e 00O

m =
: IARE $
o

a
L2

MICRO PROCESSORS AND INTERFACING
V Semester — IT IARE-R18
A.Y. 2020-2021
Course Code — AECB55 (Open Elective-1)

INSTITUTE OF AERONAUTICAL ENGINEERING
Prepared By
B. Lakshmi Prasanna

SYLLABUS ‘
3 IARE §
o - \\“qw

™ =
2 IARE §
< \

7 PN

COURSE OUTCOMES

™ =
2 IARE §
< \

7 PN

COURSE OUTCOMES

MODULE-I
Introduction to 8 bit and 16 bit
Microprocessor

I

™ =
2 IARE §
< \

7 PN

COURSE OUTCOMES

An over view of 8085

Introduction to processor:

® A processor is the logic circuitry that responds to and
processes the basic instructions that drives a computer.

® The term processor has generally replaced the term central
processing unit . The processor in a personal computer or
embedded in small devices is often called a microprocessor.

® The processor (CPU, for Central Processing Unit) is the
computer's brain. It allows the processing of numeric data,
meaning information entered in binary form, and the
execution of instructions stored in memory.

Evolution of Microprocessor:

® Microprocessor is a program-controlled device, which fetches
the instructions from memory, decodes and executes the
instructions. Most Micro Processor are single- chip devices.

® Microprocessor is a backbone of computer system. which is
called CPU

® Microprocessor speed depends on the processing speed
depends on DATABUS WIDTH.

® A common way of categorizing microprocessors is by
the no. of bits that their ALU can Work with at atime

The address bus is unidirectional because the address
information is always given by the Micro Processor to
address a memory location of aninput

/ output devices.

The data bus is Bi-directional because the same bus is used
for transfer of data between Micro Processor and memory or
input / output devices in both the direction.

It has limitations on the size of data. Most
Microprocessor does not support floating-point
operations.

Microprocessor contain ROM chip because it
contain instructions to execute data.
Storage capacity is limited. It has a volatile memory. In

secondary storage device the storage capacity is larger. It is a
nonvolatile memory.

10

Primary devices are: RAM (Read / Write memory, High Speed,
Volatile Memory) / ROM (Read only memory, Low Speed, Non

Voliate Memory)
Secondary devices are: Floppy disc / Hard disk

Compiler:

Compiler is used to translate the high-level language
program into machine code at a time. It doesn’t require
special instruction to store in a memory, it stores
automatically. The Execution time is less compared to
Interpreter

11

8085 MICROPROCESSOR

*It is an 8-bit microprocessor designed by Intel in 1977.
It has the following configuration -(FEATURES)

*8-bit data bus

*16-bit address bus, which can address up to 64KB

*A 16-bit program counter

*A 16-bit stack pointer

*Six 8-bit registers arranged in pairs: BC, DE, HL
*Requires +5V supply to operate.

It is a single chip with 40 pins.

e It has multiplexed address and data bus(ADO - AD7)

e The maximum clock frequency is 3 MHz while minimum

frequency is 500 KHz.

* |t provides 74 instruction with 5 different addressing modes.

Pin Diagram of 8085

1 40 [V,
X2]2 32 T HOLD
RESET OUT []3 28 [] HLDA
SoD []4 37 [CLK {ouT)
SID s 36 [JRESETIN
TRAP [35 [__] READY
RST7TS5 []7 4 [10/
RSTES [] s 3z [S,
RSTE6]9 2 rp
INTR [] 10 8085A 21 1 WR
InTa] 11 30 [J ALE
AD, [12 29 [1 s,
AD,i 112 23 M A
AD 14 7 [a,
AD, 115 26 [A,
AD,] 18 25 [A,
AD. 117 2411 A,
AD] 18 2 1A,
AD_ [19 22 [A,
Ves [] 20 1 A,

PIN DESCRIPTION

Address bus

A15-A8, it carries the most significant 8-bits of memory/10 address.
Data bus

AD7-ADOQO, it carries the least significant 8-bit address and data bus.
Power supply

There are 2 power supply signals VCC & VSS. VCC indicates +5v power
supply and VSS indicates ground signal.

Control and status signals

There are 3 control signal and 3 status signals.

Three control signals are RD’, WR’ & ALE.

RD’ - When it is enabled, CPU reads the data available on data bus
send by memory or 1/O device.

WR’ - When it is enabled ,CPU write the data on to the data bus from
memory or |/O device .

ALE - It is a multiplexed signal .When the pulse goes high, it indicates
address. When the pulse goes down it indicates data.

Three status signals are I0/M’, SO & S1.

10/’

This signal is used to differentiate between |0 and Memory
operations, i.e. when it is high indicates IO operation and when it is
low then it indicates memory operation.

16

S1 & S0
These signals are used to identify the type of current operation.

0

Opcode fetch

Memory read

Memory write

/0 read

1/O write

Interrupt acknowledge

Halt

Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

X1, X2 - A crystal (RC, LC N/W) is connected at these two pins
and is used to set frequency of the internal clock generator. This
frequency is internally divided by 2.

CLK OUT - This signal is used as the system clock for devices
connected with the microprocessor.

Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to
request the microprocessor to perform a task. There are 5
interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR.

18

INTA’ - It is an interrupt acknowledgment signal.

RESET IN’ - This signal is used to reset the microprocessor by
setting the program counter to zero.

RESET OUT - This signal is used to reset all the connected devices
when the microprocessor is reset.

READY - This signal indicates that the device is ready to send or
receive data. If READY is low, then the CPU has to wait for READY
to go high.

HOLD - This signal indicates that another master is requesting the
use of the address and data buses.

HLDA (HOLD Acknowledge) - It indicates that the CPU has
received the HOLD request and it will gives the bus in the next
clock cycle. HLDA is set to low after the HOLD signal is removed.

19

Serial 1/0 signals

There are 2 serial signals, i.e. SID and SOD and these signals are
used for serial communication.

SOD (Serial output data line) — The output SOD is set/reset as
specified by the SIM instruction.

SID (Serial input data line) - The data on this line is loaded into
accumulator whenever a RIM instruction is executed.

20

8085 ARCHITECTURE

INTA RST6 S TRAP

mim Insvs,s tasrvs 10 s(t)o
Iatermupt Cc;auo!) Senal O Coneod
S K
B-8it Ineeran] Dats Bas
‘ O L B '
Accumufator Temp. Reg {\ instruction Mudii
© (B) %) Regmaer () l ultiplever
1 W %) A ﬁ]
Temp. Reg. Temp. Reg.
ot B (8 C (8
Reg Reg.
D 8 E =) -
. 2
"n"""'l”" § Reg. Reg.
and o H B L ® Register
Machine & Reg Reg. [Amy
i Gyehs)
Encoding Stack Poumer
- (16)
Program Counter
) Incrementcr/Decromensct
Puwer Supply—{_ © =0 Addres Lach (1)}
Timung and Controd J ; ! !
e CLK Reset %) a;l‘
Xy ey GEN Coutial Setia DMA e Address Buffer DataAddress Buffer
]
W 7 0 7 S 1T S
CLK OUT RD WR ALE S, S, 1o'M HLDA RESET OQUT
An'A. ADr-ADo

Ay BESEL Address Bus AddreswData Bus

8085 Microprocessor — Functional Units

8085 consists of the following functional units -

Accumulator

It is an 8-bit register used to perform arithmetic, logical, I/O &
LOAD/STORE operations. It is connected to internal data bus & ALU.
Arithmetic and logic unit

As the name suggests, it performs arithmetic and logical operations
like Addition, Subtraction, AND, OR, etc. on 8-bit data.

General purpose register

There are 6 general purpose registers in 8085 processor, i.e. B, C, D,
E, H & L. Each register can hold 8-bit data.

These registers can work in pair to hold 16-bit data and their pairing
combination is like B-C, D-E & H-L.

22

Program counter

It is a 16-bit register used to store the memory address location of
the next instruction to be executed. Microprocessor increments the
program counter whenever an instruction is being executed, so that
the program counter points to the memory address of the next
instruction that is going to be executed.

Stack pointer

It is also a 16-bit register works like stack, which is always
incremented/decremented by 2 during push & pop operations.
Temporary register

It is an 8-bit register, which holds the temporary data of arithmetic
and logical operations.

23

Flag register
It is an 8-bit register having five 1-bit flip-flops, which holds either O
or 1 depending upon the result stored in the accumulator.
These are the set of 5 flip-flops -
i. Sign(S)
i. Zero(Z)
iii. Auxiliary Carry (AC)
iv. Parity (P)
v. Carry (C)

D D D: D D D, D, D

SignFlag Zero Flag ;:x;nar\ Canry Parity Flag Cany Flag

Instruction register and Instruction decoder

It is an 8-bit register. When an instruction is fetched from memory
then it is stored in the Instruction register. Instruction decoder
decodes the information present in the Instruction register.

Timing and control unit

It provides timing and control signal to the microprocessor to
perform operations. Following are the timing and control signals,
which control external and internal circuits -

Control Signals: READY, RD’, WR’, ALE

Status Signals: SO, S1, IO/M’

DMA Signals: HOLD, HLDA

RESET Signals: RESET IN’, RESET OUT

26

Interrupt control

As the name suggests it controls the interrupts during a process.
When a microprocessor is executing a main program and
whenever an interrupt occurs, the microprocessor shifts the
control from the main program to process the incoming
request. After the request is completed, the control goes back
to the main program.

There are 5 interrupt signals in 8085 microprocessor: INTR, RST
7.5, RST 6.5, RST 5.5, TRAP.

Serial Input/output control

It controls the serial data communication by using these two
instructions: SID (Serial input data) and SOD (Serial output data).

27

Address buffer and address-data buffer

The content stored in the stack pointer and program counter is
loaded into the address buffer and address-data buffer to
communicate with the CPU. The memory and |I/O chips are
connected to these buses; the CPU can exchange the desired
data with the memory and I/O chips.

Address bus and data bus

Data bus carries the data to be stored. It is bidirectional,
whereas address bus carries the location to where it should be
stored and it is unidirectional. It is used to transfer the data &
Address |/O devices.

28

Architecture of 8086
microprocessor

I

Architecture :

MEMORY
INTERFACE

[—————— e — — —— -

——————— — — — — — —. — —— —— — —— -

s-ous| | —

bl

BIU C-BUS :
— L .

8 |

5 INSTRUCTION |
STREAM 1

' 4 BYTE |
3 QUEUE 1

2 1

] |

|

ES
cs presamssmmmesEEe—— fF—————————— - —i
SS I 1
DS | 1
13
1
| CONTROL |
H— ;] SYSTEM |
—— — —— — —,—— e e — e —— e — — —— '
|
| ‘ '
| EV ,& A-BUS :
! %
|
I
AH AL :
: BH BL I
' CH CL ARITHMETIC |
I OH oL LOGIC UNIT :
I SP
i B L !
| |
' i
| |
| |
1 |
-

—— — — ———— — —————————————

® 8086 Microprocessor is divided into two functional units, i.e.,
EU(Execution Unit) and BIU (Bus Interface Unit).

EU (Execution Unit):

Execution unit gives instructions to BIU stating from where
to fetch the data and then decode and execute those
instructions.

Its function is to control operations on data using the
instruction decoder & ALU.

EU has no direct connection with system buses as shown in
the above figure, it performs operations over data through
BIU.

31

® BIU(Bus Interface Unit):

BIU takes care of all data and addresses transfers on the buses for

the EU like sending addresses, fetching instructions from the
memory, reading data from the ports and the memory as well as
writing data to the ports and the memory. EU has no direction
connection with System Buses so this is possible with the BIU. EU

and BIU are connected with the Internal Bus.

32

Instruction queue

BIU contains the instruction queue. BIU gets up to 6 bytes of
next instructions and stores them in the instruction queue.
When EU executes instructions and is ready for its next

instruction, then it simply reads the instruction from this

instruction queue resulting in increased execution speed.

® Segment register:
* BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the

addresses of instructions and data in memory, which are
used by the processor to access memory locations.

|t also contains 1 pointer register IP which holds the

address of the next instruction to executed by the EU.

Register
organization of 8086

I

AX & DX registers:

® In 8 bit multiplication, one of the operands must be in AL.

The other operand can be a byte in memory location or in
another 8 bit register. The resulting 16 bit product is stored in
AX, with AH storing the MS byte.

® In 16 bit multiplication, one of the operands must be in AX.
The other operand can be a word in memory location or in
another 16 bit register. The resulting 32 bit product is stored in
DX and AX, with DX storing the MS word and AX storing the LS

word.

36

BX register :

* In instructions where we need to specify in a general

purpose register the 16 bit effective address of a memory

location, the register BX is used (register indirect).

CX register:

® In Loop Instructions, CX register will be always used as the

implied counter. In 1/0 instructions, the 8086 receives into or
sends out data from AX or AL depending as a word or byte
operation.

® In these instructions the port address, if greater than FFH

has to be given as the contents of DX register.

® Ex:IN AL, DX
DX register will have 16 bit address of the I/P device

38

® Segment register:

© BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the

addresses of instructions and data in memory, which are used by
the processor to access memory locations.

® It also contains 1 pointer register IP, which holds the address of

the next instruction to executed by the EU.

8086 flag register

I

Flag Register
O,

Flag Register contains a group of status bits called flags that
indicate the status of the CPU or the result of arithmetic
operations.

There are two types of flags:

The status flags which reflect the result of executing an
instruction. The programmer cannot set/reset these flags
directly.

The control flags enable or disable certain CPU operations.
The programmer can set/reset these bits to control the CPU's
operation.

41

® Nine individual bits of the status register are used as control

flags (3 of them) and status flags (6 of them).The remaining 7

are not used.

® A flag can only take on the values 0 and 1. We say a flag is set
if it has the value 1.The status flags are used to record specific

characteristics of arithmetic and of logical instructions.

42

8086 flag register

O-Flag LFle 5T 1€ Flags Register

7
7
.
7
.
2

SHNENEN NN
U A

Owerflow Interrupt Sigu Aunzalhary Carry

® Control Flags: There are three control flags

® The Direction Flag (D): Affects the direction of moving data
blocks by such instructions as MOVS, CMPS and SCAS. The
flag values are 0 = up and 1 = down and can be set/reset by
the STD (set D) and CLD (clear D) instructions.

® The Interrupt Flag (l): Dictates whether or not system
interrupts can occur. Interrupts are actions initiated by
hardware block such as input devices that will interrupt the
normal execution of programs. The flag values are 0 = disable
interrupts or 1 = enable interrupts and can be manipulated by
the CLI (clear |) and STI (set
1) instructions.

44

® The Trap Flag (T): Determines whether or not the CPU is
halted after the execution of each instruction. When this flag
is set (i.e. = 1), the programmer can single step through his
program to debug any errors. When this flag = 0 this feature is
off. This flag can be set by the INT 3 instruction.

® Status Flags: There are six status flags

® The Carry Flag (C): This flag is set when the result of an
unsigned arithmetic operation is too large to fit in the
destination register. This happens when there is an end carry
in an addition operation or there an end borrows in a
subtraction operation. A value of 1
= carry and 0 = no carry.

