruction. 
This input is internally synchronized. 
RESET: 
The input causes the processor to terminate current activity and start 
execution . 
The signal is active high and must be active for atleast four clock 
cycles. 
It restarts execution  when the reset returns low. 
Reset is  also internally synchronized. 

161 



CLK: 
The clock input provides the basic timing for processor 
operation and bus control activity. 
The range of frequency for different 8086 versions  is from 
5MHZ to 10MHZ. 
Vcc: 
+5V power supply for the operation of internal circuit. 
GND: 
Ground for the internal circuit. 

162 



8086 Minimum Mode Pins 

INTA’ (Interrupt Acknowledge): 
In response to INTR,the processor sends acknowledge signal that the 
interrupt is accepted through INTA pin. 
M/IO’: (Memory/input output) 
When M/IO’=1 it performs the memory read/write operations. 
When M/IO’=0 it performs the I/O  read/write operations. 
WR’: (Write) 
It is active low pin. 
It indicates microprocessor is sending data to memory or I/O devices. 
 
 
 

163 



DT/R’: (Data transmit/Receive) 
It indicates transmitting or receiving data over system bus. 
If DT/R’=1 data transmit; If DT/R’=0 data receive. 
It is used to enable external data buffer. 
DEN’: (Data enable) 
It is used to enable external data bus buffer. 
When DEN’=0 data transferred on data bus. 
ALE: (Address Latch Enable) 
When ALE=1  multiplexed line  carries address only. 
When ALE=0  multiplexed line  carries data . 
 
 
 

164 



HOLD: 
When  HOLD line  is high it indicates processor  that another 
master is requesting bus access. 
 
HLDA: (Hold Acknowledgement) 
After receiving HOLD request, the processor issues the 
acknowledge on HLDA pin. 
 

165 



Maximum Mode Pins 

166 

MN/MX’: 
If MN/MX’=0 it indicates maximum mode of operation. 
If MN/MX’=1 it indicates minimum mode of operation. 
S2’,S1’,S0’: (Status Lines) 
It indicates the type of operation carried out by processor. 



RQ1’/GT1’; RQ0’/GT0: (Request/Grant) 
If the other processor wants to access the system bus ,then it is 
going to request the processor which is currently using system 
bus through this pin. 
These are bidirectional pins. 
It will send the acknowledge through same pins.i.e; grant. 
LOCK’: 
When this signal is enabled the system bus is locked for certain 
duration. So it cannot be used by other masters for some 
duration. 

167 



QS1,QS0:(Queue status): 
 
 
 
                           
 

168 



 

 Minimum mode and 

maximum mode of 

operation with Timing 

diagrams   

169 



Minimum mode operation in 8086 

170 



Minimum mode operation in 8086: 

171 



 In a minimum mode 8086 system, the microprocessor 8086 is
operated 
in minimum mode by strapping its MN/MX pin to logic 1. 

 In this mode, all the control signals are given out by the 
microprocessor  chip itself. There is a single microprocessor in 
the minimum mode  system. 

 The remaining components in the system are latches, 
transceivers, clock  generator, memory and I/O devices. Some 
type of chip selection logic  may be required for selecting 
memory or I/O devices, depending upon  the address map of 
the system. 

 Latches are generally buffered output D-type flip-flops like 
74LS373 or  8282. They are used for separating the valid 
address from the  multiplexed address/data signals and are 
controlled by the ALE signal  generated by 8086. 

172 



 Transceivers are the bidirectional buffers and sometimes  they 
are called as data amplifiers. They are required to  separate the 
valid data from the time multiplexed  address/data signals. 

 

 They are controlled by two signals namely, DEN and DT/R. 
 

 The DEN signal indicates the direction of data, i.e. from or to  
the processor. The system contains memory for the monitor  
and users program storage. 

 

 Usually, EPROM is used for monitor storage, while RAM for  
users 
program storage. A system may contain I/O devices. 

173 



Maximum mode operation in 

8086 

174 



•  In the maximum mode, the 8086 is operated by  strapping 

the MN/MX pin to ground. 

•  In this mode, the processor derives the status signal S2, S1,  

S0. Another chip called bus controller derives the control  

signal using this status information. 

•  In the maximum mode, there may be more than  

one microprocessor in the system configuration. 

175 



•  The components in the system are same as in the minimum  

mode system. 

•  The basic function of the bus controller chip IC8288 is to  

derive control signals like RD and WR (for memory and I/O  

devices), DEN, DT/R, ALE etc. using the information by the  

processor on the status lines. 

•  The bus controller chip hasinput lines S2, S1, S0 and  

CLK. These inputs to 8288 are driven by CPU. 

176 



Maximum mode 

177 



 It derives the outputs ALE, DEN, DT/R, MRDC, MWTC,  AMWC, 
IORC, IOWC and AIOWC. The AEN, IOB and CEN pins  are 
especially useful for multiprocessor systems. 

 
 AEN and IOB are generally grounded. CEN pin is usually  

tied to 
+5V. The significance of the MCE/PDEN output depends  
upon the 
status of the IOB pin. 

 
 If IOB is grounded, it acts as master cascade enable to  control 

cascade 8259A, else it acts as peripheral data enable  used in 
the multiple bus configurations. 

178 



 INTA pin used to issue two interrupt acknowledge pulses to  
the interrupt controller or to an interrupting device. 

 
 IORC, IOWC are I/O read command and I/O write command  

signals respectively. 
 

 These signals enable an IO interface to read or write the data  
from or to the address port. 

 
 The MRDC, MWTC are memory read command and memory  

write command signals respectively and may be used as  
memory read or write signals. 

179 



 The MRDC, MWTC are memory read command and memory  
write command signals respectively and may be used as  
memory read or write signals. 

 
 All these command signals instructs the memory to accept  or 

send data from or to the bus. 

 For both of these write command signals, the advanced 
signals namely AIOWC and AMWTC are available. 

180 



Here the 

181 

only difference between in timing diagram 
between minimum mode and maximum mode is the status 

available control and advanced signals used and the  
command signals. 

R0, S1, S2 are set at the beginning of bus cycle.8288 bus  
controller will output a pulse as on the ALE and apply a  
required signal to its DT / R pin during T1. 

 
In T2, 8288 will set DEN=1 thus enabling transceivers, and  for 

an input it will activate MRDC or IORC. These signals are  
activated until T4. For an output, the AMWC or AIOWC is  
activated from T2 to T4 and MWTC or IOWC is activated  from 
T3 to T4. 



Timing diagram for  

minimum mode 

182 



Write Cycle Timing Diagram for 

183 



 The working of the minimum mode configuration system can  

be better described in terms of the timing diagrams rather  

than qualitatively describing the operations. 

 The opcode fetch and read cycles are similar. Hence the  timing 

diagram can be categorized in two parts, the first is  the timing 

diagram for read cycle and the second is the  timing diagram 

for write cycle. 

184 



Bus Request and Bus Grant Timings in Minimum Mode System  
of 8086 

185 



Timing diagram for  

maximum mode 

186 



Memory Read Timing Diagram in Maximum  
Mode of 8086 

187 



Memory Write Timing in Maximum mode of 8086 

188 



Interrupt structure of 8086 

189 



Interrupt structure of 8086 

190 



Vector interrupt table,  

interrupt service routines 

191 



Vector interrupt 

192 



Introduction to DOS and BIOS 

interrupts 

193 



by putting a specific value in 

194 

BIOS INTERRUPT 

 INT 10H – Video Screen 

 The option is chosen  
register AH 

 The video screen is text mode is divided into 80 
columnsand 25 rows 

 A row and column number are associated with each  
location on the screen with the top left corner as 00,00  
and the bottom right corner as 24,79. The center of the  
screen is at 12,39 or (0C,27 in hex) 

 Specific registers has to be set to specific values  
before invoking INT 10H 

BIOS INTERRUPT 



 Function 06 – clear the screen 

 AH = 06 

 AL = 00 

 BH = 07 

 CH = 00 

 CL = 00 

 DH = 24 

 DL = 79 

195 

; function number 

; page number 

; normal attribute 

; row value of start point 

; column value of start point 

; row value of ending point 

; column value of ending point 

; function number 

; cursor 

 Function 02 – setting the cursor to a specific location 

 AH = 06 

 DH = row 

 DL = column ; position 

BIOS INTERRUPT 



; function number 

; currently viewed page 

196 

 Function 03 – get the current cursor position 

 AH = 03 

 BH= 00 

 The position is returned in DH = row and DL = column 

 