45

® The Overflow Flag (O): This flag is set when the result of a signed
arithmetic operation is too large to fit in the destination register
(i.e. when an overflow occurs). Overflow
can occur when adding two numbers with the same sign (i.e.
both positive or both negative). A value of 1
= overflow and 0 = no overflow.

® The Sign Flag (S): This flag is set when the result of an arithmetic
or logic operation is negative. This flag is a copy of the MSB of
the result (i.e. the sign bit). A value of 1 means negative and 0 =
positive.

46

® The Zero Flag (Z): This flag is set when the result of an
arithmetic or logic operation is equal to zero. A value of 1
means the result is zero and a value of 0 means the result is
not zero.

® The Auxiliary Carry Flag (A): This flag is set when an operation
causes a carry from bit 3 to bit 4 (or a borrow from bit 4 to bit
3) of an operand. A value of 1 = carry and O
= no carry.

® The Parity Flag (P): This flags reflects the number of 1s in the

result of an operation. If the number of 1s is even its value = 1
and if the number of 1s is odd then its value =0.

47

Addressing Modes of 8086

I

O]

Addressing Modes

Addressing Modes of 8086:

Addressing mode indicates a way of locating data or operands.
Depending up on the data type used in the instruction and
the memory addressing modes, any instruction may belong to
one or more addressing modes or same instruction may not
belong to any of the addressing modes.

The addressing mode describes the types of operands and
the way they are accessed for executing an instruction.
According to the flow of instruction execution, the
instructions may be categorized as

Sequential control flow instructions and
Control transfer instructions.

49

Addressing Modes

® Sequential control flow instructions are the instructions which
after execution, transfer control to the next instruction
appearing immediately after it (in the sequence) in the
program. For example the arithmetic, logic, data transfer and
processor control instructions are Sequential control flow
instructions.

® The control transfer instructions on the other hand transfer
control to some predefined address or the address somehow
specified in the instruction, after their execution. For example
INT, CALL, RET & JUMP instructions fall under this category.

50

Addressing Modes

® The addressing modes for Sequential and control flow
instructions are explained as follows.

Immediate addressing mode:

In this type of addressing, immediate data is a part of
instruction,

and appears in the form of successive byte or bytes.

Example: MOV AX, 0005H.

® In the above example, 0005H is the immediate data
.The immediate data may be 8- bit or 16-bit in size.

51

Addressing Modes

Direct addressing mode:

® In the direct addressing mode, a 16-bit memory address
(offset)
directly specified in the instruction as a part ofit.

Example: MOV AX, [5000H].

Register addressing mode:

® In the register addressing mode, the data is stored in a
register and it is referred using the particular register. All
the registers, except IP may be used in this mode.

Example: MOV BX, AX

52

O]

Addressing Modes

Register indirect addressing mode:

Sometimes, the address of the memory location which
contains data or operands is determined in an indirect way,

using the offset registers. The mode of addressing is known as
register indirect mode.

In this addressing mode, the offset address of data is in

either BX or S| or DI Register. The default segment is either
DS or ES.

Example: MOV AX, [BX].

53

Addressing Modes

® Indexed addressing mode:

® In this addressing mode, offset of the operand is stored one
of the index registers. DS & ES are the default segments for
index registers S| & DI respectively.
Example: MOV AX, [SI]

® Here, data is available at an offset address stored in Sl in DS.

® Register relative addressing mode:

® In this addressing mode, the data is available at an effective
address formed by adding an 8-bit or 16-bit displacement
with the content of any one of the register BX, BP, S| & Dl in
the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

54

Addressing Modes

® Based indexed addressing mode:

® The effective address of data is formed in this addressing
mode, by adding content of a base register (any one of BX or
BP) to the content of an index register (any one of S| or DI).

The default segment register may be ES or DS.
Example: MOV AX, [BX][SI]

@ Relative based indexed:

® The effective address is formed by adding an 8 or 16-bit
displacement with the sum of contents of any of the base
registers (BX or BP) and any one of the index registers, in a

default segment.
Example: MOV AX, 50H [BX] [SI]

55

Addressing Modes

® Addressing Modes for control transferinstructions;

® Intersegment
* Intersegment direct
* |Intersegment indirect

® Intrasegment

* Intrasegment direct

* Intrasegment indirect

Addressing Modes

® Intersegment direct:

® In this mode, the address to which the control is to be
transferred is in a different segment. This addressing mode
provides a means of branching from one code segment to
another code segment. Here, the CS and IP of the destination
address are specified directly in the instruction.

Example: JIMP 5000H: 2000H;

® Jump to effective address 2000H in segment 5000H.

57

Addressing Modes

® Intersegment indirect:

® In this mode, the address to which the control is to be
transferred lies in a different segment and it is passed to the
instruction indirectly, i.e. contents of a memory block
containing four bytes,
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using
any of the addressing modes, except immediate mode.

 Example: IMP [2000H].

Jump to an address in the other segment specified at
effective address 2000H in DS.

58

Addressing Modes

® Intrasegment direct mode:

® In this mode, the address to which the control is to be
transferred lies in the same segment in which the control
transfers instruction lies and appears directly in the instruction as
an immediate displacement value. In this addressing mode, the
displacement is computed relative to the content of the
instruction pointer.

59

Addressing Modes

® The effective address to which the control will be transferred is
given by the sum of 8 or 16 bit displacement and current content
of IP. In case of jump instruction, if the signed displacement (d) is
of 8-bits (i.e. -128<d<+127), it as short jump and if it is of 16 bits
(i.e. - 32768<d<+32767), it is termed as longjump.

Example: JMP SHORT LABEL.

60

Addressing Modes

Intrasegment indirect mode:

In this mode, the displacement to which the control is to be
transferred is in the same segment in which the control
transfer instruction lies, but it is passed to the instruction
directly. Here, the branch address is found as the content of
a register or a memory location.

This addressing mode may be used in unconditional
branch

instructions.

Example: JMP [BX]; Jump to effective address stored in BX.

61

Instruction set of
8086

I

INSTRUCTION SET OF 8086

® The Instruction set of 8086 microprocessor is classified
into 7 Types, they are:-

- Data transfer instructions

« Arithmetic& logical instructions

« Program control transfer instructions
* Machine Control Instructions

- Shift / rotate instructions

* Flag manipulation instructions

+ String instructions

Data Transfer instructions

® Data transfer instruction, as the name suggests is for the
transfer of data from memory to internal register, from internal
register to memory, from one register to another register, from
input port to internal register, from internal register to output
port etc

MOV instruction

@® It is a general purpose instruction to transfer byte or word
from register to register, memory to register, register to
memory or with immediate addressing.

64

® General Form:

MOQV destination, source

Here the source and destination needs to be of the same
size,

that is both 8 bit or both 16 bit.

® MOV instruction does not affect any flags.

®©
©

Example:-
® MOV BX, 00F2H; load the immediate number O0OF2H in BX

register

®MOV [589H], BX;
Copy the 16 bit content of BX register on to the memory
location,
which at a displacementof 589H from the data segment
base.

®MOV DS, CX;Move the content of CX to DS

PUSH instruction

® The PUSH instruction decrements the stack pointer by two
and
copies the word from source to the location where stack
pointer now points. Here the source must of word size data.
Source can be a general purpose register, segment register
or a memory location.

66

The PUSH instruction first pushes the most significant byte to
sp-1, then the least significant to the sp-2. Push instruction
does not affect any flags.

h=mory stack =egment

IO0SS =
CH O 0033
20|30 > 30 30032 <—f
ucx 20 300351

FOasa

=F 00354 | |

Saooa
yesy

Example:-

® PUSHCX ; Decrements SP by 2, copy content of CX tothe
stack

® POP instruction

The POP instruction copies a word from the stack location
pointed by the stack pointer to the destination. The
destination can be a General purpose register, a segment
register or a memory location. Here after the content is
copied the stack pointer is automatically incremented by two.

® The execution pattern is similar to that of the PUSH
instruction. Example: POP CX; Copy a word from the top of
the stack to CX and increment SP by 2.

68

©@ ® ® ® ©® @

IN & OUT instructions

The IN instruction will copy data from a port to the accumulator.
If 8 bit is read the data will go to AL andif 16 bit then to
AX. Similarly OUT instruction is used to copy data from
accumulator to an output port.

Both IN and OUT instructions can be done using direct
and indirect addressing modes.

Example:

IN AL, OF8H; Copy a byte from the port OF8H to AL

MOV DX, 30F8H;Copy port address in DX

IN AL, DX; Move 8 bit data from 30F8H port
IN AX, DX; Move 16 bit data from 30F8H port

OUT 047H, AL; Copy contents of AL to 8 bit port 047H
MOV DX, 30F8H;Copy port address in DX

69

XCHG instruction

® The XCHG instruction exchanges contents of the destination and
source. Here destination and source can be register and register
or register and memory location, but XCHG cannot interchange
the value of 2 memory locations.

General Format
® XCHG Destination, Source

Example:

® XCHG BX, CX; exchange word in CX with the word inBX
XCHG AL, CL; exchange byte in CL with the byte in AL

® XCHG AX, SUM[BX];here physical address, which isDS+SUM+[BX].
The content at physical address and the content of AX are
interchanged.

®

70

Instruction set of 8086
(Arithmetic Instructions in 8086)

—

Arithmetic Instructions: ADD, ADC, INC, AAA, DAA

Mnemonic

Meaning

Operation

affected

ADD Addition ADD D,S (S)+(D) = (D) ALL
carry 2> (CF)
ADC Add with ADCD,S (S)+(D)+(CF) => (D) ALL
carry carry > (CF)
INC Incrementby INCD D)+1 > (D) ALL butCY
one
AAA ASCII adjust AAA If the sum is >9, AH AF,CF
for addition is incremented by 1
DAA Decimal DAA Adjust AL for decimal ALL
adjustfor Packed BCD

addition

Arithmetic Instructions—SUB, SBB, DEC, AAS, DAS, NEG

)
%

Mnemonic Meaning Format Operation Flags
affected
SUB Subtract | SUBD,S (D)-(S) = (D) All
Borrow 2> (CF)
SBB Subtract | SBBD,S (D)-(S)-(CF) » (D) All
with
borrow
DEC Decrement | DEC D (D)-1 > (D) All but CF
by one
NEG Negate NEGD All
DAS Decimal DAS Convert the result in ALto All
adjust for packed decimalformat
subtraction
AAS ASCII AAS (AL) difference CY,AC
adjust for (AH) dec by 1 if borrow
subtraction

73

Multiplication and Division

Mneamonic Meaning Format Operation Flags Affected
MUL Multiply MUL S (AL) - (S8) — (AX) OF, CF
(unsigned) (AX) - (S16) — (DX),(AX) SF, ZF, AF, PF undefined
DIv Division Divs (1) QUAX)Y/(S8)) — (AL) OF, SF, ZF, AF, PF, CF
(unsigned) R((AX)/(S8)) — (AH) undefined
(2) QUDX AX)/(S18)) — (AX)
R(DX, AX)/(S16)) — (DX)
IfQls FF ¢ In case (1) or
FFFF,q in case (2), then
type O interrupt occurs
MuL Integer multipty MUL S (AL) - (S8) — (AX) OF, CF
(signed) (AX) - (S18) — (DX),(AX) SF, ZF, AF, PF undefined
1D integer divide IDIV S (1) QUAX)Y/(S8)) — (AL) OF, SF, ZF, AF, PF, CF
(signed) R((AX)/(S8)) — (AH) undefined
(2) QDX AX)/(S186)) — (AX)
R(DX,AX)/(S16)) —» (DX)
If Q is positive and exceeads
7FFF4s or if Q is nagative
and becomes less than
8001 ,4, then type O interupt
occurs
AAM Adjust AL for AAM Q((AL)Y/10) — (AH) SF, ZF, PF
multiplication R(AL)Y/10) — (AL) OF, AF,CF undefined
AAD Adjust AX for AAD (AH) - 10 + (AL) — (AL) SF, ZF, PF
division 00 — (AH) OF, AF, CF undefined
cBwW Convert byte to cBwW (MSB of AL) — (All bits of AH) None
word
CcwbD Convert word to CcCwWD (MSB of AX) — (Al bits of DX) None

double word

(a)

Source

Regs
Reg16
Mems8
Mom16

(b)

74

Byte*Byte AL Eegister or memory AX

Word*Word AX Register or memory DX :AX
Drword*Dhwo rd EAX Register or memory EAN :EDX
Division Dividend Operand Quotient: Remainder

(DIV or IDIV) (Divisor)

Word/Byte AX Register or Memory AL :AH
Dword Word DX:AX Eegister or Memory AN DX
Onword/Dword EDX:EAX Register or Memory EAX :EDX

Instruction set of 8086 (Logical
Instructions in S8086)

I

AND instruction

® This instruction logically ANDs each bit of the source

byte/word with the corresponding bit in the destination and
stores the result in destination. The source can be an
immediate number, register or memory location, register can

be a register or memory location.

® The CF and OF flags are both made zero, PF, ZF, SF are

affected by the operation and AF is undefined.

77

O]

®

®

General Format:

AND Destination, Source

Example:

AND BL, AL ;suppose BL=1000 0110 and AL=1100
1010 then after the operation BL would be BL=
1000 0010.

AND CX, AX ;CX <= CX AND AX
AND CL, 08 ;CL<=CL AND (0000 1000)

OR instruction
®

This instruction logically ORs each bit of the source
byte/word with the corresponding bit in the destination and
stores the result in destination. The source can be an
immediate number, register or memory location, register can
be a register or memory location.

The CF and OF flags are both made zero, PE ZF SF are
affected by the operation and AF is undefined.

General Format:
OR Destination, Source

79

xample:

® ORBL, AL; suppose BL=10000110and 1100 1010 then after the
AL= BL would be BL=1100 1110. operation

® ORCX, AX;CX <= CX AND AX
® ORCL, 08;CL<=CL AND (0000 1000)

NOT instruction

® The NOT instruction complements (inverts) the contents of an operand
register or a memory location, bit by bit. The examples are as follows:

Example:

® NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX= (0100)2=
(4)16).

® NOT [5000H]

80

XOR instruction

® The XOR operation is again carried out in a similar way to the
AND and OR operation. The constraints on the operands are also
similar. The XOR operation gives a high output, when the 2 input

bits are dissimilar. Otherwise, the output is zero. The example
instructions are as follows:

Example:
XOR AX,0098H
XOR AX,BX
XOR AX,[5000H]

81

® Shift / Rotate Instructions

® Shift instructions move the binary data to the left or right
by shifting them within the register or memory location.
They also can perform multiplication of powers of 2+n and

division of powers of 2-n.

® There are two type of shifts logical shifting and
arithmetic shifting, later is used with signed numbers

while former with unsigned.

82

®©@ @®

©@ ® ® ® ©®

SHL/SAL instruction

Both the instruction shifts each bit to left, and places the MSB in
CF and LSB is made 0. The destination can be of byte size or of
word size, also it can be a register or a memory location. Number
of shifts is indicated by the count.

All flags are affected.

General Format:

SAL/SHL destination, count

Example:

MOV BL, B7H;

BL is made B7HSAL BL, 1;

shift the content of BL register one place to left.
Before execution,

CY B7,B6 B5 B4 B3 B2 B1 BO

83

®

SHR instruction

This instruction shifts each bit in the specified destination to the
right and O is stored in the MSB position. The LSB is shifted into the
carry flag. The destination can be of byte size or of word size, also it
can be a register or a memory location. Number of shifts is
indicated by the count.

All flags are affected

General Format: SHR destination, count

Example:

MOV BL, B7H;BL is made B7H

SHR BL, 1;shift the content of BL register one place to the right.
Before execution,

B7 B6 B5 B4 B3 B2 Bl BO CY

84

@ ® ©@ ®

After execution,
B7 B6 B5 B4 B3 B2 B1 BO CY
ROL instruction

This instruction rotates all the bits in a specified byte or word to
the left some number of bit positions. MSB is placed as a new
LSB and a new CF. The destination can be of byte size or of word
size, also it can be a register or a memory location. Number of
shifts is indicated by the count.

All flags are affected

85

® General Format: ROL destination, count

Example:
® MOV BL, B7H;BL is made B7H
® CY B7B6B5B4B3B2B1BO

® ROLBL, 1;rotates the content of BL register one place to
the left.

Before execution,
@ CY B7B6B5B4B3B2B1B0O

OO,

ROR instruction

This instruction rotates all the bits in a specified byte or word
to the right some number of bit positions. LSB is placed as a
new MSB and a new CF. The destination can be of byte size or
of word size, also it can be a register or a memory location.
Number of shifts is indicated by the count.

General Format: ROR destination,

count Example:

MOQV BL, B7H; BL is made B7H

ROR BL, 1;shift the content of BL register one place
tothe right.

Before execution,
B7 B6 B5 B4 B3 B2 Bl BO CY

87

OO,

RCR instruction

This instruction rotates all the bits in a specified byte or word
to the right some number of bit positions along with the carry
flag. LSB is placed in a new CF and previous carry is placed in
the new MSB. The destination can be of byte size or of word
size, also it can be a register or a memory location. Number of
shifts is indicated by the count.

All flags are affected

General Format: RCR destination, count

Example:

MOQV BL, B7H;BL is made B7H

RCR BL, 1;shift the content of BL register one place to the
right.

88

Instruction set of 8086
(String Instructions)

I

String InstructionBasics

» Source DS:SI, Destination ES:DI

— You must ensure DS and ES arecorrect
— You must ensure S| and DI are offsets into DS

and ES
respectively

» Direction Flag (0 = Up, 1 =Down)

— CLD - Increment addresses (left toright)

— STD - Decrement addresses (rightto

String Controlinstructions

1) MOVS/ MOVSB/ MOVSW
Dest string name, src stringname

This instruction moves data byte or word from location

in DS
to location in ES.

2) REP / REPE / REPZ / REPNE /REPNZ
Repeat string instructions until specified conditions

exist.
This is prefix a instruction.

String Controllnstructions
4)SCAS / SCASB / SCASW
Scan a string byte or string word.

Compares byte in AL or word in AX. String address is to be
loaded in DI.

5)STOS / STOSB / STOSW
Store byte or word in a string.
Copies a byte or word in AL or AX to memory location
pointed by
DlI.
6)LODS / LODSB /LODSW
Load a byte or word in AL or AX

» Copies byte or word from memory location pointed by Sl
into AL or
AX register.

92

5

. Program Execution Transferinstructions

instructions are similar to branching or looping instructions. These
instructions include unconditional jump or loop instructions.
Classification:

Unconditional transfer instructions

Conditional transfer instructions

Iteration control instructions

Interrupt instructions

Unconditional transferinstructions

» CALL: Call a procedure, save return address onstack

> RET: Return from procedure to the mainprogram.

»JMP: Goto specified address to get next instruction CALL

instruction: The CALL instruction is used to transfer

execution of program to a subprogram or procedure.

CALLinstruction

> Near call

1.Direct Near CALL: The destination address is specified in the
instruction itself.

2. Indirect Near CALL: The destination address is specified in any 16-
bit register, except IP.

» Far call

1. Direct Far CALL: The destination address is specified in the
instruction itself. It will be in different Code Segment.

2.Indirect Far CALL: The destination address is specified in twoword

memory locations pointed by a register.

95

JMP instruction

The processor jumps to the specified location rather than
the

instruction after the JMP instruction.
> Intra segmentjump
~Inter segmentjump

RET

RET instruction will return execution from a procedure to
The next instruction after the CALL instruction in the
calling program.

Conditional Transferinstructions

JA/INBE: Jump if above / jump if not below or equal

JAE/INB: Jump if above /jump if notbelow

JBE/INA: Jump if below or equal/ Jump if notabove

JC: jump if carry flag CF=1

JE/JZ: jump if equal/jump if zero flagZF=1

JG/JNLE: Jump if greater/ jump if not less than or equal.

Conditional Transfer Instructions

JGE/INL: jump if greater than or equal/ jump if not less
than

JL/INGE: jump if less than/ jump if not greater than or
equal

- JLE/ING: jump if less than or equal/ jump if not greater
than

- JNC: jump if no carry (CF=0).

JNE/INZ: jump if not equal/ jump if no

Conditional TransferInstructions

JNO: jump if no overflow(OF=0)

JNP/JIPO: jump if not parity/ jump if parity
odd(PF=0)

JNS: jump if not sign(SF=0)
JO: jump if overflow flag(OF=1)

JP/JIPE: jump if parity/jump if parityeven(PF=1)

JS: jump if sign(SF=1).

Iteration Controllnstructions

> These instructions are used to execute a series of instructions for
certain number of times.
» LOOP: Loop through a sequence of instructions until CX=0.

» LOOPE/LOOPZ : Loop through a sequence of instructions while
ZF=1 and instructions CX = 0.
» LOOPNE/LOOPNZ : Loop through a sequence of instructions while

ZF=0 and CX =0.

» JCXZ : jump to specified

100

Interrupt Instructions

Two types of interrupt instructions:
» Hardware Interrupts (External Interrupts)

» Software Interrupts (Internal Interrupts and
Instructions)

Hardware Interrupts:

* INTR is a maskable hardwareinterrupt.

 NMIis a non-maskable interrupt.

Software Interrupts

- INT :Interrupt program execution, call serviceprocedure

® INTO : Interrupt program execution if OF=1

- IRET: Return from interrupt service procedure to main
program.

High Level Language Interface Instructions

»ENTER : enter procedure.

> LEAVE: Leave procedure.

»BOUND: Check if effective address within specified array

bounds.

Processor Controlinstructions

|. Flag set/clearinstructions

STC: Set carry flag CFto 1

CLC: Clear carry flag CF to0

CMC: Complement the state of the carry flagCF

STD: Set direction flag DF to 1 (decrement stringpointers)

CLD: Clear direction flag DF to0O

STI: Set interrupt enable flag to 1(enable INTRinput)

CLI: Clear interrupt enable Flag to O (disable INTRinput)

Il. External Hardware synchronizationinstructions

»HLT: Halt (do nothing) until interrupt or reset.

» WAIT: Wait (Do nothing) until signal on the test pin islow.

» ESC: Escape to external coprocessor such as 8087 or 8089.
»LOCK: An instruction prefix. Prevents another processor from

taking the bus while the adjacent instruction executes.

» NOP: No operation. This instruction simply takes up three clock

cycles and does no processing.

105

Assembler Directives

I

Assembler Directives

» ASSUME
> DB
»> DD
> DQ
> DT
> DW

Defined Byte.
Defined Double Word
Defined Quad Word
Define Ten Bytes
Define Word

» ASSUME Directive- The ASSUME directive is used to tell the
assembler that the name of the logical segment should be used for
a specified segment. The 8086 works directly with only 4 physical
segments: a Code segment, a data segment, a stack segment, and
an extra segment.

Example:
ASUME CS:CODE ;This tells the assembler that the logical segment

named CODE contains the instruction statements for the program
and should be treated as a code segment.

ASSUME DS:DATA ;This tells the assembler that for any instruction
which refers to a data in the data segment, data will found in the
logical segment DATA.

108

» DB - DB directive is used to declare a byte- type variable orto
store a byte in memory location.

» Example:

1. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes,
named as PRICE and initialize.

2. NAME DB ‘ABCDEF’ ;Declare an array of 6
bytes and initialize with ASCII code for letters

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage

in memory and give it the name as TEMP, but leave the 100
bytes uninitialized. Program instructions will load values into
these locations.

109

» DW-The DW directive is used to define a variable of type word or
to reserve storage location of type word in memory.

» Example:

MULTIPLIER DW 437Ah ; this declares a variable of type word and

named it as MULTIPLIER. This variable is initialized with the value
437Ah when it is loaded into memory to run.

® EXP1 DW 1234h, 3456h, 5678h ; this declares an array of
3 words and initialized with specified values.

STOR1 DW 100 DUP(0); Reserve an array of 100 words of

@®
memory and initialize all words with 0000.Array is named as STOR1.

110

”

END-END directive is placed after the last statement of a
program to tell the assembler that this is the end of the
program module. The assembler will ignore any statement after
an END directive.

ENDP-ENDP directive is used along with the name of the
procedure to indicate the end of a procedure to the assembler

Example:
SQUARE_NUM PROCE ; It start the procedure ;Some
steps to find the square root of a number

SQUARE_NUM ENDP ;Hear it is the End for the
procedure

111

» END End Program

~ ENDP - End Procedure

~ ENDS = End Segment

~ EQU Equ-ate

-~ EVEN ~ Align on Even MemoryAddress
» EXTRN -

> ENDS - This ENDS directive is used with name of the

segment to
indicate the end of that logic segment.

Example: CODE SEGMENT ;Hear it Start the logic
segment
containing code;

» CODE ENDS ;End of segment named as CODE

> GLOBAL - Can be used in place of a PUBLIC directive or in place
of an EXTRN directive.

113

GROUP-Used to tell the assembler to group the logical statements
named after the directive into one logical group segment, allowing
the contents of all the segments to be accessed from the same
group segment base.

INCLUDE - Used to tell the assembler to insert a block of source
code from the named file into the current source module.

LABEL- Used to give a name to the current value in the location
counter.

NAME- Used to give a specific name to each assembly module
when programs consisting of several modules are written. E.g.:
NAME PC_BOARD

114

OFFSET- Used to determine the offset or displacement of a
named data item or procedure from the start of the segment
which contains it.

E.g.: MOV BX, OFFSET PRICES

ORG- The location counter is set to 0000 when the assembler
starts reading a segment. The ORG directive allows setting a
desired value at any point in the program.

E.g.: ORG 2000H

PROC- Used to identify the start of a

procedure. E.g.: SMART_DIVIDE PROC

FAR

PTR- Used to assign a specific type to a variable or to a

label. E.g.: INCBYTE PTR[BX] tells the

115

PUBLIC- Used to tell the assembler that a specified name or
label will be accessed from other modules.

SEGMENT- Used to indicate the start of a logical segment.
E.g.: CODE SEGMENT indicates to the assembler the start of a
logical segment called CODE

SHORT- Used to tell the assembler that only a 1

byte displacementis needed to code a jump instruction.

E.g.: JMP SHORT NEARBY_LABEL

TYPE - Used to tell the assembler to determine the type of a
specified variable.

E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to
increment BX to point to the next word in an array of words.

116

Procedures and Macros

I

Procedures:

® While writing programs, it may be the case that a particular
sequence of instructions is used several times. To avoid
writing the sequence of instructions again and again in the
program, the same sequence can be written as a separate
subprogram called a procedure.

Defining Procedures:

® Assembler provides PROC and ENDP directives in order to
define procedures. The directive PROC indicates beginning of
a procedure. Its general formiis:

Procedure_name PROC [NEAR|FAR]

118

Passing parameters to and from procedures:

The data values or addresses passed between
procedures and main program are called parameters.
There are four ways of passing parameters:

» Passing parameters in registers
» Passing parameters in dedicated memory locations
» Passing parameters with pointers passed in registers

> Passing parameters using the stack

119

MACROS:

> When the repeated group of instruction is too short or not
suitable to be implemented as a procedure, we use a MACRO.
A macro is a group of instructions to which a name is given.
Each time a macro is called in a program, the assembler will
replace the macro name with the group of instructions.

Defining MACROS:

» Before using macros, we have to define them. MACRO directive
informs the assembler the beginning of a macro. The general
form is:

» Macro_name MACRO argumentl, argument2, ...

» Arguments are optional. ENDM informs the assembler the
end of
the macro. Its general form is : ENDM

120

Differences

Procedures

Accessed by CALL and RET
mechanism during program execution

Macros

Accessed by name given to macro
when
defined during assembly

Machine code for instructions only put
In memory once

Machine code generated for
Instructions
each time called

Parameters are passed inregisters,
memory locations or stack

Parameters passed as part of statement
which calls macro

Procedures uses stack

Macro does not utilize stack

A procedure can be defined anywhere
In program using the directivesPROC
and ENDP

A macro can be defined anywhere in
program using the directives MACRO
and ENDM

Procedures takes huge memory for
CALL(3 bytes each time CALL is
used) instruction

Length of code is very huge ifmacro’s
are called for more number of times

121

Assembly language
programs involving
logical, Branch & Call

Instructions

I

2 000

Write an assembly language program for addition of two 8-

bit numbers using 8086 microprocessors 3 IARE §

-
Ol

DATASEGMENT
Al DB 50H
A2 DB 51H
RES DB ?
DATAENDS
CODE SEGMENT
ASSUME CS: CODE, DS:DATA
START MOV AX,DATA
MOV DS,AX
MOV AL,Al
MOV BL,A2
ADD AL,BL
MOV RES,AL
MOVAX,4CO0H
INT 21H
CODEENDS
END START

2 000

Write an assembly language program to find the factorial of given

number using 8086 microprocessors. % IARE ¢

-
&

DATASEGMENT
FIRST DW 03H
SEC DWO1H

DATAENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA
START MOV AX,DATA
MOV DS,AX
MOV AX,SEC
MOV CX,FIRST
L1: MULCX
DEC CX
JCXZ L2
JMPL1
L2: INT 3H

CODE ENDS
END START

Write an assembly language program to find the sum of squares
using 8086 microprocessors.

™
(=)
[
(5}

NUM DW 5H
RES DW ?