 Function 0E – output a character to the screen 

 AH = 0E ; function number 

 AL = Character to be displayed 

 BH = 00 

 BL = 00 

; currently viewed page 

; default foreground color 

BIOS INTERRUPT 



 Function 09 – outputting a string of data to the monitor 

 AH = 09 ; function number 

 DX = offset address of the ASCII data to be displayed, 

data segment is assumed 

 The ASCII string must end with the dollar sign $ 

 
 Function 02 – outputting a single character to the 

monitor 

 AH = 02 ; function number 

 DL = ASCII code of the character to be displayed 

 
 Function 01 – inputting a single character, with an echo 

 AH = 01 ; function number.After the interrupt AL = ASCII  

code of the input and is echoed to the monitor 

197 

DOS INTERRUPT 



 Function 0A – inputting a string of data from the keyboard 
 AH = 0A ; function number 
 DX = offset address at which the string of data is stored (buffer 

area), data 
 segment is assumed and the string must end with <RETURN> 
 After execution: 
 DS:DX = buffer in bytes (n characters + 2) 
 DS:DX+1 = number of entered characters excluding the return  

key 
 DS:DX+2 = first character input 
 · · · 
 DS:DX+n = last character input 
 To set a buffer, use the following in the data segment: 
 Buffer DB 10, ? , 10 DUP(FF) 

198 

DOS INTERRUPT 



 Function 07 – inputting a single character from the keyboard  
without an echo 

 AH = 07 ; function number 

 Waits for a single character to be entered and provides it in AL 

 INT16 – Keyboard Programming 

 Function 01 – check for a key press without waiting for theuser 

 AH = 01 

 Upon execution ZF = 0 if there is a key pressed 
 

 Function 00 – keyboard read 

 AH = 00 

 Upon execution AL = ASCII character of the pressed key 

 Note this function must follow function 01 

199 

DOS INTERRUPT 



MODULE-III 

 Interfacing with 8086   

200 



COURSE  OUTCOMES 

 
  

 
 

201 

CO6 

Demonstrate the internal architecture and various modes of 

operation of the devices used for interfacing memory and I/O devices 

with microprocessor.  

CO7 
Choose an appropriate data transfer scheme and hardware to 

perform serial data transfer among the devices.  



Memory interfacing to 8086  

(Static RAM and EPROM) 

202 



 Interface two 4Kx8 EPROMS and two 4Kx8 RAM chips  
with 8086. select suitable maps. 

203 



204 



205 



Need for DMA 

206 



 Direct memory access (DMA) is a feature of modern computer  
systems that allows certain hardware subsystems to read/write  
data to/from memory without microprocessor intervention,  
allowing the processor to do other work. 

 
 Used in disk controllers, video/sound cards etc, or

between 
memory locations. 

 
 Typically, the CPU initiates DMA transfer, does other operations  

while the transfer is in progress, and receives an interrupt 
from  the DMA controller once the operation is complete. 

 
 Can create cache coherency problems (the data in the cache 

may  be different from the data in the external memory after 
DMA) 

207 

Need For DMA 



DMA Data transfer  Method 

208 



DMA Data Transfer Method 

209 



 The I/O device asserts the appropriate DRQ signal for 
the  channel. 

 

 The DMA controller will enable appropriate channel, and ask 
the  CPU to release the bus so that the DMA may use the bus. 
The  DMA requests the bus by asserting the HOLD signal 
which goes to  the CPU. 

 

 The CPU detects the HOLD signal, and will complete executing 
the  current instruction. Now all of the signals normally 
generated by  the CPU are placed in a tri-stated condition 
(neither high or low)  and then the CPU asserts the HLDA 
signal which tells the DMA  controller that it is now in charge 
of the bus. 

 The CPU may have to wait (hold cycles). 210 



 DMA activates its -MEMR, -MEMW, -IOR, -IOW output signals,  
and the address outputs from the DMA are set to the target  
address, which will be used to direct the byte that is about to  
transferred to a specific memory location. 

 

 The DMA will then let the device that requested the DMA  
transfer know that the transfer is commencing by asserting the 
-  DACK signal. 

 The peripheral places the byte to be transferred on the bus 
Data  lines. 

 Once the data has been transferred, The DMA will de-assert 
the -  DACK2 signal, so that the FDC knows it must stop placing 
data on  the bus. 

211 



 The DMA will now check to see if any of the other DMA channels  
have any work to do. If none of the channels have their DRQ lines  
asserted, the DMA controller has completed its work and will 
now  tri-state the -MEMR, -MEMW, -IOR, -IOW and address 
signals. 

 

 Finally, the DMA will de-assert the HOLD signal. The CPU sees 
this,  and de-asserts the HOLDA signal. Now the CPU resumes 
control of  the buses and address lines, and it resumes executing 
instructions  and accessing main memory and the peripherals. 

212 



8237-DMA Controller 

213 



Pin diagram 

214 



 Block Diagram 

215 



8237 Internal Registers 

216 

 CAR 

 The current address register holds a 16-bit memory address used  
for the DMA transfer. 

 each channel has its own current address 
register for this purpose. 

 When a byte of data is transferred during a DMA operation, CAR  
is either incremented 
or decremented. depending on how it is programmed 

 CWCR 

 The current word count register programs a channel for the  
number of bytes to transferred during a DMA action. 



CR(Command Register) 

217 

 The command register programs the operation of the 8237 
DMA 
controller. 

 

 The register uses bit position 0 to select the memory-to-
memory  DMA transfer mode. 

 

 Memory-to-memory DMA transfers use DMA channel 

 DMA channel 0 to hold the source address 

 DMA channel 1 holds the destination address 



218 



BA and BWC 

 The base address (BA) and base word count (BWC) registers 
are  used when auto-initialization is selected for a channel. 

 In auto-initialization mode, these registers are used to reload 
the CAR and CWCR after the DMA action is completed. 

 

MR (Mode Register) 

 The mode register programs the mode of operation for a 
channel. 

 Each channel has its own mode register as selected by
bit  positions 1 and 0. 

 Remaining bits  of  the  mode  register select operation, 
auto-initialization, increment/decrement, and mode for the 
channel 

219 



220 



RR(Request Register) 

221 

 The request register is used to request a DMA transfer via 
software. 

 very useful in memory-to-memory transfers, where an 

external  signal is not available to begin the DMA transfer 



Request Register 

222 



MR(Mask Register) 

 The mask register set/reset sets or clears the channel 
mask. 

 if the mask is set, the channel is disabled. 

 The RESET signal sets all channel masks 
to disable them 

223 



MSR 

The mask register clears or sets all of the masks with one 
command instead of individual channels, as  with the MRSR. 

224 



SR(Status Register) 

225 

 The status register shows status of each DMA channel. The TC 
bits  indicate if the channel has reached its terminal count 
(transferred  all its bytes). 

 

 When the terminal count is reached, the DMA transfer is 
terminated for most modes 
of operation. 

 

 The request bits indicate whether the DREQ input for a given 
channel is active. 



Status Register 

226 



DMA Controller-8257 

227 



 Here is a list of some of the prominent features of 8257 − 

 It has four channels which can be used over four I/O 
devices. 

 Each channel has 16-bit address and 14-bit counter. 

 Each channel can transfer data up to 64kb. 

 Each channel can be programmed independently. 

 Each channel can perform read transfer, write transfer and 
verify  transfer operations. 

 It generates MARK signal to the peripheral device that 128 
bytes 
have 

 been transferred. 

 It requires a single phase clock. 

 Its frequency ranges from 250Hz to 3MHz. 
228 

Features of 8257 



8257 Pin Description 

 The following image shows the pin diagram of a 8257 
DMA  controller 

229 



Block Diagram of 8257 

230 



Terminal Count Register: 

231 



 Mode Set Register: 

232 



 Status Register: 

233 



234 



 

 Interfacing with 

8237/8257   

235 



Interfacing 8257 with 8086 

236 



Interfacing 8257 with 8086 

237 



• Once a DMA controller is initialised by a CPU property, it is 
ready to take control of the system bus on a DMA request, 
either from a peripheral or itself (in case of memory-to-
memory transfer).  

• The DMA controller sends a HOLD request to the CPU and 
waits for the CPU to assert the HLDA signal. The CPU 
relinquishes the control of the bus before asserting the HLDA 
signal. 

• Once the HLDA signal goes high, the DMA controller activates 
the DACK signal to the requesting peripheral and gains the 
control of the system bus. The DMA controller is the sole 
master of the bus, till the DMA operation is over. The CPU 
remains in the HOLD status (all of its signals are tristate 
except HOLD and HLDA), till the DMA controller is the master 
of the bus. 

238 



 

SERIAL DATA TRANSFER  

SCHEMES 

239 



Asynchronous and synchronous  data

 transfer schemes 

240 

Data Transfer Schemes 



Data Transfer Schemes 

241 



 Even in shorter distance communications, serial computer 

buses  are becoming more common because of a tipping point 

where  the disadvantages of parallel busses (clock skew, 

interconnect  density) outweigh their advantage of simplicity. 

 The serial port on your PC is a full-duplex device meaning that 

it  can send and receive data at the same time. In order to be 

able to  do this, it uses separate lines for transmitting and 

receiving data. 

242 

Data Transfer Schemes 



Advantages of serial communications: 

 Requires fewer interconnecting cables and hence 

occupies less space. 