DATAENDS
CODE SEGMENT

ASSUME CS: CODE, DS: DATA
START MOVAXDATA

MOV DS,AX
MOV CX,NUM
MOV BX,00

L1: MOV AX,CX
MUL CX

ADD BX,AX
DECCX

JNZ L1
MOV RES,BX
INT 3H

CODE ENDS
END START

Assembly language programs

Programs using logical ,Branch and call instructions.
Data segment

Org 2000h Mov [di],ax
N1 dw5678h Int 03h

N2 dw2345h Code ends
Data ends End

Code segment

Assume cs:code,ds:dats
Mov ax,data

Mov ds,ax

Mov DI,2040h

Mov ax,N1

AND ax,bx

Assembly language programs

2)Data segment
Org 2000h

N1 dw 5678h
N2 dw 2345h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
MOV bx,N2
OR ax,bx

Mov [di],ax

Int O3h

Code ends
End

OOMOMONONMONMONMOMOMOMOMOMONONOMNO

Assembly language

3)Data segment
Org 2000h

N1 dw 5678h
N2 dw 2345h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
MOV bx,N2
Xor ax,bx

Mov [di],ax

Int O3h

Code ends
End

OMOMOMOMONMOMOMNONMOMOMNONMOMOMOMOMO]

Assembly language programs o~

4)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
SHL ax,04
Mov [di],ax

Int 03h

Code ends
End

©@ ® © ®® © ®©®®©® © ®® @©®

Assembly language programs o~

Programs using logical ,Branch and call instructions.
1)Data segment

Org 2000h . Mov [di],ax
N1 dw 5678h . Int03h

Data ends . Codeends

Code segment . End
Assume cs:.code,ds:dats

Mov ax,data

Mov ds,ax

Mov DI,2040h

Mov ax,N1

SHR ax,04

© ®©® ©®© ® ®©® ® ® ® © ®

Assembly language programs

2)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
ROR ax,02
Mov [di],ax

Int O3h

Code ends
End

OOOMONONMONOMONMOMOMOMOMONO]

Assembly language

3)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
RCR ax,03
Mov [di],ax

Int O3h

Code ends
End

OOMOMOMONMOMOMONMOMONMONMOMOMO,

Assembly language programs

4)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
RCL ax,04
Mov [di],ax
Int 03h

Code ends
End

©@ ® © ®® © ®©®®©® © ®® @©®

Sorting

Assembly language program to sort the given numbers in
Ascending order

ASSUME CS: CODE

CODE SEGMENT
START: MOV AX,0000H

MOV CH, 0004H

DEC CH

UP1: MOV CL, CH
MOV SI, 2000H

UP: MOV AL, [SI]
INC SI

CMP AL, [SI]

DOWN:

CODE ENDS
END START

JCDOWN

XCHG AL,
[SI] DECSI

MOV [SI], AL
INC SI
DECCL

JNZUP
DECCH

JNZ UP1
INT 3

Assembly language program to sort the given numbers
In Descending order

ASSUME CS: CODE

CODE SEGMENT

START: MOV AX, 0000H
MOV CH, 0004H
DECCH

UP1: MOV CL, CH
MOV Sl, 2000H

UP: MOV AL, [SI]

INC SI

C

DOWN:

CODE ENDS
END START

XCHG AL, [SI]
DEC S|

MOV [SI], AL

INCSI
DECCL

JNZ UP
DECCH
JNZUP1
I NT 3

Evaluation of arithmetic expressions

I

An Assembly program for performing the following operation
Z= ((A-B)/10*C)

DATA SEGMENT
A DB 60

B DB 20

CDB5

Z DW?

ENDS

CODE SEGMENT

ASSUME DS: DATACS: CODE
START: MOV AX, DATA

MOV DS, AX
MOV AH, 0 ; Clear content of AX
MOV AL, A ; Move A to register AL

140

ENDS
END START

SUB AL, B
MUL C
MOV BL, 10
DIV BL
MOV Z, AX

MOV AH, 4CH
INT 21H

; Subtract AL and B

; Multiply C to AL

; Move 10 to register BL

; Divide AL content by BL
; Move content of AXto Z

Evaluation of arithmetic expressions

I

An Assembly program for performing the following operation
Z= ((A-B)/10*C)

DATA SEGMENT
A DB 60

B DB 20

CDB5

Z DW?

ENDS

CODE SEGMENT

ASSUME DS: DATACS: CODE
START: MOV AX, DATA

MOV DS, AX
MOV AH, 0 ; Clear content of AX
MOV AL, A ; Move A to register AL

143

ENDS
END START

SUB AL, B
MUL C
MOV BL, 10
DIV BL
MOV Z, AX

MOV AH, 4CH
INT 21H

; Subtract AL and B

; Multiply C to AL

; Move 10 to register BL

; Divide AL content by BL
; Move content of AXto Z

String manipulation

Program For String Transfer

DATASEGMENT ; start of data segment

STR1 DB 'HOW ARE YOU'

LEN EQU $-STR1

STR2 DB 20 DUP (0)

DATAENDS ; end of data segment

CODE SEGMENT ; start of code segment

ASSUME CS: CODE, DS: DATA, ES: DATA

START: MOV AX, DATA; initialize data segment
MOV DS, AX

146

MOV ES, AX :jnitialize extra segment for string operations
LEA SI, STR1 ;s points to starting address of string at ; STR1

LEA DI,STR2 ; DI points to starting address of where the string
has to be transferred

MOV CX,LEN ; load CX with length of the string

CLD ; clear the direction flag for auto increment SI;
and DI

REP MOVSB ; the source string is moved to destination
address till CX=0(after every move CXis;
decremented)

MOV AH,4CH ; terminate the process

INT 21H

CODE ENDS ; end of code segment

END START

147

Program To Reverse A String

DATA SEGMENT ; start of data segment
STR1 DB 'HELLO'

LEN EQU $-STR1

STR2 DB 20 DUP (0)

DATA ENDS ; end of data segment

CODE SEGMENT ; start of code segment

ASSUME CS: CODE, DS: DATA, ES: DATA

START: MOV AX, DATA ; initialize data segment
MOV DS, AX

MOV ES, AX

148

UP:

CODEENDS
END START

LEA SI, STR1
LEA DI, STR2+LEN-1

MOV CX, LEN
CLD
LODSB

STD
STOSB
LOOP UP

MOV AH, 4CH
INT 21H

MODULE-II
Operation of 8086 and
Interrupts.

I

COURSE OUTCOMES

Pin diagram of 8086

O
00
=]
>
L.
@
=
<
o
O
<
o
<
o

HIHH
m%%%%%@ﬁﬁmmwsaSQmﬁwm

O0NNOanaAnOno0n0nNanana

:

TERERBIZYISBRERELIRNS

«w‘&‘?..

T
§4gd35%2

8086 operates in single processor or multiprocessor
configuration to achieve high performance.
8086 is available in three clock rates 5,8,10 MHZ.
8086 signals can be categorised in to three groups
i) Signals having common functions in minimum as well as
maximum mode.
i) Signals having special functions for minimum mode.
iii) Signals having special functions for maximum mode.

Signals common to both modes

AD15-ADo : (Address/Data lines)

These are time multiplexed address and data lines, which carry
address when ALE is high and later function as data lines when
ALE is low

Address is available on the address lines during T1 state.

Data is available on the data bus during T2,T3,TW,T4 clock
states of machine cycles.

TW is wait state of machine cycle.

These lines are active high and float to a tri state during
interrupt acknowledge and local bus hold acknowledge cycles.

155

A19/56,A18/S5,A17/S4,A16/S3: (Address/Status lines)

These are time multiplexed address and status lines.

During T1 these are the most significant address lines for memory
operations.

During memory or |/O operations status information is available on
these lines for T2,T3,TW and T4.

The status of the interrupt enable flag bit is updated at the beginning
of each clock cycle.

S4 and S3 indicates which segment register is presently being used
for memory access.

156

=
% $
7 2
%, \Qé*
¥ For V

0 0 Extra Segment(ES)
0 1 Stack Segment (SS)
1 0 Code Segment or none(CS)
1 1 Data Segment (DS)

These lines float to tri-stat during the local bus hold
acknowledge.

S6 is always 0.

S5 is the condition of the interrupt flag .

Address bits are separated from the status bits using latches
controlled by ALE signal.

157

| =)
" -
2 IARE ¢

&

7, 23

BHE'/S7: Bus high enable signal is used to indicate the transfer o
data over higher order (D15 —D8) data bus.

BHE’ is low for data transfer over(D15-D8).

BHE’ is low during T1 for read,write and interrupt acknowledge cycles
whenever a byte is to be transferred on the higher byte of data
bus.The status information is available during T2,T3,and T4.

The signal is active low and tristated during hold.

The status of this pin is latched along with the address
information.S7 is always 1.

BHE Ay Indication

Whole word (2 bytes)
Upper byte from or to odd address.

Lower byte from or to even address

0
0
|
1

L R

None

158

RD’: (Read)

When this signal is low data can be received from memory or
input devices.

RD’ is active low during T2,T3 and Tw of any read cycle.

RD’ remains tristated during the hold acknowledgement.

Ready:

This is the acknowledgement from the slow device or memory
that they have completed the data transfer.

The signal is active high.

If it is at logic low, wait states are inserted into the current bus
cycle.

159

INTR- (Interrupt Request)

This is a triggered input.

This is sampled during the last clock cycles of each instruction to
determine the availability of the request.

If any interrupt request is pending, the processor enters the interrupt
acknowledge cycle.

This signal is active high and internally synchronized.

TEST’:

This input is examined by a ‘WAIT’ instruction.

If the TEST’ pin goes low, execution will continue, else the processor
remains in an idle state.

The input is synchronized internally during each clock cycle on
leading edge of clock.

160

NMI(Non Maskable Interrupt):

This is an edge triggered input which causes a type-2 interrupt.

A transition from low to high initiates the interrupt response at the
end of the current instruction.

This input is internally synchronized.

RESET:

The input causes the processor to terminate current activity and start
execution .

The signal is active high and must be active for atleast four clock
cycles.

It restarts execution when the reset returns low.

Reset is also internally synchronized.

161

CLK:

The clock input provides the basic timing for processor
operation and bus control activity.

The range of frequency for different 8086 versions is from
5MHZ to 10MHZ.

Vcc:

+5V power supply for the operation of internal circuit.

GND:

Ground for the internal circuit.

8086 Minimum Mode Pins

INTA’ (Interrupt Acknowledge):

In response to INTR,the processor sends acknowledge signal that the
interrupt is accepted through INTA pin.

M/10’: (Memory/input output)

When M/IO’=1 it performs the memory read/write operations.

When M/IO’=0 it performs the |/O read/write operations.

WR’: (Write)

It is active low pin.

It indicates microprocessor is sending data to memory or /O devices.

163

DT/R’: (Data transmit/Receive)

It indicates transmitting or receiving data over system bus.
If DT/R’=1 data transmit; If DT/R’=0 data receive.

It is used to enable external data buffer.

DEN’: (Data enable)

It is used to enable external data bus buffer.

When DEN’=0 data transferred on data bus.

ALE: (Address Latch Enable)

When ALE=1 multiplexed line carries address only.

When ALE=0 multiplexed line carries data .

164

HOLD:

When HOLD line is high it indicates processor that another
master is requesting bus access.

HLDA: (Hold Acknowledgement)

After receiving HOLD request, the processor issues the
acknowledge on HLDA pin.

Maximum Mode Pins

MN/MX’:

If MN/MX’=0 it indicates maximum mode of operation.

If MN/MX’=1 it indicates minimum mode of operation.
$2’,51’',S0’: (Status Lines)

It indicates the type of operation carried out by processor.

Indication

=
[

Interrupt acknowledge
Read I/O port

Write [/O port

Halt

Code access

Read memory

Write memory

[e T =T T Y e T e T B
Y = T = S = I =N B

Passive

RQ1’/GT1’; RQO’/GTO: (Request/Grant)

If the other processor wants to access the system bus ,then it is
going to request the processor which is currently using system
bus through this pin.

These are bidirectional pins.

It will send the acknowledge through same pins.i.e; grant.
LOCK’:

When this signal is enabled the system bus is locked for certain
duration. So it cannot be used by other masters for some
duration.

167

QS1,QS0:(Queue status):

0s, 08, Indication

0 0 Nooperation

0 I First byte of opcode from the queue
| 0 Empty queue

Subsequent byte from the queue

Minimum mode and

maximum mode of
operation with Timing
diagrams

I—

Minimum mode operation in 8086

I

Minimum mode operation in 8086:

—

— RDY 0%26345"' ':=E'
| Reset Cik R%Y
Reset Cik Ready MRD -
L Mmmamax wﬁ'% ‘mm —
Ve WR CWR
AQ ——oi e CSe RAM
8086 BHE CS Logic | . % RAM
"""""""" === = CSe ROM
£] Csio ©So ROM)
‘\LE STB < AO_A'Q] Q
ADg— ADqs. o 74373 a .
ArelSs = 2or3 3
AIOISG -_: c_g
DT/R DEN —LXS == —— = .
CSo CSe c§o CSe IORD | IOWR
xi l F l v l
l cs : cs cs : cs
Transceivers 5 : t
& 742as _] "‘”‘5 RQM: z vo
DIR __vi RO WR OE |
ﬂ H

operated

in minimum mode by strapping its MN/MX pin to logic 1.

In this mode, all the control signals are given out by the
microprocessor chip itself. There is a single microprocessor in
the minimum mode system.

The remaining components in the system are latches,
transceivers, clock generator, memory and I/O devices. Some
type of chip selection logic may be required for selecting
memory or |/O devices, depending upon the address map of
the system.

Latches are generally buffered output D-type flip-flops like
74LS373 or 8282. They are used for separating the valid
address from the multiplexed address/data signals and are
controlled by the ALE signal generated by 8086.

172

are called as data amplifiers. They are required to separate the
valid data from the time multiplexed address/data signals.

» They are controlled by two signals namely, DEN and DT/R.

» The DEN signal indicates the direction of data, i.e. from or to
the processor. The system contains memory for the monitor
and users program storage.

» Usually, EPROM is used for monitor storage, while RAM for
users

program storage. A system may contain |/O devices.

» Transceivers are the bidirectional buffers and sometimes they

173

Maximum mode operation In
8086

I

In the maximum mode, the 8086 is operated by strapping

the MIN/MX pin toground.

In this mode, the processor derives the status signal S2, S1,
SO. Another chip called bus controller derives the control

signal using this statusinformation.

In the maximum mode, there may be more than

one microprocessor in the system configuration.

175

. The components in the system are same as in the minimum

mode system.

- The basic function of the bus controller chip 1C8288 is to
derive control signals like RD and WR (for memory and I/O
devices), DEN, DT/R, ALE etc. using the information by the

processor on the status lines.

« The bus controller chip hasinput lines S2, S1, SO and
CLK. These inputs to 8288 are driven by CPU.

176

Maximum mode

_l —
gsoma MWTC
3; Bus - IOR
Controller OWe
ALE
| PEN o
] Ccs
Ap —={ Logic

® It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC,
IORC, IOWC and AIOWC. The AEN, I0B and CEN pins are
especially useful for multiprocessor systems.

® AEN and IOB are generally grounded. CEN pin is usually

tied to

+5\ The significance of the MCE/PDEN output depends
upon the

status of the I0OB pin.

® If IOB is grounded, it acts as master cascade enable to control
cascade 8259A, else it acts as peripheral data enable used in
the multiple bus configurations.

178

INTA pin used to issue two interrupt acknowledge pulses to
the interrupt controller or to an interruptingdevice.

IORC, IOWC are I/O read command and I/O write command
signals respectively.

These signals enable an 10 interface to read or write the data
from or to the address port.