 "Cross talk" is less of an issue, because there are fewer  

conductors compared to that of parallel communication  

cables. 

 
 Many IC s and peripheral devices have serial interfaces. 

 Clock skew between different channels is not an issue. 

 Cheaper to implement. 

243 

Data Transfer Schemes 



 SERIAL DATA TRANSMISSION MODES 
When data is transmittedbetween two pieces ofequipment,  
three communication modes of operation can be used. 

 
 Simplex: In a simple connection, data is transmitted in one  

direction only. For example, from a computer to printer that  
cannot send status signals back to the computer. 

 
 Half-duplex:In a half-duplex connection,two-way transfer  

of data is possible, but only in one direction at a time. 

 
 Full duplex: In a full-duplex configuration, both ends can  send 

and receive data simultaneously, which technique is  common 
in our PCs. 

244 

Data Transfer Schemes 



 SERIAL DATA TRANSFER SCHEMS 

 There are two ways to synchronize the two ends  

of the communication. 

 
○ Synchronous data transmission 

 
○ Asynchronous data transmission 

245 

Data Transfer Schemes 



Synchronous Data Transmission 

246 

Data Transfer Schemes 



 The synchronous signaling methods use two different signals. A  

pulse on one signal line indicates when another bit of  

information is ready on the other signal line. 

 
 

 In synchronous transmission, the stream of data to be  transferred 

is encoded and sent on one line, and a periodic  pulse of voltage 

which is often called the "clock" is put on  another line, that tells 

the receiver about the beginning and  the ending of each bit 

247 

Data Transfer Schemes 



 Advantages: The only advantage of synchronous data transfer is  

the Lower overhead and thus, greater throughput, compared  to 

asynchronous one. 

248 

 Disadvantages: 

 Slightly more complex 

 Hardware is more expensive 

Data Transfer Schemes 



Data Transfer Schemes 

249 



 The asynchronous signaling methods use only one signal. The  

receiver uses transitions on that signal to figure out the  

transmitter bit rate (known as auto baud) and timing. 

 A pulse from the local clock indicates when another bit is ready.  

That means synchronous transmissions use an external clock,  

while asynchronous transmissions are use special signals along  

the transmission medium. 

250 

Data Transfer Schemes 



Asynchronous communication is the commonly prevailing  
communication method in the personal computer industry, due  
to the reason that it is easier to implement and has the unique  
advantage that bytes can be sent whenever they are ready, no  
need to wait for blocks of data to accumulate. 

251 

Data Transfer Schemes 



hardware can be made 

252 

Advantages: 

 
 Simple and doesn't require much synchronization on  

both 
communication sides. The timing is not as critical as for 

synchronous transmission; therefore 

 

cheaper. 

 Set-up is very fast, so well suited for applications where messages 

 
are generated at irregular intervals, for example data entry from 

 
the keyboard. 

Data Transfer Schemes 



Disadvantages: 

 One of the main disadvantages of asynchronous technique is  

the large relative overhead, where a high proportion of the 

transmitted bits are uniquely for control purposes and thus  

carry no useful information. 

253 

Data Transfer Schemes 



  

 8251 USART architecture 

and interfacing   

 

254 



Pin diagram of 8251 

255 



USART 

256 

Block diagram of 8251 



Sections of 8251A 

257 

 Data Bus buffer 

 Read/Write Control Logic 

 Modem Control 

 Transmitter 
 CS – Chip Select 

 Receiver 

Data Bus Buffer 

D0-D7 : 8-bit data bus used to read or write status, command word or data 

Read/Write Control logic 
 C/D – Control/Data 

 WR: When signal is low, the MPU either writes. 

 RD : When signal goes low, the MPU either reads. 

 RESET : A high on this signal reset 8252A. 



Control Register 

258 

 16-bit register for a control word consist of two independent  
bytes namely mode word & command word. 

 Mode word : Specifies the general characteristics of operation  
such as baud, parity, number of bits etc. 

 Command word : Enables the data transmission and reception. 

 Register can be accessed as an output port when the Control/Data  
pin is high. 

Status register 

 Checks the ready status of theperipheral. 

 Status word register provides the information concerning register  
status and transmission errors. 



Dataregister 

 Used as an input and output port when the C/D is low. 

259 



Modem Control 

is ready when  DSR - Data Set Ready : Checks if the Data Set 
 communicating with a modem. 

DTR - Data Terminal Ready : Indicates that the device is ready 
to accept data when the 8251 is communicating with a modem. 
 CTS  -  Clear to  Send : If its low,  the 8251A is enabled to transmit the 

 serial data provided the enable bit in the command byte is set to‘1’. 
that the  RTS - Request to Send Data : Low signal indicates the modem  

receiver is ready to receive a data byte from the modem. 
Transmitter section 

 Accepts parallel data from MPU & converts them into serial data. 

 Has two registers: 

• Buffer register : To hold eight bits 

• Output register : To convert eight bits into a stream of serial bits. 

260 



Receiver Section 

261 



Mode word & command word for 8251 

262 



Status word register of 8251 

263 



interfacing 8251 USART with 8086   

 

   
 

264 



interfacing 8251 USART with 8086 

 
 

265 



TTL to RS 232C and RS232C to  

TTL conversion 

266 



RS-232 defines serial, asynchronouscommunication 
• Serial - bits are encoded and transmitted one at a time (as opposed to  

parallel transmission) 

• Asynchronous - characters can be sent at any time and bits  
are not individually synchronized 

267 



Electrical Characteristics 

268 

with respect to system 

 Single-ended 

• One wire per signal, voltage levels are 
common (i.e. signalground) 

 Mark: –3V to –15V 

• represent Logic 1, Idle State (OFF) 

 Space: +3 to +15V 

• represent Logic 0, Active State (ON) 

 Usually swing between –12V to+12V 

 Recommended maximum cable length is 15m, at 20kbps 



25-Pin RS232 Connector 9-Pin RS232 Connector 

269 

Mechanical Characteristics 
 25-pin connector 

 Use male connector on DTE and female connector on DCE. 



Function of Signals 

270 

 TD: transmitted data 

 RD: receiveddata 

 DSR: data set ready 

• indicate whether DCE is poweredon. 

 DTR: data terminalready 

• indicate whether DTR is powered on 

• turning off DTR causes modem to hang up the line 

 RI: ring indicator 

• ON when modem detects phonecall. 
 DCD: data carrier detect 

• ON when two modems have negotiated successfully 
and the carrier signal is established on thephoneline. 



 RTS: request to send 

• ON when DTE wants to send data 

• Used to turn on and off modem’s 
carrier signal in multi-point (i.e. multi-drop) lines 

• Normally constantly ON in point-to-point lines 

 CTS: clear to send 

• ON when DCE is ready to receive data. 

 SG: signal ground 

271 



 Voltage levels, slew rate, and short-circuit behavior are typically  
controlled by a line driver(MC 1488) that converts from the  
USART's logic levels (TTL levels) to RS-232 compatible signal  levels, 
and a receiver (MC 1489) that converts RS-232 compatible  signal 
levels to the USART's logic levels (TTLlevels). 

272 



MODULE-IV 
ADVANCED MICROPROCESSORS 

273 



COURSE  OUTCOMES 

 
  

 
 

274 

CO8 

 

Outline the salient features of 80286, 80386 and RISC processors in 

relation to basic 8086 microprocessor. 

CO9 
Illustrate the paging operation and segmentation of advanced 

microprocessors for memory management.  



 

 Introduction to 80286   

 

275 



Salient features of 80286 

276 

 High performance microprocessor with memory 
management and protection 

 80286 is the first member of the family of advanced  
microprocessors with built-in/on-chip memory management  
and protection abilities primarily designed for multi-  
user/multitasking systems 

 Available in 8 MHz, 10 MHz & 12.5 MHz clock frequencies 

 80286 is upwardly compatible with 8086 in terms of 
instruction set. 

 80286 have two operating modes namely real address mode  
and virtual address mode. 



Salient features of 80286: 

 In real address mode, the 80286 can address up to 1Mb of  
physical memory address like 8086. 

 In virtual address mode, it can address up to 16 Mb of physical  
memory address space and 1 GB of virtual memory address  
space. 

 80286 has some extra instructions to support operating system  
and memory management. 

 In protected virtual address mode, it is source code compatible 
with 8086. 

 The performance of 80286 is five times faster than the  

standard 8086. 

277 



Bus and memory sizes 

278 

 The 80286 CPU, with its 24-bit address bus is able toaddress 
16MB of physical memory. 

 1GB of virtual memory for each task 

Microprocessor Data bus  

width 

Address bus  

width 

Memory size 

8086 16 20 1M 

80186 16 20 1M 

80286 16 24 16M 



Operating Modes: 

279 

Intel 80286 has 2 operating modes: 
 

Real Address Mode : 
 80286 is just a fast 8086 --- up to 6 timesfaster 

 All memory management and protection mechanisms are  
disabled 

 286 is object code compatible with 8086 
Protected Virtual Address Mode 

 80286 works with all of its memory management and  
protection capabilities with the advanced instructionset. 

 it is source code compatible with 8086 



80286 Architecture: 

280 



3.Execution unit 

4.Address unit 

281 

Functional Parts:  

1.Bus Interface unit  

2.Instruction unit 



Bus Interface Unit 

282 

 Performs all memory and I/O read and write operations. 

 Take care of communication between CPU and a 
coprocessor. 

 Transmit the physical address over address bus A0 – A23. 

 Prefetcher module in the bus unit performs this task of 

prefetching. 
 

 Bus controller controls the prefetcher module. 

 Fetched instructions are arranged in a 6 – byte prefetch 
queue. 



Instruction Unit 

283 

 Receive arranged instructions from 6 byte prefetch queue. 

 Instruction decoder decodes up to 3 prefetched instruction 

and  are latched them onto a decoded instruction queue. 

 

 Output of the decoding circuit drives a control circuit in the 

Execution unit. 



Execution unit 

284 

 EU executes the instructions received from the decoded 

instruction queue sequentially. 
 

 Contains Register Bank. 

 contains one additional special register called Machine status 

word (MSW) register --- lower 4 bits are only used. 

 ALU is the heart of execution unit. 

 After execution ALU sends the result either over data bus or 
back 

to the register bank. 



Address Unit 

285 

 Calculate the physical addresses of the instruction and data that 

the CPU want to access 

 Address lines derived by this unit may be used to address  

different peripherals. 

 Physical address computed by the address unit is handed over 

to the BUS unit. 



REGISTER ORGANIZATION OF 80286: 

 
The 80286 CPU contains almost the same set of registers, as 
in 8086, namely 

Eight 16-bit general purpose registers (AX, BX, CX, DX) 

Four 16-bit segment registers (CS, SS, DS, ES) 

Status and control registers (SP, BP, SI, DI) 

Instruction Pointer (IP) 

Two 16-bit register - FLAGS, MSW 

Two 16-bit register - LDTR and TR 

Two 48-bit register - GDTR and IDTR 

286 



287 



Flag Register 

288 



 The initial protected mode, released with the 286, was not widely 
used; 

 for example, it was used by Microsoft xenix (around  1984),coherent 
and minix. Several shortcomings such as the  inability to access the 
BIOS or DOS calls due to inability to switch  back to real mode 
without resetting the processor prevented  widespread usage. 

 Acceptance was additionally hampered by the fact that the 286  
only allowed memory access in 16 bit segments via each of four  
segment registers, meaning only 4*2 bytes, equivalent to 256  
kilobytes, could be accessed at a time Because changing a  segment 
register in protected mode caused a 6-byte segment  descriptor to 
be loaded into the CPU from memory 

289 



 The segment register load instruction took many  tens 
of processor cycles, making it much slower  than on 
the 8086; therefore, the strategy of  computing 
segment addresses on-the-fly in order  to access data 
structures larger than 
128 kilobytes (the combined size of the two data  
segments) became impractical, even for those few  
programmers who had mastered it on the  
8086/8088 

290 



There are four types of privilege levels 

 00 - kernel level (highest privilege level) 

 01 - OS services 

 10 - OS extensions 

 11 - Applications (lowest privilege level) 

 Each task assigned a privilege level, which indicates thepriority  
or privilege of that task. 

 It can only changed by transferring the control, using gate 
descriptors, to a new segment. 

 A task executing at level 0, the most privileged level, can access  
all the data segment defined in GDT and LDT of the task. 

 A task executing at level 3, the least privileged level, will havethe 
most limited access to data and other descriptors. 

291 



292 



Base Address 

 32 bit starting memory address of the segment Segment  Limit 

 
 20 bit length of the segment. (More specifically, the address  of 

the last accessible data, so the length is one more that the  
value stored here.) How exactly this should be interpreted  
depends on other bits of the segment descriptor. 

G=Granularity 
 If clear, the limit is in units of bytes, with a maximum of 220  

bytes. If set, the limit is in units of 4096-byte pages, for a  
maximum of 232 bytes. 

293 



Base Address 
 

• D=Default operand size 
If clear, this is a 16-bit code segment; if set, this is a 32-bit segment 
• L=Long-mode segment 
If set, this is a 64-bit segment (and D must be zero), and code in this segment  
uses the 64-bit instruction encoding 
• AVL=Available 
For software use, not used by hardware 

 

• D=Default operand size 
If clear, this is a 16-bit code segment; if set, this is a 32-bit segment 
• L=Long-mode segment 
If set, this is a 64-bit segment (and D must be zero), and code in this segment 
uses the 64-bit instruction encoding 
• AVL=Available 
For software use, not used by hardware 

294 



P=Present 

 If clear, a "segment not present" exception is generated on any  
reference to this segment 

DPL=Descriptor privilege level 

Privilege level required to access this descriptor  

C=Conforming 

 Code in this segment may be called from less-privileged levels 

R=Readable 

If clear, the segment may be executed but not read from  

A=Accessed 

 This bit is set to 1 by hardware when the segment is accessed, 
and cleared by software 

295 



Memory access in GDT and LDT 

296 

 The Global Descriptor Table or GDT is a data structure used  by 
Intel x86- 

family processors starting with the 80286 in order to define the  

characteristics of the various memory areas used during  program 

execution, including the base address, the size and  access 

privileges like execute- ability and write-ability. 



 There is also a Local Descriptor Table (LDT). While the LDT  
contains memory segments which are private to a specific  
program, the GDT contains global segments. 

 The x86 processors have facilities for automatically switching  the 
current LDT on specific machine events, but no facilities for  
automatically switching the GDT. 

297 

Memory access in GDT and LDT 



Memory access in GDT and LDT 

298 



In GDT or LDT 

299 

Memory access in GDT and LDT 



Memory Accessing In GDT or LDT 

• A segment cannot be accessed, if its descriptor does not exist in  

either LDT or GDT. 

• Set of descriptor (descriptor table) arranged in a proper sequence  

describes the complete program. 

300 

Memory access in GDT and LDT 



• The descriptor is a block of contiguous memory location  

containing information of a segment, like 

• Segment base address 

• Segment limit 

• Segment type 

• Privilege level – prevents unauthorized access 

• Segment availability in physical memory 

• Descriptor type 

• Segment use by another task 

301 

Memory access in GDT and LDT 



 The Global Descriptor Table or GDT is a data structure used by 

Intel x86-family processors starting with the 80286 in order to 

define the characteristics of the various memory areas used  during 

program execution, including the base address, the size  and access 

privileges like execute- ability and write-ability. 

302 

Memory access in GDT and LDT 



 Local Descriptor Table (LDT). While the LDT contains memory 

segments which are private to a specific program, the GDT contains 

global segments. The x86 processors have facilities for automatically  

switching the current LDT on specific machine events, but no  facilities 

for automatically switching the GDT. 

303 

Memory access in GDT and LDT 



Differentiate between GDT and LDT. 

  LDT is actually defined by a descriptor inside the GDT, while the GDT  is 

directly defined by a linear address.The lack of symmetry between  both 

tables is underlined by the fact that the current LDT can be   

automatically switched on certain events, notably if TSS-based  

multitasking is used, while this is not possible for the GDT. 

 The LDT also cannot store certain privileged types of memory  

segments. 

304 

Memory access in GDT and LDT 



 The LDT is the sibling of the Global Descriptor Table (GDT)  
and similarly defines up to 8191 memory segments  
accessible to programs. 

 
 LDT (and GDT) entries which point to identical memory  

areas are called aliases. 

 Instruction to load GDT is  LGDT(Load Global Descriptor  

Table) and  instruction to load LDT is  LLDT(Load Global 

 

Descriptor Table). Both are privileged instructions. 

305 

Memory access in GDT and LDT 



Multitasking 

  multitasking is the concurrent execution of multiple tasks  

(also known as processes) over a certain period of time.  New 

tasks can interrupt already started ones before they  finish, 

instead of waiting for them to end. 

  As a result, a computer executes segments of multiple tasks  

in an interleaved manner, while the tasks share common  

processing resources such as central processing unit (CPUs)  

and main memory. 

306 

Multitasking 



context switch 

 Multitasking automatically interrupts the running program,  

saving its state (partial results, memory contents and  

computer register contents) and loading the saved state of  

another program and transferring control to it. 

 This “context switch" may be initiated at fixed time intervals  

(pre-emptive multitasking), or the running program may be  

coded to signal to the supervisory software when it can be  

interrupted (cooperative multitasking). 

307 

Multitasking 



Features of Multitasking 

  It allows more efficient use of the computer hardware; where a 

program is waiting for some external event such as a user input  

or an input/output transfer with a peripheral to complete, the  

central processor can still be used with another program. 