The MRDC, MWTC are memory read command and memory
write command signals respectively and may be used as
memory read or write signals.

179

® The MRDC, MWTC are memory read command and memory
write command signals respectively and may be used as
memory read or write signals.

® All these command signals instructs the memory to accept or
send data from or to the bus.

® For both of these write command signals, the advanced
signals namely AIOWC and AMWTC are available.

180

»Here the only difference between in timing diagram
between minimum mode and maximum mode is the status
sighals used and the available control and advanced
command signals.

»R0O, S1, S2 are set at the beginning of bus cycle.8288 bus
controller will output a pulse as on the ALE and apply a
required signal to its DT / R pin during T1.

»In T2, 8288 will set DEN=1 thus enabling transceivers, and for
an input it will activate MRDC or IORC. These signals are
activated until T4. For an output, the AMWC or AIOWC is
activated from T2 to T4 and MWTC or IOWC is activated from
T3 to T4.

181

Timing diagram for
minimum mode

I

Write Cycle Timing Diagram for

ADD/STATUS) PHE- il S -8y g

ADD /DATA X Ais—Ag X Valid data Dys Dy X

WR \ 7

" A /

® The working of the minimum mode configuration system can

be better described in terms of the timing diagrams rather

than qualitatively describing the operations.

® The opcode fetch and read cycles are similar. Hence the timing
diagram can be categorized in two parts, the first is the timing
diagram for read cycle and the second is the timing diagram

for write cycle.

184

2 000

Bus Request and Bus Grant Timings in Minimum Mode System *

2 IARE §
» Q

of 8086

Clk |

e AN

HOLD

HLDA / \—

Bus Request and
Bus Grant Timings in Minimum Mode System

Timing diagram for
maximum mode

I

2 000

Memory Read Timing Diagram in Maximum
Mode of 8086

m =
2 IARE $
< 3
7, <

— One bus cycle —
Tl l Tz I T’ ' T‘ I Tl I
Clk
ALE I\ /
S-S Active X Juactive X Active
Add/Status) (BHE, Ao - Ao X Sy~ Sy)' """""""""
Add/Data .(Ajis— Ay > (Dys— D,) ___________
MRDC \ /

DT /K —\ /

Memory Write Timing in Maximum mode of 8086

< One bus cycle — >
I T, | T, | T, | T, | T |
CIk —
= Active K mmacive X acave
ADD/STATUS X XBHE) S — S, JORECEEETEEEEEEt
ADDDATA »—<Ai-Ao X Data out Dys— D, >
AMWC or AIOWC \ /
MWTC or IOWC
\ /
DT /K high

DEN

Interrupt structure of 8086

I

Interrupt structure of 8086

03FFh " Type 255 (Available)
Ayailable -- --
224 Interrupt - - < -
0080h Type 32 (Available)
007Fh Type 31 Reserved
Reserved -- <
27 Interrupt . 2o
0014h \. Type S Reserved
00z0h Type 4 Overflow interrupt
0000C. Type 3 Break point interrupt
0008h Type 2 Non-Maskable
0004h Type 1 Singe Step
CS:IP 0000h Type 0 Divide by Zero

Vector interrupt table,
Interrupt service routines

I

Vector interrupt

AFFH = Typa 255 ponter

aFrc H : (Avasiabile)
- e~
Avadabls imsrrupt * = B
poimears (224) e p 33 pomnter

o84 H { Avaitabie)

[E= Typa 32 pointer =
. QRO Ft (Avcaiiablia)
(Resarvad)

Ressrad irlemup! 4
pointers (27)

g0
!

Typa S pointer

ovari] (Reserved) G
: B Type 4 pointer T
cioH QOwarfiow
= Type 3 pointar
coC H 1-byte INT Instruction
T 2 Poirster _].
ﬁﬁ?fsimm'ﬂ et Ny— maskabla
== Type 1 pointer =
ool OO R o Sy
NEW CS —§ _CS bass address Type C pointer 5]
NEW IP —» 1P oltset _ i = b Divide error

SO0 H -——— 16 8tz —»

Introduction to DOS and BIOS
interrupts

I

BIOS INTERRUPT

BIOS INTERRUPT
@ INT 10H - Video Screen

* The option is chosen by putting a specific value in
register AH

* The video screen is text mode is divided into 80
columnsand 25 rows

* A row and column number are associated with each
location on the screen with the top left corner as 00,00
and the bottom right corner as 24,79. The center of the
screenis at 12,39 or (0C,27 in hex)

» Specific registers has to be set to specific values
before invoking INT 10H

194

BIOS INTERRUPT

® Function 06 — clear the screen

® AH=06 ; function number

® AL=00 ; page number

® BH=07 ; normal attribute

® CH=00 ; row value of start point

® CL=00 ; column value of start point

® DH=24 ;rowvalue of ending point

® DL=79 ; column value of ending point
® Function 02 — setting the cursor to a specific location
® AH=06 ; function number

® DH=row ;cursor

® DL=column ; position

BIOS INTERRUPT

Function 03 — get the current cursor position

AH =03 ; function number

BH=00 ; currently viewed page

The position is returned in DH = row and DL = column

Function OE — output a character to the screen
AH = OE : function number
AL = Character to be displayed

BH =00 ; currently viewed page

© © © ©® ©®© ® ©® ®©® ® ®

BL=00 ; default foreground color

DOS INTERRUPT

Function 09 — outputting a string of data to the monitor
AH = 09 ; function number

DX = offset address of the ASCII data to be displayed,
data segment Is assumed

The ASCII string must end with the dollar sign $

Function 02 — outputting a single character to the
monitor

AH = 02 ; function number
DL = ASCII code of the character to be displayed

Function 01 — inputting a single character, with an echo

AH = 01 ; function number.After the interrupt AL = ASCII
code of the input and is echoed to the_monitor

197

O ONMOMO, ©@®®

OMOMOMONO,

DOS INTERRUPT

Function OA — inputting a string of data from the keyboard

AH = OA ; function number

DX = offset address at which the string of data is stored (buffer
area), data

segment is assumed and the string must end with <RETURN>
After execution:

DS:DX = buffer in bytes (n characters + 2)

DS:DX+1 = number of entered characters excluding the return
key
DS:DX+2 = first character input

DS:DX+n = last character input
Toset a buffer, use the following in the data segment:
Buffer DB 10, ?, 10 DUP(FF)

198

®

©@ ® ® ® ©® @®

©@ ® ® ©®

DOS INTERRUPT

Function 07 — inputting a single character from the keyboard
without an echo

AH = 07 ; function number

Waits for a single character to be entered and provides it in AL
INT16 — Keyboard Programming

Function 01 — check for a key press without waiting for theuser
AH =01

Upon execution ZF = 0 if there is a key pressed

Function 00 — keyboard read

AH =00

Upon execution AL = ASCII character of the pressed key
Note this function must follow function 01

199

MODULE-III
Interfacing with 8086

I

COURSE OUTCOMES

Memory Interfacing to 8086
(Static RAM and EPROM)

I

® Interface two 4Kx8 EPROMS and two 4Kx8 RAM chips
with 8086. select suitable maps.

Table Memory Map for Problem

Ap Ay Ap Ay A Ap Ay Ao Ay Ay Ag Ay Ay
: &2 % 4 @ 11 F 13494
§Kx 8 |
O 0000 O0OO0OD0ODO0OO0OO0TCO0O0
I 1k kel (A (3% (% £ S

8K x 8
0 000000 O 00 0.0 0

ol 38

RrROM "o o= Ag
m Ho GKxG A|| ~ A‘z 7 A“ 40()-1.
Oy P—= 1 NRD—=< OF MRD —=d OF
e ©; F—»z
BHE 1 Ag 3-8 N
Ao M 74138 = o fom
Arz —=| A, Qs F"——O Oa 1. Op
o s i i
AQ-A‘z
Os p—=8 &s, &3,
0') 4 . \LJ/ N
rRAM Ao L7 Ae mam
4K x 8 A" < -~ Ag' ax =<8
MARD ——=ad RD RO RD
MWR — — =d WR MR WR
=] ~
De - Dhe D> - Do
4
o1 >—©%
1
o::D—cs.

Fig shows the interfacing diagram for the memory system

Table ~ Memory Chip Selection for Problem

Decoder P - Ay A A Selection/
Address/ BHE - Ay A BHE Comment
Word transfer on Dy~ Dy 0 0 0 Even and odd addresses in RAM
- Byte ranser on Dy - D, 0 0 1 - OnyevenddressiaRAM
Byte transfer on Dy~ D, 0 l 0 Only odd address in RAM
- Word transfer on D) - D) I 0 0 EvenandoddaddressesinROM
Byte transfer on Dy~ D, l 0 l Only even address in ROM
Byte transfer on Dy~ Dy [1 0 OnyoddaddessinROM .

205

Need for DMA

I

Need For DMA

® Direct memory access (DMA) is a feature of modern computer
systems that allows certain hardware subsystems to read/write
data to/from memory without microprocessor intervention,
allowing the processor to do other work.

® Used in disk controllers, video/sound cards etc, or
between
memory locations.

® Typically, the CPU initiates DMA transfer, does other operations
while the transfer is in progress, and receives an interrupt
from the DMA controller once the operation is complete.

® Can create cache coherency problems (the data in the cache
may be different from the data in the external memory after
DMA)

207

DMA Datatransfer Method

I

PROCESSOR

BIU ”El

DMA Data Transfer Method

From
decoder
Memory-.
Select Tl

Apn - Aqs AND Dg - Dy

F

RAM

/O Bus

4
DMA Request

=Y
[
=5
r
DMA
Controller =
(DMAC)

T A0 Ass
] A
Port
with
one
or
. - set of
) Addresses
1
i
DMAC
Acknowledge
From
Decoder
Port

Select

DEVICE

RECEIVE
FROM
RAM

The 1/O device asserts the appropriate DRQ signal for
the channel.

The DMA controller will enable appropriate channel, and ask
the CPU to release the bus so that the DMA may use the bus.
The DMA requests the bus by asserting the HOLD signal
which goes to the CPU.

The CPU detects the HOLD signal, and will complete executing
the current instruction. Now all of the signals normally
generated by the CPU are placed in a tri-stated condition
(neither high or low) and then the CPU asserts the HLDA
signal which tells the DMA controller that it is now_in.charge
of the bus.

The CPU may have to wait (hold cycles).

210

DMA activates its -MEMR, -MEMW, -IOR, -IOW output signals,
and the address outputs from the DMA are set to the target
address, which will be used to direct the byte that is about to
transferred to a specific memory location.

The DMA will then let the device that requested the DMA
transfer know that the transfer is commencing by asserting the
- DACK signal.

The peripheral places the byte to be transferred on the bus
Data lines.

Once the data has been transferred, The DMA will de-assert
the - DACK2 signal, so that the FDC knows it must stop placing
data on the bus.

211

® The DMA will now check to see if any of the other DMA channels
have any work to do. If none of the channels have their DRQ lines
asserted, the DMA controller has completed its work and will
now tri-state the -MEMR, -MEMW, -IOR, -IOW and address
signals.

® Finally, the DMA will de-assert the HOLD signal. The CPU sees
this, and de-asserts the HOLDA signal. Now the CPU resumes
control of the buses and address lines, and it resumes executing
instructions and accessing main memory and the peripherals.

212

823 7-DMA Controller

I

Pin diagram

Interface with 9
maximum-mode *<¢ VT“
CPU
PR wox I
Kiohs
P Ui, St S
DB-DB, DMA’hu:dhshm
sgn.
<ADSTB |

AEN
et

: —MhM DREQ,~-DREQ,
control signals from { +~——0

MR
and to memory MBIV L seva (DMA requests for the 4 channels)

IOR
control signals fromf +—==9 :> DAC

; : ‘ Kg-DACK
and to peripherals { DL -

READY DMA acknowledge
RESET | HRQ

CLK HLDA

A0 - A3 are used for
1) accessing 8237 internal ports

2) carrying memory address in DMA
read and write operations

DBO - DB7 are used for s
1) transfer of data
2) 8237 programming

Block Diagram

EQOF #—=

RESET
CE—+

| DECREMENTOR

INC/DECREMENTOR I

1
COUNT REG (16) I I

I TEMP WORD

TEMP ADDRESS

REG (16)

—

o)
BUFFER

READY —— 16-BIT BUS J
(] — TIMING
AND 16-BIT BUS
AEN #—— coNTROL I I OUTPUT
ADSTE st READ BUFFER READ WRITE BUFFER BUEFER LA4-AT
WMEMR BASE BASE CURRENT | CURRENT
METW ADDRESS WORD ADDRESS WORD
(16) COUNT (18] COUNT
[OR 4t - (16} {16) w [
OW a— | | < COMMAND
© CONTROL
1 | — :
WRITE READ
BUFFER BUFFER Do - D1
DREQO- 4 PRICRITY COMMAND N
DREQ3 ENCODER 8 1o
(8) INTERNAL DATA BUS BUFFER
HLDA —— AND
ROTATING
HRQ *=—— pRIORITY =
DACKO - r LOGIC @
DACK: *7 2
RECE"':_J;EST I STATUS TEMPORARY @
MODE (8} 18} o
i4 % 6)

215

8237 Internal Registers

® CAR
®

®

®

The current address register holds a 16-bit memory address used
for the DMA transfer.

each channel has its own current address
register for this purpose.

When a byte of data is transferred during a DMA operation, CAR
is either incremented
or decremented. depending on how it is programmed

CWCR

The current word count register programs a channel for the
number of bytes to transferred during a DMA action.

216

CR(Command Register)

® The command register programs the operation of the 8237
DMA
controller.

® The register uses bit position 0 to select the memory-to-
memory DMA transfer mode.

* Memory-to-memory DMA transfers use DMA channel
* DMA channel 0 to hold the source address
e DMA channel 1 holds the destination address

217

7 6 5 4 3 2 1 0=«=—Bit Number

I | | |

l_[0 Memory-to memory disable
1 Memory-to-memory enable

|' 0 Channel 0 address hold disable
1 Channel O address hold enable
|.X fbit0O=0

_,[0 Controller enable
1 Controller disable
|' 0 Normal timing
1 Compressed timing
I.X Hbito =1
[O Fixed priority
L 1 Rotating priority

|' 0 Late write selection

1 Extended write selection
I.X fbit3 =1
[0 DREQ sense active high
L1 DREQ sense active low

[0 DACK sense active low
L 1 DACK sense active high

BA and BWC

® The base address (BA) and base word count (BWC) registers
are used when auto-initialization is selected for a channel.

® In auto-initialization mode, these registers are used to reload
the CAR and CWCR after the DMA action is completed.

MR-(Mode Register)

® The mode register programs the mode of operation for a
channel.

® Each channel has its own mode register as selected by
bit positions 1 andO.