 In a time sharing system, multiple human operators use the  

same processor as if it was dedicated to their use, while  behind 

the scenes the computer is serving many users by  multitasking 

their individual programs. 

308 

Multitasking 



 In multiprogramming systems, a task runs until it must wait for an 

external event or until the operating system's scheduler forcibly 

 

swaps the running task out of the CPU. 

309 

Multitasking 



to control 

310 

Applications : 

 Real-time systems such as those designed  

industrial robots, require timely processing; 

  single processor might be shared between calculations of 

 
machine movement, communications, and user interface. 

Multitasking 



Advantages 

311 

multitasking operating systems include measures to  

the priority of individual tasks, so that important jobs 

 Often 

change  

receive more processor time than those considered less 

significant. 

 Depending on the operating system, a task might be as large as  

an entire application program, or might be made up of smaller  

threads that carry out portions of the overall program. 

Multitasking 



Multitasking 

  multitasking is the concurrent execution of multiple tasks  

(also known as processes) over a certain period of time.  New 

tasks can interrupt already started ones before they  finish, 

instead of waiting for them to end. 

 As a result, a computer executes segments of multiple tasks  in 

an interleaved manner, while the tasks share common  

processing resources such as central processing unit (CPUs)  

and main memory. 

312 

Addressing Modes 



context switch 

 Multitasking automatically interrupts the running program,  

saving its state (partial results, memory contents and  

computer register contents) and loading the saved state of  

another program and transferring control to it. 

 This “context switch" may be initiated at fixed time intervals  

(pre-emptive multitasking), or the running program may be  

coded to signal to the supervisory software when it can be  

interrupted (cooperative multitasking). 

313 

Addressing Modes 



Features of Multitasking 

  It allows more efficient use of the computer hardware; where a  

program is waiting for some external event such as a user input 

or an input/output transfer with a peripheral to complete, the  

central processor can still be used with another program. 

 In a time sharing system, multiple human operators use the  

same processor as if it was dedicated to their use, while  behind 

the scenes the computer is serving many users by  multitasking 

their individual programs. 

314 



 In multiprogramming systems, a task runs until it must wait  
for an external event or  until  the  operating  
system's scheduler  forcibly  swaps the running task out  
of the CPU. 

315 



to control 

316 

Applications : 
 

 Real-time systems such as those designed 

 
industrial robots, require timely processing; 

 A single  processor might be shared between calculations 

of machine movement, communications, and user  

interface. 

Addressing Modes 



Advantages 

317 

multitasking operating systems include measures to  

the priority of individual tasks, so that important jobs 

 Often 

change  

receive more processor time than those considered less 

significant. 

 Depending on the operating system, a task might be as large as  

an entire application program, or might be made up of smaller  

threads that carry out portions of the overall program. 



Direct addressing mode: 

 In the direct addressing mode, a 16-bit memory address  
(offset) 

directly specified in the instruction as a part of it. 

Example: MOV AX, [5000H]. 

 
Register addressing mode: 

 In the register addressing mode, the data is stored in a  
register and it is referred using the particular register. All the  
registers, except IP, may be used in this mode. 

Example: MOV BX, AX 

318 

Addressing Modes 



Register indirect addressing mode: 
 

 Sometimes, the address of the memory location which  

contains data or operands is determined in an indirect way,  

using the offset registers. The mode of addressing is known  as 

register indirect mode. 

 In this addressing mode, the offset address of data is in  
either BX or SI 

or DI Register. The default segment is either DS or ES. 

Example: MOV AX, [BX]. 

319 

Addressing Modes 



Indexed addressing mode: 

 In this addressing mode, offset of the operand is stored one  of 
the index registers. DS & ES are the default segments for  index 
registers SI & DI respectively. 

 
Example: MOV AX, [SI] 

 Here, data is available at an offset address stored in SI in DS. 

 
Register relative addressing mode: 

 In this addressing mode, the data is available at an effective  
address formed by adding an 8-bit or 16-bit displacement  
with the content of any one of the register BX, BP, SI & DI in  
the default (either in DS & ES) segment. 

Example: MOV AX, 50H [BX] 

320 

Addressing Modes 



Based indexed addressing mode: 

 The effective address of data is formed in this addressing  
mode, by adding content of a base register (any one of BX or  
BP) to the content of an index register (any one of SI or DI).  
The default segment register may be ES or DS. 
Example: MOV AX, [BX][SI] 

 
Relative based indexed: 
 The effective address is formed by adding an 8 or 16-bit  

displacement with the sum of contents of any of the base  
registers (BX or BP) and any one of the index registers, in a  
default segment. 
Example: MOV AX, 50H [BX] [SI] 

321 

 

Addressing Modes 



Addressing Modes for control transfer instructions: 

 
 Intersegment 

 Intersegment direct 

 Intersegment indirect 

 
 Intrasegment 

 Intrasegment direct 

 Intrasegment indirect 

322 

Addressing Modes 



Intersegment direct: 

 
 In this mode, the address to which the control is to be  

transferred is in a different segment. This addressing mode  
provides a means of branching from one code segment to  
another code segment. Here, the CS and IP of the  destination 
address are specified directly in the instruction. 

 
Example: JMP 5000H: 2000H; 

 
 Jump to effective address 2000H in segment 5000H. 

323 

Addressing Modes 



Intersegment indirect: 

 
 In this mode, the address to which the control is to be  

transferred lies in a different segment and it is passed to the  
instruction indirectly, i.e. contents of a memory block  
containing four bytes, 
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The  
starting address of the memory block may be referred using  
any of the addressing modes, except immediate mode. 

 
Example: JMP [2000H]. 

324 

in the other segment specified at Jump to an address  
effective 
address 2000H in DS. 

Addressing Modes 



Intrasegment direct mode: 

 In this mode, the address to which the control is to be   
transferred lies in the same segment in which the control  
transfers instruction lies and appears directly in the instruction  
as an immediate displacement value. 

 In this addressing mode, the displacement is computed  relative 
to the content of the instruction pointer. 

325 

Addressing Modes 



Intrasegment indirect mode: 

 In this mode, the displacement to which the control is to  be 
transferred is in the same segment in which the control  
transfer instruction lies, but it is passed to the instruction  
directly. Here, the branch address is found as the content of  a 
register or a memory location. 

 
 This addressing mode may be used in unconditional  

branch instructions. 

 
 Example: JMP [BX]; Jump to effective address stored in  

BX. 

326 

Addressing Modes 



Flag Register of 80286 

327 



IOPL – Input Output Privilege Level flags (bit D12 and D13 

 IOPL is used in protected mode operation to select the  
privilege level for I/O devices. IF the current privilege level is  
higher or more trusted than the IOPL, I/O executed without  
hindrance. 

 If the IOPL is lover than the current privilege level, an  
interrupt occurs, causing execution to suspend.Note that  IPOL 
00 is the highest or more trusted; and IOPL 11 is the  lowest or 
least 

328 

Flag Register of 80286 



 NT – Nested task flag (bit D14) 
 

 When set, it indicates that one system task has invoked 

 
another through a CALL instruction as opposed to a JMP. 

 
 For multitasking this can be manipulated to our advantage 

329 

Flag Register of 80286 



Machine Status Word Register 

 
 Consist of four flags 

 
 PE, 

 
 MP, 

 
 EM and 

 TS are for the most part used toindicate whether a  

processor extension (co-processor) is present in the  

system or not 
330 

Flag Register of 80286 



 Word Machine Status... 

Flag Register of 80286 

331 



 PE - Protection enable 

Protection enable flag places the 80286 in protected mode,  if 

set. this can only be cleared by resetting the CPU. 

332 

generate a processor 

 MP – Monitor processor extension  

flag allows WAIT instruction to 

extension. 

 Emulate processor extension flag, 

if set , causes a processor extension absent exception and  

permits the emulation of processor extension by CPU. 

Flag Register of 80286 



 

 Salient Features of 

80386   

333 



Features of 80386 

• The 80386 microprocessor is an enhanced version of the 
80286 microprocessor and includes a memory-management 
unit is enhanced to provide memory paging  

• The 80386 also includes 32-bit extended registers and a 32-
bit address and data bus  

• The 80386 has a physical memory size of 4GBytes that can be 
addressed as a virtual memory with up to 64TBytes 

• The 80386 is operated in the pipelined mode, it sends the 
address of the next instruction or memory data to the 
memory system prior to completing the execution of the 
current instruction  

334 



Features of 80386 

• This allows the memory system to begin fetching the next 
instruction or data before the current is completed  

• This increases access time, thus reducing the speed of the 
memory 

• The I/O structure of the 80386 is almost identical to the 
80286, except that I/O can be inhibited when the 80386 is 
operated in the protected mode through the I/O bit 
protection map  

•  The register set of the 80386 contains extended versions of 
the registers introduced on the 80286 microprocessor. These 
extended registers include EAX, EBX, ECX, EDX, EBP, ESP, EDI, 
ESI, EIP and EFLAGS  

• The instruction set of the 80386 is enhanced to include 
instructions that address the 32-bit extended register set 

335 



Features of 80386 

• Interrupts, in the 80386 microprocessor, have been 
expanded to include additional predefined interrupts in the 
interrupt vector table  

• The 80386 memory manager is similar to the 80286, except 
the physical addresses generated by the MMU are 32-bits 
wide instead of 24-bits  

• The 80386 is also capable of paging  
• The 80386 is operated in the real mode (i.e. 8086 mode) 

when it is reset  

336 



Features of 80386 

• The real mode allows the microprocessor to address data in 
the first 1MByte of memory  

• In the protected mode, 80386 addresses any location in its 
4G bytes of physical address space 

337 



Architecture of 80386 

338 

The Internal Architecture of 80386 is divided into 3sections. 

• Central processing unit 

• Memory management unit 

• Bus interface unit 

•Central processing unit is further divided into Execution 

unit and Instruction unit 

•Execution unit has 8 General purpose and 8 Special purpose  

registers which are either used for handling data or 

calculating offset addresses. 



Architecture of 80386 

339 



•The Instruction unit decodes the opcode bytes received from the 16-  byte 
instruction code queue and arranges them in a 3- instruction  decoded 
instruction queue. 

•After decoding them pass it to the control section for deriving the  
necessary control signals. The barrel shifter increases the speed of all  shift 
and rotate operations. 

• The multiply / divide logic implements the bit-shift-rotate algorithms  to 
complete the operations in minimum time. 

• Even 32- bit multiplications can be executed within one microsecond by  
the multiply / divide logic. 

•The Memory management unit consists of a Segmentation unit and  
a Paging unit. 

340 



Pin diagram of 80386 

341 



Pin diagram of 80386 

342 



Signal Descriptions of 80386 

343 

•CLK2 :The input pin provides the basic system clock timing for the 
operation of 80386. 

•D0 – D31:These 32 lines act as bidirectional data bus during different  
access cycles. 

•A31 – A2: These are upper 30 bit of the 32- bit address bus. 

•BE0 toBE3 : The 32- bit data bus supported by 80386 and the memory  
system of 80386 can be viewed as a 4- byte wide memory access  
mechanism. 

•ADS: The address status output pin indicates that the address bus and  
bus cycle definition pins( W/R#, D/C#, M/IO#, BE0# to BE3# ) are  
carrying the respective validsignals. 



Signal Descriptions of 80386 

344 

•VCC: These are system power supply lines. 

•VSS: These return lines for the power supply. 

•BS16: The bus size – 16 input pin allows the interfacing of 16 bit devices 

with the 32 bit wide 80386 databus. 

•HOLD: The bus hold input pin enables the other bus masters to gain 

control of the system bus if it is asserted. 

•HLDA: The bus hold acknowledge output indicates that a valid bus  
hold request has been received and the bus has been relinquished by 
the CPU. 



Signal Descriptions of 80386 

345 

• ERROR: The error input pin indicates to the CPU that the 
coprocessor has encountered an error while executing its 
instruction. 

•PEREQ: The processor extension request output signal indicates to  

the CPU to fetch a data word for the coprocessor. 

•INTR: This interrupt pin is a maskable interrupt, that can be 

masked using the IF of the flag register. 

• NMI: A valid request signal at the non-maskable interrupt request 

input pin internally generates a non- maskable interrupt of type2. 



Signal Descriptions of 80386 

346 

 READY: The ready signals indicates to the CPU that the previous  bus 
cycle has been terminated and the bus is ready for the next  cycle. 

 BUSY: The busy input signal indicates to the CPU that the 
coprocessor is busy with the allocated task. 

 RESET: A high at this input pin suspends the current operation 

and restart the execution from the starting location. 

 N / C : No connection pins are expected to be left open. 



80386 Register Organization 

347 

 The 80386 has eight 32 - bit general purpose registers which may 
be used as either 8 bit or 16 bit registers. 

 A 32 - bit register known as an extended register, is represented  by 
the register name with prefix E. 

 The six segment registers available in 80386 are CS, SS, DS, ES, FS 
and GS. 

  The CS and SS are the code and the stack segment registers  
respectively, while DS, ES, FS, GS are 4 data segment registers. 

 A 16 bit instruction pointer IP is available along with 32 bit 
counterpart EIP. 



80386 Register Organization 

348 



 The Flag register of 80386 is a 32 bit register. Out of the 32 bits,  Intel 

has reserved bits D18 to D31, D5 and D3, while D1 is always  set at 1. 

 Two extra new flags are added to the 80286 flag to derive the flag  

register of 80386. They are VM and RF flags. 

349 



 VM - Virtual Mode Flag: If this flag is set, the 80386 enters the  virtual 

8086 mode within the protection mode. 

 RF- Resume Flag: This flag is used with the debug register  

breakpoints. 

 Segment Descriptor Registers: This registers are not available for  

programmers, rather they are internally used to store the descriptor  

information, like attributes, limit and base addresses of segments 

350 



 Control Registers: The 80386 has three 32 bit control registers  

CR0, CR2 and CR3 to hold global machine status 

 System Address Registers: Four special registers are defined to 

refer to the descriptor tables supported by 80386. 

 Debug and Test Registers: Intel has provide a set of 8 debug 

registers for hardware debugging. 

351 



 

 Real and Protected Mode   

 

352 



Real Address Mode ADDRESS CALCULATION 

 

353 



Real Address Mode ADDRESS CALCULATION 

• Act as a fast 8086  
• It addresses only 1 M byte of physical memory using A0-A19. 
• In real addressing mode of operation of 80286, it just acts as 

a fast 8086.  The instruction set is upward compatible with 
that of 8086. 

• The 80286 addresses only 1Mbytes of physical memory using 
A0- A19. The lines A20-A23 are not used by the internal 
circuit of 80286 in this mode. 

•  In real address mode, while addressing the physical memory, 
the 80286 uses BHE along with A0- A19. The 20-bit physical 
address is again formed in the same way as that in 8086.  

354 



Protected Mode of 80386: 

All the capabilities of 80386 are available for utilization in its  
protected mode of operation. 

 
The 80386 in protected mode support all the software written for  
80286 and 8086 to be executed under the control of memory  
management and protection abilities of 80386. 

 
The protected mode allows the use of additional instruction,  

addressing 
modes and capabilities of 80386. 

355 



356 



Addressing in protected mode 

 
In this mode, the contents of segment registers are used as  
selectors to address descriptors which contain the segment  
limit, base address and access rights byte of the segment. 

 
The effective address (offset) is added with segment base  

address to calculate linear address. 
 

This linear address is further used as physical address, if the  
paging unit is disabled, otherwise the paging unit converts the  
linear address into physical address. 

357 



Addressing in protected mode 

358 

 The paging unit is a memory management unit enabled only in 
protected mode. 

 The paging mechanism allows handling of large segments of memory  
in terms of pages of 4Kbyte size. 

 The paging unit operates under the control of segmentation unit. 

 The paging unit if enabled converts linear addresses into physical  
address, in protected mode. 



Paging 

359 



Paging Unit: 

The paging unit of 80386 uses a two level table mechanism to  
convert a linear address provided by segmentation unit into  
physicaladdresses. 

 
The paging unit converts the complete map of a task into pages,  
each of size 4K. The task is further handled in terms of its page,  
rather than segments. 

 
The paging unit handles every task in terms of three components 
namely page directory, page tables and page itself. 

360 



Paging Unit: 

The Paging unit organizes the physical memory in terms of  
pages of 4kbytes size each. 
 

Paging unit works under the control of the  segmentation 
unit, i.e. each segment is further divided  into pages. 

 
The virtual memory is also organizes in terms of segments  

and pages by the memory management unit. 
 

Paging unit converts linear addresses into physical 
addresses. 

361 



Paging Unit 

The control and attribute PLA checks the privileges at the 
page level. 

 
Each of the pages maintains the paging information of the  

task. 

 
The limit and attribute PLA checks segment limits and  
attributes at segment level to avoid invalid accesses to code  
and data in the memory segments. 

362 



 

 Salient Features of Pentium   
 

363 



 Features of Pentium 

364 

 64 bit data bus  
 Instruction cache  
 Data cache  
 Two parallel integer execution units  
 Floating point unit  
 Branch Prediction Logic  
 Data Integrity and Error Detection  
 Dual Integer Processor  
 Functional redundancy check  
 Superscalar architecture  



Branch Prediction 

365 



 Branch Prediction 

366 



  

367 

The history bits can indicate  one of four possible states. 
 
1. Strongly Taken: The history bits are initialized to this state when 

the entry is first made. In  addition, if a branch marked weakly 
taken is taken again, it is upgraded to strongly taken stage.  
When a branch marked strongly taken is not taken the next 
time, it is downgraded to weakly taken.   