* Remaining bits of the mode register select operation,
auto-initialization, increment/decrement, and mode for the
channel

219

7 6 5 4 3 2 1 O0<«—Bit Number

X
2598 s wo RA528

Channel O select
Channel 1 select
Channel 2 select
Channel 3 select

Verify transfer
Write transfer
Read transfer
lllegal
ifbits6and 7 =11

Autoinitialization disable
Autoinitialization enable

Address increment select
Address decrement select

Demand mode select
Single mode select
Block mode select
Cascade mode select

RR(Request Register)

® The request register is used to request a DMA transfer via
software.

® very useful in memory-to-memory transfers, where an

external signal is not available to begin the DMA transfer

Request Register

765 4 3 2 1 0«<—BitNumber

I_I._I
Don't Care 00 Select channe

01 Select channe
10 Select channe
11 Select channel 3

0 Reset request bit
1 Set request bit

e

o — O

MR(Mask Register)

® The mask register set/reset sets or clears the channel
mask.

®

if the mask is set, the channel is disabled.

® The RESET signal sets all channel masks
to disable them

7 6 5 4 3 2 1 0<«<—Bit Number

Don't Care 00 Select channel 0 mask bit
01 Select channel 1 mask bit
10 Select channel 2 mask bit
| 11 Select channel 3 mask bit

" 0 Clear mask bit
| 1 Set mask bit

MSR

The mask register clears or sets all of the masks with one
command instead of individual channels, as with the MRSR.

Don't Care

7 6 5 4 3 2 1 0<«<—Bit Number

I_.

| 1 Set channel 0 mask bit

0 Clear channel 0 mask bit

" 0 Clear channel 1 mask bit
| 1 Set channel 1 mask bit

" 0 Clear channel 2 mask bit
| 1 Set channel 2 mask bit

" 0 Clear channel 3 mask bit
1 Set channel 3 mask bit

SR(Status Register)

® The status register shows status of each DMA channel. The TC
bits indicate if the channel has reached its terminal count
(transferred all its bytes).

® When the terminal count is reached, the DMA transfer is
terminated for most modes
of operation.

® The request bits indicate whether the DREQ input for a given
channel is active.

225

Status Register

76543 2 1 0«—Bit Number

[

C
1 Channe
1C

C

1 Channe
1 Channe
1 Channe
1 Channe

nanne

nanne
nanne

has reached TC
has reached TC
nas reached TC
nas reached TC

WO — O

0 request
1 request
2 request
3 request

DMA Controller-8257

I

®©@ @®

® ©@ ®©® © @®

®©@ @

Features of 8257

Here is a list of some of the prominent features of 8257 -

It has four channels which can be used over four I/0O
devices.

Each channel has 16-bit address and 14-bit counter.
Each channel can transfer data up to 64kb.
Each channel can be programmed independently.

Each channel can perform read transfer, write transfer and
verify transfer operations.

It generates MARK signal to the peripheral device that 128
bytes
have

been transferred.
It requires a single phase clock.
lts frequency ranges from 250Hz to 3MHz.

228

8257 Pin Description
® The following image shows the pin diagram of a 8257

DMA controller

IOR
IOW
MEMR
MEMW
MARK
READY

HLDA

ADSTB
AEN
HRQ

CLK
RESET

DACK2 °

DACKZ

DRQ2

" W
2

3

4

5

6

7

s 4
9 . E
' &3
11 oD
12 §
13 &
14

15

16

> > > > >

-

ﬁ. - *

=

gpppppfg;g

Block Diagram of 8257

intemal Bus-

Dy - D;] Data

CHO
16-BIT
ADDR
CNTR

CH1
16-BiT
ADDR
CNTR

CHZ
16-817T
ADDR
CNTR

¢— DRQ O
—» DACK D

«—DRQ 1
—» DACK 1

«—DRQ 2
—»DACK 2

bus
buffer
TOoR
oW
CLK
RESET grsorin
A,o -
Al logic
As
Ay
cs
A, -
AL —
AL -—
A, g— Control
READY —pf logic
HRQ -— ma': :’di
NMEMR :j reg
MEMW

CH3
16-81T
ADDR
CNTR

—DRQ 3
—» DACK 2

Terminal Count Reqister:

0 = Verify transfer
| = Write transfer
0=Read transfer
[=1llegal |

|

l4-bitvc;)unt

® Mode Set Reqister:
| BI BG Bs 84 BJ BQ .Bl BO

ALTCS [EW|RP

EN3

EN2

EN1/ENO

L— 1 =Rotating Priority
0 = Fixed Priority

——> | = Extended write selection
0 = Normal write selection

——> 1 =Stop DMA on terminal count

————— | =Enable auto reload
0 = Disable auto reload

1= Enable channel - 0
(0 = Disable channel - 0

—> | =Enable channel - |
- (= Disable channel - |

—> | =Enable channel - 2

-~ () = Disable channel - 2

» | = Enable channel - 3

—> () = Disable chamel -3

® Status Reaqister:

B7 Bﬁ BS B4 BJ B2'Bl BO

0

0

0

03

TC3

TC2

TCl

TCO

‘3 | = Channel-0 has reached terminal count

— | =Channel-1 has reached terminal count

> | = Chann‘el-Z has reached terminal count
— | =Channel-3 has reached terminal count

—» | =Channel-2 is reloaded from channel -3

- Address

Register
AS AZ Al AO
Channel-0 DMA address register - | 0| 0 0 0
Channel-0 Count register 0 0 | O I
Channel-1 DMA address register 0 0 1 0
Channel-1 Count register 0 0 I 1
Channel-2 DMA address register 0 |1 .0 |0
Channel-2 Count register 0 1 0 |1
Channel-3 DMA address register 0 1 1 0
Channel-3 Count register 0 IR 1
Mode set register (Write only) 1 0 0 0
Status register (Read only) 1 0 0 0

234

Interfacing with
8237/8257

I

Int

DMA
CONTROLLER

MEMORY

O|O >

PERIPHERAL

A~ Address Bus
B—Dala Bus
C—Control Bus

Vec

T Fe e[z
mauhmmhmwm
T TEIT—TH3
| 1111
g df ff
S ITINEEE
o.ﬁm
A |
- [; !’
Levorf] “,L _
Lhr“num
e ey 1 3|
i
I3l

Once a DMA controller is initialised by a CPU property, it is
ready to take control of the system bus on a DMA request,
either from a peripheral or itself (in case of memory-to-
memory transfer).

The DMA controller sends a HOLD request to the CPU and
waits for the CPU to assert the HLDA signal. The CPU
relinquishes the control of the bus before asserting the HLDA
signal.

Once the HLDA signal goes high, the DMA controller activates
the DACK signal to the requesting peripheral and gains the
control of the system bus. The DMA controller is the sole
master of the bus, till the DMA operation is over. The CPU
remains in the HOLD status (all of its signals are tristate
except HOLD and HLDA), till the DMA controller is the master
of the bus.

SERIAL DATA TRANSFER
SCHEMES

I

Data Transfer Schemes

Asynchronous and synchronous data
transfer schemes

I

Data Transfer Schemes

d ¥ L
0 — ()
| 1] Jl, Time
— 1-bit
— g e | PEshmiien Source 1o bt Destination
4 ™ 4
S 0nal Reference
t |
n-1 ®in-]
Signal reference 1 Signal refeeence

n=8§ 16,312

Parallel Transmission Serial Transmission

Data Transfer Schemes

® Even in shorter distance communications, serial computer
buses are becoming more common because of a tipping point
where the disadvantages of parallel busses (clock skew,

interconnect density) outweigh their advantage of simplicity.

® The serial port on your PC is a full-duplex device meaning that
it can send and receive data at the same time. In order to be
able to do this, it uses separate lines for transmitting and

receiving data.

242

Data Transfer Schemes

Advantages of serial communications:

®

Requires fewer interconnecting cables and hence

occupies less space.

"Cross talk" is less of an issue, because there are fewer
conductors compared to that of parallel communication

cables.

Many IC s and peripheral devices have serial interfaces.
Clock skew between different channels is not anissue.

Cheaper to implement.

243

Data Transfer Schemes

SERIAL DATATRANSMISSION MODES

When data is transmittedbetween two pieces ofequipment,
three communication modes of operation can be used.

Simplex: In a simple connection, data is transmitted in one
direction only. For example, from a computer to printer that
cannot send status signals back to the computer.

Half-duplex:In a half-duplex connection,two-way transfer
of data is possible, but only in one direction at atime.

Full duplex: In a full-duplex configuration, both ends can send
and receive data simultaneously, which technique is common
in our PCs.

244

Data Transfer Schemes

© SERIAL DATATRANSFER SCHEMS

® There are two ways to synchronize the two ends

of the communication.

o Synchronous data transmission

o Asynchronous data transmission

Data Transfer Schemes

Synchronous Data Transmission

1) Bynchronous Transmission: -

Transmitter sends bits on falling edge of the clock
Recetver reads bits on rising edge of the clock

|
¥y v | I l I I I I I
Clock — —‘
I I I I I I I I |
| | | | [| | |
Data | | | |
61
(o5 61H) Bit7 | | [| | | Bit0O
Bits 0 | : 1 | 0 | 1} | 1} | 1} | 1

l I
Note: - Matyy ssmchtonous protocols send MSE first

Data Transfer Schemes

® The synchronous signaling methods use two different signals. A
pulse on one signal line indicates when another bit of

information is ready on the other signal line.

® In synchronous transmission, the stream of data to be transferred
is encoded and sent on one line, and a periodic pulse of voltage
which is often called the "clock" is put on another line, that tells

the receiver about the beginning and the ending of each bit

247

Data Transfer Schemes

® Advantages: The only advantage of synchronous data transfer is
the Lower overhead and thus, greater throughput, compared to

asynchronous one.

@ Disadvantages:

e Slightly more complex

e Hardware is more expensive

Data Transfer Schemes

2) Asynchronous Transmdssion: -

Data
611 Yy |
|3tart bit |
| [
Bits | |
|

clock to read the following bits

Eit0

Transmitter uses an irternal clock when to determine when to send each bit

Receiver detects the falling edge of the start bit and then uses its internal

0 I
I

Note: - Asynchronous protocols send L3B first

0

0

0

Data Transfer Schemes

® The asynchronous signaling methods use only one signal. The
receiver uses transitions on that signal to figure out the

transmitter bit rate (known as auto baud) and timing.

® A pulse from the local clock indicates when another bit is ready.
That means synchronous transmissions use an external clock,
while asynchronous transmissions are use special signals along

the transmission medium.

250

Data Transfer Schemes

Asynchronous communication is the commonly prevailing
communication method in the personal computer industry, due
to the reason that it is easier to implement and has the unique
advantage that bytes can be sent whenever they are ready, no
need to wait for blocks of data to accumulate.

Data Transfer Schemes

Advantages:

® Simple and doesn't require much synchronizationon
both

communication sides. The timing is not as critical as for

synchronous transmission; therefore hardware can be made

cheaper.

@ Set-up is very fast, so well suited for applications where messages
are generated at irregular intervals, for example data entry from

the keyboard.

252

Data Transfer Schemes

Disadvantages:

® One of the main disadvantages of asynchronous technique is
the large relative overhead, where a high proportion of the

transmitted bits are uniquely for control purposes and thus

carry no useful information.

8251 USART architecture
and Interfacing

I

Pin diagram of 8251

D, []1 28
Dy []2 27
RXD [] 3 26
GND [] 4 25
D, (15 24
Ds []6 23
Dg (17 22
D, 18 8251A 21
T™XC (]9 20
wR [] 10 19
cs [1 18
co []12 17
RD [] 13 16
RXRDY [| 14 15

oy ouut

TXEMPTY
CTS
SYNDET/BD
TXRDY

Block diagram of8251

Data Bus Transmit
O7-00 1 mumter fe—|)| Buer [TXD
(P - 5)
RESET
CLK _ " Transmit TRERDY
C/ Read/\Write [L Control - E
BD Control =t ontre e
WH Logic =
TS =
i |
=
=
DSR = i
DTR Modem = Recieve - RHRX[D
CTS Control T g
RTS Y e
_ == RXRDY
Recieve BYC
Control = SYMNDET/BD

Sections of 8251A

» Data Bus buffer
» Read/Write Control Logic
» Modem Control

» Transmitter
» CS — Chip Select

> Receiver
Data Bus Buffer
DO-D7 : 8-bit data bus used to read or write status, command word or data

Read/Write Control logic
» C/D —Control/Data

» WR: When signal is low, the MPU either writes.
» RD : When signal goes low, the MPU either reads.
» RESET : A high on this signal reset 8252A.

Control Register

» 16-bit register for a control word consist of two independent
bytes namely mode word & command word.

» Mode word : Specifies the general characteristics of operation
such as baud, parity, number of bits etc.

» Command word : Enables the data transmission and reception.

» Register can be accessed as an output port when the Control/Data
pin is high.

Status register

» Checks the ready status of theperipheral.

» Status word register provides the information concerning register
status and transmission errors.

258

Dataregister

> Used as an input and output port when the C/D is low.

&

s J¢gp RO wR___ |

QD O = = 3 X
I =~ -
(=R =

1
o
o
o
o
o

Data Bus 3-5tate

Data Bus 3-5tate
Status — CPU
Control Word <= CPU
Data — CPU

Data = CPU

Modem Control

» DSR - Data Set Ready : Checks if the Data Set is ready when
_communicating with amodem.

»DTR - Data Terminal Ready : Indicates that the device is ready

to accept data when the 8251 is communicating with a modem.

» CTS - Clearto Send: If its low, the 8251A is enabled to transmit the
_serial data provided the enable bit in the command byte is set to‘1’.

» RTS - Request to Send Data : Low signal indicates the modem that the
receiver is ready to receive a data byte from the modem.
Transmitter section

» Accepts parallel data from MPU & converts them into serial data.
» Has two registers:

* Buffer register : Tohold eight bits
e Output register : Toconvert eight bits into a stream of serial bits.

260

Output Register ——oxs TwD

— =) Transmitter Buffer

OUT DX, AL T

ReceiverSection

Transmit cornvtrol

Input Register f¢e—F—

+«— Receive Buffer

IN DX, AL

Receive control

TS
—— Syndet/BDT

TR DY
P TxE
T=C
RxDy
RxRDY

RxiC

Mode word & command word for 8251

oo

07 DE D5 DA DI D2 Dt

[er] m 1ms[:a La:xln;lom[nsn]

Lo

(ONLY EFFECTS Tx: Rx
NEVER REQUIRES MORE
THAN ONE STOPBIT)

1= FORCEST » D LOW
0 » NORMAL OPERATION

ERROR RESET
1= RESETALL ERR
FM(PE.“ FE)

ﬂmlmm
WILL FORCE
RTBOU'I’PUTYOZEM

NTERNAL RESET
FOGH RETURNS 2251
TO MODE
FORMAT

MOOE
= ENABLE SEARCH FOR
CHARACTERS

Emm
SYN

Status word register of 8251

F E flag Is se! whon a vafid stop bl is riol
detected af end of every chisracter i is
roset by ER bit of Command instruction.
FE dos not Inhibit operaton of B251.