2. Weakly Taken: It is upgraded to the strongly taken state when a 
branch marked weakly taken is  taken again. When the 
corresponding marked branch is not taken, then it is 
downgraded to weakly  not taken state.  In D1 stage, a hit on 
strongly or weakly taken entry will result in a positive prediction.  
(i.e., the branch is predicted taken)   
 
 



  

368 

3. Weakly Not Taken: If a branch marked weakly not taken is taken 
again, it is upgraded to the  weakly taken state. When a branch 
marked weakly not taken is not taken the next time, it is  
downgraded to strongly not taken.   
 
4. Strongly Not Taken: If a branch marked strongly not taken is 
taken again it is upgraded to the  weakly not taken state. When a 
branch marked strongly not taken is not taken the next time, it  
remains in the strongly not taken state.  In D1 Stage, a hit on weakly 
not taken or Strongly not taken entry will result in a  negative 
prediction (i.e., the branch is predicted not taken) 

 



  

369 



Overview of RISC Processors 

370 



 RISC Architecture 

 

371 



The features of RISC  

372 

• The demand of decoding is less 
• Few data types in hardware 
• General purpose register Identical 
• Uniform instruction set 
• Simple addressing nodes 



CISC Architecture 

 

373 



Comparison between CISC and RISC  

374 



The Advantages of RISC architecture 

 

• RISC(Reduced instruction set computing)architecture has a set of 
instructions, so high-level language compilers can produce more efficient 
code 

• It allows freedom of using the space on microprocessors because of its 
simplicity. 

• Many RISC processors use the registers for passing arguments and holding 
the local variables. 

• RISC functions use only a few parameters, and the RISC processors cannot 
use the call instructions, and therefore, use a fixed length instruction which 
is easy to pipeline. 

• The speed of the operation can be maximized and the execution time can 
be minimized. 
Very less number of instructional formats, a few numbers of instructions 
and a few addressing modes are needed. 

 

http://en.wikipedia.org/wiki/Reduced_instruction_set_computing


 The Disadvantages of RISC architecture 

 

376 

• Mostly, the performance of the RISC processors depends on the 
programmer or compiler as the knowledge of the compiler plays 
a vital role while changing the CISC code to a RISC code 

• While rearranging the CISC code to a RISC code, termed as a code 
expansion, will increase the size. And, the quality of this code 
expansion will again depend on the compiler, and also on the 
machine’s instruction set. 

• The first level cache of the RISC processors is also a disadvantage 
of the RISC, in which these processors have large memory caches 
on the chip itself. For feeding the instructions, they require very 
fast memory systems. 



 Advantages of CISC architecture 

 

377 

• Microprogramming is easy assembly language to implement, and 
less expensive than hard wiring a control unit. 

• The ease of micro coding new instructions allowed designers to 
make CISC machines upwardly compatible: 

• As each instruction became more accomplished, fewer 
instructions could be used to implement a given task. 



 Disadvantages of CISC architecture 

378 

• The performance of the machine slows down due to the amount 
of clock time taken by different instructions will be dissimilar 

• Only 20% of the existing instructions is used in a typical 
programming event, even though there are various specialized 
instructions in reality which are not even used frequently. 

• The conditional codes are set by the CISC instructions as a side 
effect of each instruction which takes time for this setting – and, 
as the subsequent instruction changes the condition code bits – 
so, the compiler has to examine the condition code bits before 
this happens. 



379 

MODULE-V 
8051 MICROCONTROLLER 

ARCHITECTURE 



COURSE  OUTCOMES 

 
  

 
 

380 

CO1 

 

Outline the internal architecture of 8085, 8086 and 8051 

microcomputers to study the functionality. 

CO5 

 

Interpret the functionality of various types of interrupts and their 

structure for controlling the processor or controller and program 

execution flow. 

CO10 

 

Interpret the internal building blocks and registers of 8051 

microcontroller used to perform serial data transfer, timer operation, 

interfacing of memory and I/O devices.  

CO11 

 

Build necessary hardware and software interface using microcomputer 

based systems to provide solution for real world problems.  



381 

8051 Microcontroller 

Architecture 



for assembling all the 

382 

 The overall system cost is high. 

 
 A large sized PCB is required  

components. 

 Overall product design requires more time. 

 
 Physical size of the product is big. 

 
 A discrete components are used, the system is not reliable. 

Disadvantages of Microprocessor 



 As the peripherals are integrated into a single chip, the overall system 

cost is very less. 

383 

system is  As the peripherals are integrated with a microprocessor the 

more reliable. 

 Though  microcontroller  may  have  on  chip  ROM,RAM  and  I/O ports,  

addition ROM, RAM I/O ports may be interfaced externally if required. 

 

 
 On chip ROM provide a software security. 

Advantages of Microcontroller based System 



8051 Basic Component 

 4K bytes internal ROM 

 128 bytes internal RAM 

 Four 8-bit I/O ports (P0 - P3). 

 Two 16-bit timers/counters 

 One serial interface 

 64k external memory for code 

 64k external memory for data 

 210 bit addressable 

 Microcontroller 

384 



Block Diagram 

CPU 

On-chip  
RAM 

On-chip  
ROM for  
program  
code 

 

4 I/O Ports 
Serial 
Port OSC 

Interrupt  
Control 

External interrupts 
Timer/Counter 

Timer 1 

Timer 0 

Bus 
Control 

TxD RxD P0 P1 P2 P3 

Address/Data 

Counter  
Inputs 

385 



• The system bus connects all the support devices to the CPU.  

• The system bus consists of  

                8-bit data bus 

                 16-bit address bus and bus control signals.  

• All other devices like program memory, ports, data memory, 

serial interface, interrupt control, timers, and the CPU are all 

interfaced together through the system bus. 

 



Internal Block Diagram of 8051 

280 



Pin Diagram of 8051 

388 



389 

• 8051 microcontrollers have 4 I/O ports each of 8-bit, which 
can be configured as input or output. Hence, total 32 
input/output pins allow the microcontroller to be connected 
with the peripheral devices. 

• Pin configuration, i.e. the pin can be configured as 1 for 
input and 0 for output as per the logic state. 
Input/output (I/O) pin − All the circuits within the 
microcontroller must be connected to one of its pins except 
P0 port because it does not have pull-up resistors built-in. 
Input pin − Logic 1 is applied to a bit of the P register. The 
output FE transistor is turned off and the other pin remains 
connected to the power supply voltage over a pull-up 
resistor of high resistance. 



Basic circuit of 8051 

390 



PORT 0-Description 

– 8-bit R/W -General 
Purpose I/O 

 
– Or acts as amultiplexed low byte  

address and data bus for  
external memory design 

210 



PORT 1 -Description 

– Only 8-bit R/W - General 
Purpose I/O 

392 



PORT 2 -Description 

– 8-bit R/W - General 
Purpose I/O 

 
– Or high byte of the  

address bus for external  
memory design 

393 



PORT 3 - Description 

394 

PORT 3 Pin Function Description 

P3.0 RXD Serial Input 

P3.1 TXD Serial Output 

P3.2 INT0 External Interrupt 0 

P3.3 INT1 External Interrupt 1 

P3.4 T0 Timer 0 

P3.5 T1 Timer 1 

P3.6 WR External Memory Write 

P3.7 RD External Memory Read 



395 

Register set of 8051 



  

396 

Types of Registers 
 

The 8051 microcontroller contains mainly two types of registers: 
 
• General-purpose registers (Byte addressable registers) 
• Special function registers (Bit addressable registers) 



General Purpose Registers 

 •  There are four different bank registers with each bank 
having 8 addressable 8-bit registers, and only one bank 
register can be accessed at a time. 

 
•  But, by changing the bank register’s number in the flag 

register, we can access other bank registers 



Special Function Registers 

 
• The special function registers including the Accumulator, 

Register B, Data pointer, PCON, PSW, etc., are designed for a 
predetermined purpose during manufacturing with the 
address 80H to FFH, and this area cannot be used for the 
data or program storage purpose.  

 
• These registers can be implemented by bit address and byte 

address registers. 
 
• The most widely used registers of the 8051 are A 

(accumulator), B, R0-R7, DPTR (data pointer), and PC 
(program counter). All these registers are of 8-bits, except 
DPTR and PC. 

 



Storage Registers in 8051 
 

• Accumulator 
• R register 
• B register 
• Data Pointer (DPTR) 
• Program Counter (PC) 
• Stack Pointer (SP) 
 



PSW Register 

 

 
 

CY CA F0 RS1 RS0 OV - P 

CY PSW.7 Carry Flag 

AC PSW.6 Auxiliary Carry Flag 

F0 PSW.5 Flag 0 available to 

user for general 

purpose. 

RS1 PSW.4 Register Bank 

selector bit 1 

RS0 PSW.3 Register Bank 

selector bit 0 

OV PSW.2 Overflow Flag 

- PSW.1 User definable FLAG 

P PSW.0 Parity FLAG. Set/ 

cleared by hardware 

during instruction 

cycle to indicate 

even/odd number of 

1 bit in accumulator. 