\

the E R bit of the Command insuction,
QE does not inhidil oparation of the
8251 howver, the praviously averun
charactar is kst

D7 06 05 o4 gy D2 D
DSR |SYNDET| FE QE PE TXE | RXRDY | TXRDY
DATA SET READY ._J L
general purpase Normally TRANSMITTER READY
ﬁ:HMMMn Indicates USART s ready 1o accept
Data Set Ready 4 data character o commarnd.
LRECEIVERREADY
Indicates USART has recatved &
character on 48 senal input anc
SYNC DETECT
When set for intemal sync detect 5 ready 1o transfar it fo the CPU.
ndicates that characles sync has been
achioved and 8251 Is ready for dala TRANSMITTER EMPTY
Indicates that parabiel to serial
OVER RUN ERROR
mgmmummm convarter in transmitler s eniply.
ok read & character 1ha naat e —
FRAVING ERROR (ASYNG OMLY) ons bacomes avalal. It s esa by PARITY ERROR

PE Rag is 551 when & party emov i
tetecied It = reset by ER bit of
Cammand Instricion PE tioss nol
inhibtt aperation of 8251,

interfacing 8251 USART with 8086

Dn=D 1488 Driver
o=D7 bt .
D{J—DT\J’A_ >DQ—D? TXDWRS 232
+5V [[
10k R |
Az RxD 43—;“0(]]—%—47RS 232
7430 TS L] |
1" .
8086 2fA 0 BIE1A 1489 Receiver
~ 1270
TOR »RD RXC[P—
- 1 E «+—160 kH
T > WR z
Iow 0] e —
RESET OUT 21 CLK o
=
CLK(OUT) 20 | TS GND
1 1

8251 Interfacing with 8086 microprocessor

interfacing 8251 USART with 8086

T'HICC- T%‘Vcc
r;' ‘ D1'Do
A\ TXD —
C } ‘)_'.{)o
.] CI B)] —
@D RD 225IA
086 % x5 USART
RESET 3 RESET —
L | cloek {;mquem;
C o
= _— gxe pe—o 160 HHz

TTL to RS 232C and RS5232C to
TTL conversion

I

RS-232 defines serial, asynchronouscommunication

» Serial - bits are encoded and transmitted one at a time (as opposedto
parallel transmission)

* Asynchronous - characters can be sent at any time and
are not individually synchronized

bits

DTE - DCE Connection DTE - DTE Connaction

DTE DCE DTE DTE
2 | ™D 2 2 TxD ™D >
3 _B_x_t_)_- 3 3 X 3
RxD RxD|
7 _gnou_nd. 7 7 —

Electrical Characteristics

» Single-ended

* One wire per signal, voltage levelsare with respect to system
common (i.e. signalground)

» Mark: -3V to-15V
represent Logic 1, Idle State (OFF)
» Space: +3 to+15V
* representlLogic O, Active State (ON)
» Usually swing between —12V to+12V

» Recommended maximum cable lengthis 15m, at 20kbps

Mechanical Characteristics
» 25-pin connector

> Use male connector on DTE and female connector on DCE.

g i 2 3 4 5
Secondary transmitted data —1-0 ‘. P it e — L | -
Transmit clock ——--3 ? 1 sy I:/)
Secondary received data —-0 3 :mw‘:::d Y \ ® O 00O | e
Bk <10 1 " N o000 | P
__g g Ciear 10 send \ //
Semnd;ryquwm:m _“1.9 , Signal ground L J
% 0 Data carrier detect !
s-amnqua_lw:;: —_—:% o Reserved 6 7 8 9
D:“”mww |z o Reserved Pin Signal Pin Signal
8 o Unassigned 1 Data Carrier Detect 6 Data Set Ready
FmT ok a C Secondary data carrier detect__ 2 Received Data 7 Reguest to Send
Unassigned - 92 Secondary clear to send 3 Transmitted Data 8 Clear to Send
- 4 Data Terminal Ready) Ring Indicator
. 5 Signal Ground

25-Pin RS232 Connector

9-Pin RS232 Connector

269

Function of Signals
» TD: transmitted data

» RD: receiveddata
» DSR: data set ready

* indicate whether DCE is poweredon.
» DTR: data terminalready

* indicate whether DTR is powered on

* turning off DTR causes modem to hang up theline
» RIl: ringindicator

* ON when modem detects phonecall.
» DCD: data carrierdetect

* ON when two modems have negotiated successfully
and the carrier signal is established on thephoneline.

270

> RTS: request to send
* ON when DTE wants to send data

- Used to turn on and off modem’s
carrier signal in multi-point (i.e. multi-drop) lines

* Normally constantly ON in point-to-point lines
» CTS: clear to send

* ON when DCE is ready to receive data.

» S@: signal ground

271

® Voltage levels, slew rate, and short-circuit behavior are typically
controlled by a line driver(MC 1488) that converts from the
USART's logic levels (TTL levels) to RS-232 compatible signal levels,
and a receiver (MC 1489) that converts RS-232 compatible signal
levels to the USART's logic levels (TTLlevels).

LR

RIS

DTR ~

e

MO 1ann

N

|

+,,’,‘

1

¢

13

=

U Uy

[
|
|
[
|
|
|
|
[
[
l-_
|
[
|
|

v

PIN 14 =+12V
PIN1=-12V
PIN 7 = GND

(&)

= = -

| -
—

- ——— e ——————
1

HES-2020

- e

V

220 pl

-
I~
=
=
=

MODULE-IV
ADVANCED MICROPROCESSORS

I

COURSE OUTCOMES

Introduction to 80286

I

Salient features of 80286
®

O]

High performance microprocessor with memory
management and protection

80286 is the first member of the family of advanced
microprocessors with built-in/on-chip memory management
and protection abilities primarily designed for multi-
user/multitasking systems

Available in 8 MHz, 10 MHz & 12.5 MHz clock frequencies

80286 is upwardly compatible with 8086 in terms of
instruction set.

80286 have two operating modes namely real address mode
and virtual address mode.

276

Salient features of 80286:

®

®

In real address mode, the 80286 can address up to 1Mb of
physical memory address like 8086.

In virtual address mode, it can address up to 16 Mb of physical
memory address space and 1 GB of virtual memory address

space.

80286 has some extra instructions to support operating system
and memory management.

In protected virtual address mode, it is source code compatible
with 8086.

The performance of 80286 is five times faster than the
standard 8086.

277

Bus and memorysizes

> The 80286 CPU, with its 24-bit address bus is able toaddress
16MB of physical memory.

» 1GB of virtual memory for each task

Microprocessor Databus Addressbus Memory size

width width
8086 16 20 1M
80186 16 20 1M

80286 16 24 16M

Operating Modes:
Intel 80286 has 2 operating modes:

Real Address Mode :
» 80286 is just a fast 8086 --- up to 6 timesfaster

> ﬁ_ll ntm)lenaory management and protection mechanisms are
isable
» 286 is object code compatible with 8086

Protected Virtual Address Mode

» 80286 works with all of its memory management and
protection capabilities with the advanced instructionset.

» itis source code compatible with 8086

80286 Architecture:

Address Latehes and Bigy-bg,
Dirivers -

1
1
I
1 —
: . B W
I - - |
1 Te- Tocessor —— i
: Segment fetch Extension | FEACK
! Limit Ciemps Interfare |@——— PEREQ
1]:'I.E k 1
! e ¢ | xEWY HOLD
1 —_— — JRS—
Bus Control : > 81, 20, CODV BT
Data Transceivers ' LOCEL, HLDA
_______________________________ ﬁ, Dys-Dig
1
—--. - R & Byte !
| Pre-fetch :
: Chaene Bus Uit !
1
: I (Bm___
' A — @ —— - - = p#— Eeset
1 1
1 . 1
! 3Der_'cn.ied Instruction ' — Clk
! Instraction Decoder !
' ! I Chiene e Vs
! I | Instruction |
| Brecution Unt By | | | | E e Umitquy_ 1 [Ve
‘ ‘ = Cap
HMI ——
BLTSE
INTE
FREOR

280

Functional Parts:

1.Bus Interface unit

2.Instruction unit

3.Execution unit

2.Address unit

5US Interrace Unit

>

>

Performs all memory and I/O read and write operations.

Take care of communication between CPU and a
COProcessor.

Transmit the physical address over address bus Ag—A,3.
Prefetcher module in the bus unit performs this task of

prefetching.

Bus controller controls the prefetcher module.

Fetched instructions are arranged in a 6 — byte prefetch
queue.

282

Instruction Unit

> Receive arranged instructions from 6 byte prefetch queue.

> Instruction decoder decodes up to 3 prefetched instruction

and are latched them onto a decoded instruction queue.

> Output of the decoding circuit drives a control circuit in the

Execution unit.

Executionunit

» EU executes the instructions received from the decoded

instruction queue sequentially.

» Contains Register Bank.

» contains one additional special register called Machine status

word (MSW) register --- lower 4 bits are only used.

> ALU is the heart of execution unit.

» After execution ALU sends the result either over data bus or
back

to the register bank.

284

Address Unit

» Calculate the physical addresses of the instruction and data that

the CPU want to access
> Address lines derived by this unit may be used to address

different peripherals.

> Physical address computed by the address unit is handed over

to the BUS unit.

REGISTER ORGANIZATION OF 80286:

The 80286 CPU contains almost the same set of registers, as
in 8086, namely

» Eight 16-bit general purpose registers (AX, BX, CX, DX)
» Four 16-bit segment registers (CS, SS, DS, ES)

» Status and control registers (SP, BB SI, DI)

> Instruction Pointer (IP)

» Two 16-bit register - FLAGS, MSW

» Two 16-bit register - LDTR and TR

» Two 48-bit register - GDTR and IDTR

286

CS

DS
SS

ES

16-BIT Special
REGISTER Register
NAME 07 0 Functions

BYTE AX | AH AL MULTIPLY/DIVIDE

ADDRESSABLE py DH DL /O INSTRUCTON

(16-BIT

ﬁEaESTER 4 CH Gl LOOP/SHIFT/REPEAT COUNT

SHOWIN) - BH BL BASE REGISTERS
BP
SI INDEX REGISTERS
DI
SP STACK POINTER

15 GENErRAL O
15 0 REGISTERS 15 0
CODE SEGMENT SELECTION F STATUS WORD
DATA SEGMENT SELECTION IP INSTRUCTION POINTER
STACK SEGMENT SELECTION STATUS AND CONTROL
EGISTE
EXTRA SEGMENT SELECTION R Tt
SEGMENT REGISTERS

Flag Register

STATUS FLAGS
CARRY FLAG
PARTY FLAG

AUXILIARY CARRY FLAG
ZERO FLAG

SIGN FLAG
OVERFLOW FLAG —

Dis Diys DiaD12 (D11 Do Dg Ds D7 {Ds Ds |Ds Ds D Dy
NT | IOPL| OF DE| IF TF | SF | ZF AF PF CF

l, A} A & CONTROLFLAGS

NESTED TASK L TRAP FLAG
I | L INTERRUPTFLAG
PRIVILEGE LEVEL DIRECTION FLAG

® The initial protected mode, released with the 286, was not widely
used;

® for example, it was used by Microsoft xenix (around 1984),coherent
and minix. Several shortcomings such as the inability to access the
BIOS or DOS calls due to inability to switch back to real mode
without resetting the processor prevented widespread usage.

® Acceptance was additionally hampered by the fact that the 286
only allowed memory access in 16 bit segments via each of four
segment registers, meaning only 4*2 bytes, equivalent to 256
kilobytes, could be accessed at a time Because changing a segment
register in protected mode caused a 6-byte segment descriptor to
be loaded into the CPU from memory

289

® The segment register load instruction took many tens

of processor cycles, making it much slower than on
the 8086; therefore, the strategy of computing
segment addresses on-the-fly in order to access data
structures larger than

128 kilobytes (the combined size of the two data
segments) became impractical, even for those few
programmers who had mastered it on the
8086/8088

290

There are four types of privilege levels
®

®
®
®
®

®

00 - kernel level (highest privilege level)
01 - OS services

10 - OS extensions

11 - Applications (lowest privilege level)

Each task assigned a privilege level, which indicates thepriority
or privilege of that task.

It can only changed by transferring the control, using gate
descriptors, to a new segment.

A task executing at level 0, the most privileged level, can access
all the data segment defined in GDT and LDT of the task.

A task executing at level 3, the least privileged level, will havethe
most limited access to data and other descriptors.

291

Task

Cated call
and returm
Task &
Unrestrcted
local access

Task B

Base Address
® 32 bit starting memory address of the segment Segment Limit

® 20 bit length of the segment. (More specifically, the address of
the last accessible data, so the length is one more that the
value stored here.) How exactly this should be interpreted
depends on other bits of the segment descriptor.

G=Granularity

® If clear, the limit is in units of bytes, with a maximum of 220
bytes. If set, the limit is in units of 4096-byte pages, for a
maximum of 232 bytes.

293

Base Address

* D=Default operand size

If clear, this is a 16-bit code segment; if set, this is a 32-bit segment

* L=Long-mode segment

If set, this is a 64-bit segment (and D must be zero), and code in this segment
uses the 64-bit instruction encoding

 AVL=Available

For software use, not used by hardware

* D=Default operand size

If clear, this is a 16-bit code segment; if set, this is a 32-bit segment

* L=Long-mode segment

If set, this is a 64-bit segment (and D must be zero), and code in this segment
uses the 64-bit instruction encoding

* AVL=Available

For software use, not used by hardware

294

P=Present

® If clear, a "segment not present"” exception is generated on any
reference to this segment

DPL=Descriptor privilege level
@Privilege level required to access this descriptor

C=Conforming

® Code in this segment may be called from less-privileged levels
R=Readable

@If clear, the segment may be executed but not read from
A=Accessed

@ This bit is set to 1 by hardware when the segment is accessed,
and cleared by software

295

Memory access in GDT and LDT

® The Global Descriptor Table or GDT is a data structure used by
Intel x86-

family processors starting with the 80286 in order to define the
characteristics of the various memory areas used during program
execution, including the base address, the size and access

privileges like execute- ability and write-ability.

296

Memory access in GDT and LDT

® There is also a Local Descriptor Table (LDT). While the LDT
contains memory segments which are private to a specific
program, the GDT contains global segments.

® The x86 processors have facilities for automatically switching the
current LDT on specific machine events, but no facilities for
automatically switching the GDT.

297

Memory access in GDT and LDT

Baseadgress (4-31) (GEB[(A {Lme(16-19) (PIDPL|S] Type | Baseaddess(16-23

TTTTT T T T T T I T T TTTT T T TTTTITTTT]
e s (i 5 Seqnent it Bt 1

298

Memory access in GDT and LDT

Memory access in GDT and LDT

Memory Accessing In GDT or LDT

* A segment cannot be accessed, if its descriptor does not exist in

either LDT or GDT.

- Set of descriptor (descriptor table) arranged in a proper sequence

describes the complete program.

Memory access in GDT and LDT

« The descriptor is a block of contiguous memory location

containing information of a segment, like

* Segment base address

* Segment limit

* Segment type

* Privilege level — prevents unauthorized access
* Segment availability in physicalmemory

« Descriptor type

Segment use by another task

Memory access in GDT and LDT

® The Global Descriptor Table or GDT is a data structure used by
Intel x86-family processors starting with the 80286 in order to

define the characteristics of the various memory areas used during

program execution, including the base address, the size and access

privileges like execute- ability and write-ability.