RS1 RS2 Register 

Bank 

Address 

0 0 0 00H-

07H 

0 1 1 08H-0FH 

1 0 2 10H-

17H 

1 1 3 18H-1FH 



401 

Modes of timer operation 



 8051 has two 16-bit programmable timers/counters. They can be  

configured to operate either as timers or as event counters. The names of  

the two counters are T0 and T1 respectively. 

 The timer content is available in four 8-bit special function registers,  

viz, TL0,TH0,TL1 and TH1 respectively. 

 In the "timer"  function mode, the  counter  is incremented in  every  

machine cycle. Thus, one can think of it as counting machine cycles. 

Hence the clock rate is 1/12 th of the oscillatorfrequency. 

 In the "counter" function mode, the register is incremented in response to  

a 1 to 0 transition at its corresponding external input pin (T0 or T1). It  

requires 2 machine cycles to detect a high to low. 

TIMER/COUNTER 



 The operation of the  timers/counters  is controlled by two special function  

registers, TMOD and TCON respectively. 

Timer Mode control (TMOD) Special Function Register: 

 TMOD register is not bit addressable. 

 TMOD Address: 89 H 

Operation of Timer/Counter 



Timer/ Counter control logic: 

Figure: Timer/ Counter control logic Diagram 



Difference between a Timer and a Counter 

 
Timer Counter 

The register incremented for

 every machine cycle. 

The register is incremented considering 

1 to 0 transitions at its corresponding to 

an external input pin (T0, T1). 

Maximum count rate is 1/12 of 

the oscillator frequency. 

Maximum count rate is 1/24 of the 

oscillator frequency. 

A timer uses the frequency of the 

internal clock, and generates 

delay. 

A counter uses an external signal to 

count pulses. 



Timers & Counters 
 



Gate: If the gate bit is set to „0‟, then we can start and stop the 
“software” timer in the same way. If the gate is set to „1‟, then 
we can perform hardware timer. 
 
C/T: If the C/T bit is „1‟, then it is acting as a counter mode, and 
similarly when set C+ 
=/T bit is „0‟; it is acting as a timer mode. 
  
Mode select bits: The M1 and M0 are mode select bits, which 
are used to select the timer operations. There are four modes to 
operate the timers. 
 

Timer Mode Control (TMOD):  



Mode 0: This is a 13-bit mode that means the timer operation 
completes with “8192” pulses. 
  
Mode 1: This is a16-bit mode, which means the timer operation 
completes with maximum clock pulses that “65535”. 
  
Mode 2: This mode is an 8-bit auto reload mode, which means 
the timer operation completes with only “256” clock pulses. 
  
Mode 3: This mode is a split-timer mode, which means the 
loading values in T0 and automatically starts the T1. 
  
 



Mode selection Bits 

 



Timer modes of operation 

Timer Mode-0: 

In this mode, the timer is used as a 13-bit UP counter as follows. 

Fig: Operation of Timer in Mode 2 
 

The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit count.  

Upper 3 bits of TLX are ignored. When the counter rolls over from all 0's to  

all 1's, TFX flag is set and an interrupt is generated. 



Timer Control Register (TCON):  



Timer modes of operation 

The input pulse is obtained from the previous stage. If TR1/0 bit is 1 and  

Gate bit is 0, the counter continues counting up. If TR1/0 bit is 1 and Gate  

bit is 1, then the operation of the counter is controlled by input. This mode  

is useful to measure the width of a given pulse fed to input. 



 This mode is similar to mode-0 except for the fact that the Timer operates  

in 16-bit mode. 

Timer Mode-1: 

Fig: Operation of Timer in Mode 1 



Timer Mode-2: (Auto-Reload Mode) 

This is a 8 bit counter/timer operation. Counting is performed in TLX while  

THX stores a constant value. In this mode when the timer overflows i.e. TLX  

becomes FFH, it is fed with the value stored in THX. For example if we load 

THX  with 50H then the timer in mode 2 will count from 50H to FFH. After 

that 50H  is again reloaded. This mode is useful in applications like fixed 

time sampling 

Fig: Operation of Timer in Mode 2 



Timer Mode-3: 

Timer 1 in mode-3 simply holds its count. The effect is same as setting TR1=0. 

Timer0 in mode-3 establishes TL0 and TH0 as two separate counters. 

Fig: Operation of Timer in Mode 3 

Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (TH0) in Mode-3  

while TR0 and TF0 are available to Timer-0 lower 8 bits(TL0). 



416 

Serial port operation 



8051 Serial Communication: Sections 

 
1. Basics of serial communication  
2. 8051 connection to RS232 
3. 8051 serial communication programming 
 



8051 and PC: 

 



SCON Register: 
 



SCON Serial Port Control Register (Bit Addressable): 
 



421 

Interrupt structure of 8051 



interrupts the  An interrupt is an external or internal event that  

microcontroller to inform it that a device needs its service. 

Interrupts vs. Polling 

 A single microcontroller can serve several devices. 

 There are two ways to do that: 

– interrupts 

– polling. 

Interrupts 



 In  Polling  ,  the  microcontroller  ‘s  program  simply checks each
 of the I/O 

devices to see if any device needs servicing. If so, it performs the 
service. 

 
 
 In the interrupt method, whenever any device needs  microcontrollers 

service, it tells to microcontroller by  sending an interrupt signal. 
 

 The program  which is associated  with the interrupt is called the 

interrupt  service routine (ISR) or interrupt handler. 

Interrupts 



 Finish current instruction and saves the PC on stack. 
 

 Jumps to a fixed location in memory depend on type of 
interrupt. 

 
 Starts  to  execute  the  interrupt  service  routine until RETI

(return from interrupt). 
 
 Upon executing the RETI the microcontroller returns to the

place where it was interrupted. Get pop PC from stack. 

Steps in executing an interrupt 



 Original 8051 has 6 sources of interrupts 
 

1. Reset 

2. Timer 0 overflow 

3. Timer 1 overflow 

4. External Interrupt 0 

5. External Interrupt 1 

6. Serial Port events buffer full, buffer empty, 
etc) 

Interrupt Sources 



 Each interrupt has a specific place in code memory where program 

execution (interrupt service routine) begins. 

External Interrupt 0 

Timer 0 overflow 

External Interrupt 1 

Timer 1 overflow 

Serial 

Timer 2 overflow(8052+) 

: 

: 

: 

: 

: 

: 

0003h 

000Bh 

0013h 

001Bh 

0023h 

002bh 

Interrupt Vectors 

Note: that there are  
only 8 memory  
locations between  
vectors. 



Interrupt Enable (IE) register 

 All interrupt are disabled after reset 

 We can enable and disable them by IE 



Enabling an interrupt 

 by bit operation 
 Recommended in the middle of program 

SETB EA 
SETB ET0 
SETB ET1 
SETB EX0 
SETB EX1 
SETB ES 

;Enable All 
;Enable Timer0 over flow 
;Enable Timer1 over flow 
;Enable INT0 
;Enable INT1 
;Enable Serial port 

 by mov instruction 
 Recommended in the first of program 

• MOV IE, #10010110B 

SETB  

SETB  

SETB  

SETB  

SETB  

SETB 

IE.7  

IE.1  

IE.3  

IE.0  

IE.2  

IE.4 



Disabling an interrupt 

CLRB 

CLRB  

CLRB 

EA 

ET0  

ET1 

;Disable All 

; Disable Timer0 over flow 

; Disable Timer1 over flow 

CLRB EX0 ; Disable INT0 

CLRB EX1 ; Disable INT1 

CLRB ES ; Disable Serial port 



 What if two interrupt sources interrupt at the same time? 

 The interrupt with the highest PRIORITY gets serviced first. 

 All interrupts have a power on default priority order. 

1. External interrupt 0 (INT0) 

2. Timer interrupt0 (TF0) 

3. External interrupt 1 (INT1) 

4. Timer interrupt1 (TF1) 

5. Serial communication (RI+TI) 

 Priority can also be set to “high” or “low” by IP reg. 

Interrupt Priorities 



IP.7: reserved 

IP.6: reserved 

IP.5: timer 2 interrupt priority bit(8052 only) 

IP.4: serial port interrupt priority bit   

IP.3: timer 1 interrupt priority bit  

 IP.2: external interrupt 1 priority bit   

IP.1: timer 0 interrupt priority bit   

IP.0: external interrupt 0 priority bit 

Interrupt Priorities (IP) Register 



Interrupt Addresses  

Interrupt Address 

INT0 0003H 

INT1 000BH 

T0 0013H 

T1 001BH 

TI/RI 0023H 



433 

Memory and I/O interfacing 

with 8051 



Block Diagram 

interfacing 64KB of External RAM and 64KB of External ROM 
with the 8051 Microcontroller. 
 



Interfacing I/O Devices 

 



Intelligent LCD Display 



Interface Intelligent LCD Circuit With 8051 
 