®

Memory access in GDT and LDT

Local Descriptor Table (LDT). While the LDT contains memory
segments which are private to a specific program, the GDT contains

global segments. The x86 processors have facilities for automatically

switching the current LDT on specific machine events, but no facilities

for automatically switching the GDT.

Memory access in GDT and LDT

Differentiate between GDT and LDT.

o LDT is actually defined by a descriptor inside the GDT, while the GDT s
directly defined by a linear address.The lack of symmetry between both
tables is underlined by the fact that the current LDT can be
automatically switched on certain events, notably if TSS-based

multitasking is used, while this is not possible for the GDT.

® The LDT also cannot store certain privileged types of memory

segments.

304

Memory access in GDT and LDT

® The LDT is the sibling of the Global Descriptor Table (GDT)
and similarly defines up to 8191 memory segments
accessible to programs.

® LDT (and GDT) entries which point to identical memory
areas are called aliases.

® Instruction to load GDT is LGDT(Load Global Descriptor

Table) and instruction to load LDT is LLDT(Load Global

Descriptor Table). Both are privileged instructions.

305

Multitasking

Multitasking

®

multitasking is the concurrent execution of multiple tasks
(also known as processes) over a certain period of time. New
tasks can interrupt already started ones before they finish,

instead of waiting for them to end.

As a result, a computer executes segments of multiple tasks
in an interleaved manner, while the tasks share common
processing resources such as central processing unit (CPUs)

and main memory.

306

Multitasking

context switch

® Multitasking automatically interrupts the running program,
saving its state (partial results, memory contents and
computer register contents) and loading the saved state of

another program and transferring control to it.

® This “context switch" may be initiated at fixed time intervals
(pre-emptive multitasking), or the running program may be
coded to signal to the supervisory software when it can be

interrupted (cooperative multitasking).

307

Multitasking

Features of Multitasking
- It allows more efficient use of the computer hardware; where a

program is waiting for some external event such as a user input
or an input/output transfer with a peripheral to complete, the

central processor can still be used with anotherprogram.

® In a time sharing system, multiple human operators use the
same processor as if it was dedicated to their use, while behind
the scenes the computer is serving many users by multitasking

their individual programs.

308

Multitasking

® In multiprogramming systems, a task runs until it must wait for an

external event or until the operating system's scheduler forcibly

swaps the running task out of the CPU.

Multitasking

Applications :

@ Real-time systems such as those designed 1O control

industrial robots, require timely processing;

® single processor might be shared between calculations of

machine movement, communications, and user interface.

Multitasking

Advantages

® Often mMmultitasking operating systems include measures to

change the priority of individual tasks, so that important jobs
receive more processor time than those considered less
significant.

® Depending on the operating system, a task might be as large as

an entire application program, or might be made up of smaller

threads that carry out portions of the overall program.

311

Addressing Modes

Multitasking

®

multitasking is the concurrent execution of multiple tasks
(also known as processes) over a certain period of time. New
tasks can interrupt already started ones before they finish,

instead of waiting for them to end.

As a result, a computer executes segments of multiple tasks in
an interleaved manner, while the tasks share common
processing resources such as central processing unit (CPUs)

and main memory.

312

Addressing Modes

context switch

® Multitasking automatically interrupts the running program,
saving its state (partial results, memory contents and
computer register contents) and loading the saved state of

another program and transferring control to it.

® This “context switch" may be initiated at fixed time intervals
(pre-emptive multitasking), or the running program may be
coded to signal to the supervisory software when it can be

interrupted (cooperative multitasking).

313

Features of Multitasking

®

It allows more efficient use of the computer hardware; where a
program is waiting for some external event such as a user input
or an input/output transfer with a peripheral to complete, the
central processor can still be used with another program.

In a time sharing system, multiple human operators use the
same processor as if it was dedicated to their use, while behind
the scenes the computer is serving many users by multitasking

their individual programs.

314

® In multiprogramming systems, a task runs until it must wait
for an external event or until the operating
system's scheduler forcibly swaps the running task out

of the CPU.

Addressing Modes

Applications :

® Real-time systems such as those designed to control

industrial robots, require timely processing;

® A single processormight be shared betweencalculations

of machine movement, communications, and user

interface.

Advantages

® Often multitasking operating systems include measures to
change the priority of individual tasks, so that important jobs
receive more processor time than those considered less
significant.

® Depending on the operating system, a task might be as large as
an entire application program, or might be made up of smaller

threads that carry out portions of the overall program.

317

Addressing Modes

Direct addressing mode:

® In the direct addressing mode, a 16-bit memory address
(offset)
directly specified in the instruction as a part of it.

Example: MOV AX, [5000H].

Register addressing mode:

® In the register addressing mode, the data is stored in a
register and it is referred using the particular register. All the
registers, except IP, may be used in this mode.

Example: MOV BX, AX

318

Addressing Modes

Register indirect addressing mode:

® Sometimes, the address of the memory location which
contains data or operands is determined in an indirect way,
using the offset registers. The mode of addressing is known as

register indirect mode.

® In this addressing mode, the offset address of data is in
either BX or S

or DI Register. The default segment is either DS or ES.
Example: MOV AX, [BX].

319

Addressing Modes

Indexed addressing mode:

® In this addressing mode, offset of the operand is stored one of
the index registers. DS & ES are the default segments for index
registers S| & Dl respectively.

Example: MOV AX, [SI]
® Here, data is available at an offset address stored in Sl in DS.

Register relative addressing mode:

® In this addressing mode, the data is available at an effective
address formed by adding an 8-bit or 16-bit displacement
with the content of any one of the register BX, BP, SI & DI in
the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

320

Addressing Modes

Based indexed addressing mode:

® The effective address of data is formed in this addressing
mode, by adding content of a base register (any one of BX or
BP) to the content of an index register (any one of S| or DI).
The default segment register may be ES or DS.

Example: MOV AX, [BX][SI]

Relative based indexed:

® The effective address is formed by adding an 8 or 16-bit
displacement with the sum of contents of any of the base
registers (BX or BP) and any one of the index registers, in a
default segment.

Example: MOV AX, 50H [BX] [SI]

321

Addressing Modes

Addressing Modes for control transfer instructions:

® Intersegment
* |ntersegment direct
* |Intersegment indirect

® Intrasegment
* Intrasegment direct

* Intrasegment indirect

Addressing Modes

Intersegment direct:

® In this mode, the address to which the control is to be
transferred is in a different segment. This addressing mode
provides a means of branching from one code segment to

another code segment. Here, the CS and IP of the destination
address are specified directly in the instruction.

Example: JIMP 5000H: 2000H;

® Jump to effective address 2000H in segment 5000H.

323

Addressing Modes

Intersegment indirect:

® In this mode, the address to which the control is to be
transferred lies in a different segment and it is passed to the
instruction indirectly, i.e. contents of a memory block
containing four bytes,
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using
any of the addressing modes, except immediate mode.

Example: JMP [2000H].

Jump to an address in the other segment specified at
effective
address 2000H in DS.

324

Addressing Modes

Intrasegment direct mode:

® In this mode, the address to which the control is to be
transferred lies in the same segment in which the control
transfers instruction lies and appears directly in the instruction
as an immediate displacement value.

® In this addressing mode, the displacement is computed relative
to the content of the instruction pointer.

325

Addressing Modes

Intrasegment indirect mode:

O]

In this mode, the displacement to which the control is to be
transferred is in the same segment in which the control
transfer instruction lies, but it is passed to the instruction
directly. Here, the branch address is found as the content of a
register or a memory location.

This addressing mode may be used in unconditional
branch instructions.

Example: IMP [BX]; Jump to effective address stored in
BX.

326

Flag Register of 80286

STATUS FLAGS

CARRY FLAG
PARTY FLAG

JXILIARY CARRY FLAG
ZERO FLAG

SIGN FLAG
OVERFLOW FLAG

Dis [Dis 0130\'1.2 Dy Do Dg Ds (Ds D3 (D2 Dy Do
7 Y O
NT liopLl of | DE| IF | TF | SF | ZF / AF PF / CF
/A % % %
J, A A A CONTROLFLAGS
NESTED TASK ____ TRAP FLAG
/0 ~— L INTERRUPT FLAG
PRIVILEGE LEVEL DIRECTION FLAG

Flag Register of 80286

|OPL — Input Output Privilege Level flags (bit D12 and D13

® |OPL is used in protected mode operation to select the
privilege level for 1/O devices. IF the current privilege level is
higher or more trusted than the I0PL, I/O executed without
hindrance.

® If the IOPL is lover than the current privilege level, an
interrupt occurs, causing execution to suspend.Note that IPOL
00 is the highest or more trusted; and IOPL 11 is the lowest or
least

328

Flag Register of 80286

® NT — Nested task flag (bit D14)

® When set, it indicates that one system task has invoked

another through a CALL instruction as opposed to aJMP.

® For multitasking this can be manipulated to ouradvantage

Flag Register of 80286

Machine Status Word Register
® Consist of four flags

* PE,

°* MP

e EM and

e TS are for the most part used toindicate whether a

processor extension (co-processor) is present in the

stem or not

Flag Register of 80286

® Word Machine Status...

DQO D1g D18 D17 D15

L

/

//

HATCHED BITS
ARE INTEL
RESERVED

TASK SWITCH
PROCESSOR EXTENSION EMULATOR
MONITOR PROCESSOR EX/ENGION

PROTECTION ENABLE

7

75
/.

EM

MP

PE

17

MACHINE

s STATUS

WORD

Flag Register of 80286

® PE - Protection enable
Protection enable flag places the 80286 in protected mode, if
set. this can only be cleared by resetting the CPU.

® MP — Monitor processor extension

flag allows WAIT instruction to generate a processor
extension.

® Emulate processor extension flag,

if set, causes a processor extension absent exceptionand
permits the emulation of processor extension by CPU.

332

Salient Features of
80386

I

Features of 80386

 The 80386 microprocessor is an enhanced version of the
80286 microprocessor and includes a memory-management
unit is enhanced to provide memory paging

e The 80386 also includes 32-bit extended registers and a 32-
bit address and data bus

 The 80386 has a physical memory size of 4GBytes that can be
addressed as a virtual memory with up to 64TBytes

* The 80386 is operated in the pipelined mode, it sends the
address of the next instruction or memory data to the
memory system prior to completing the execution of the
current instruction

334

Features of 80386

* This allows the memory system to begin fetching the next
instruction or data before the current is completed

* This increases access time, thus reducing the speed of the
memory

e The I/O structure of the 80386 is almost identical to the
80286, except that 1/O can be inhibited when the 80386 is
operated in the protected mode through the 1/O bit
protection map

* The register set of the 80386 contains extended versions of
the registers introduced on the 80286 microprocessor. These
extended registers include EAX, EBX, ECX, EDX, EBP, ESP, EDI,
ESI, EIP and EFLAGS

 The instruction set of the 80386 is enhanced to include
instructions that address the 32-bit extended register set

335

Features of 80386

* Interrupts, in the 80386 microprocessor, have been
expanded to include additional predefined interrupts in the
interrupt vector table

* The 80386 memory manager is similar to the 80286, except
the physical addresses generated by the MMU are 32-bits
wide instead of 24-bits

* The 80386 is also capable of paging

« The 80386 is operated in the real mode (i.e. 8086 mode)
when it is reset

Features of 80386

* The real mode allows the microprocessor to address data in
the first 1MByte of memory

* In the protected mode, 80386 addresses any location in its
4G bytes of physical address space

Architecture of 80386

The Internal Architecture of 80386 is divided into 3sections.

e Central processing unit

e Memory management unit

e Bus interface unit

eCentral processing unit is further divided into Execution

unit and Instruction unit

eExecution unit has 8 General purpose and 8 Special purpose

registers which are either used for handling data or

calculating offset addresses.

338

Architecture of 80386

BUS CONTROL

SEGMENTATION UNIT PAGING UNIT REQUEST
PRIORITIZER % —':!:gha;u
> saeur Avorn _ kbl
o =, BUSY.
=1 N\ = o RESET,
: z HLDA

Z Dusspcaayr:gn PAGE CACHE 2
£ LGt
=
= LIMIT AND CONTROL AND § =
= ATTRIBUTE N ATTRIBUTE E
g w PLA =) rLA z BEOH - BE3

a —— E S Az —-Ay
g B p—— V = ADDRESS

g A § DRIVER

; Z 3 MAOK, DICH,
§ + % - N PELINE WIRE, 1 OCKH.
TR rraen s g ARSEINAN

= - T x AR THOUBY ' t?(l;n‘f:tf)ul_ S, READY#

g PROJECTION 2 V]

: TEST UNIT MUX /

TRANS -
= e — RECIVERS D B2
§ PERFECTCHER!
LIMIT
CHECKER
.
BARREL INSTRUCTION
SHIFTER, ::) DECODE AND DECODER
ADDER STATUS SEQUENCING
LAGS
MULTIPLY/ BLAG CODE 16 BYTE
DIVIDE STREAM CODE
3-DECODED <:
m:(mo'- A INSTRUCTION ‘
REGISTER FILE A v r QUEUE
N
ALU = INSTRUCTION
ALU CONTROL CONTROL INSTRUCTION PREFETCHER
PREDECODE
DEDICATED ALU BUS
0386 ARCHITECTURE

e The Instruction unit decodes the opcode bytes received from the 16- byte
instruction code queue and arranges them in a 3- instruction decoded
instruction queue.

e After decoding them pass it to the control section for deriving the
necessary control signals. The barrel shifter increases the speed of all shift
and rotate operations.

e The multiply / divide logic implements the bit-shift-rotate algorithms to
complete the operations in minimum time.

e Even 32- bit multiplications can be executed within one microsecond by
the multiply / divide logic.

eThe Memory management unit consists of a Segmentation unit and
a Paging unit.

340

O
0
™
o
o0
(T
o
&
(
p
)
e
o
=
o

oA 3

. |40 802040 40 B0 40 B040 404040 40 80
|40 408020 40 £0E0 2040 4040 40 €0 %0

10 40 3080 4O 400 804040 4040 0 §o

{0 4040
i0 4040
10 8080
{0 <030
08080
0 80ko
0 +040
<0 4040

40 040 40 B0 $0 3OO
40 Y040 20 #0 40 04O
momo&omomomomom 0 1080

METAL IID

030
0g0

b
:

VCC WR# LOCK?

\'S VS

20

80 60 &0
40 0 40
a0 80 80
g0 40 €0
20 mo 50
1020 80
103080
fo3odo
080 ¥O 30
020 §O 40
204040

m

® o

= a3 =2

341

Pin diagram of 80386

_———n BE. |
—1 D BE,
D BE.
D, BE,
D, 5
D, Al
D, s
— E an
D, =¥
D.. A
Dy, y o
= A..
D,
D.. s
D, s
—{D.. AL,
Dl? AB
— D 7Y
= 9= A
;S 80386 DX 7
- Dxl A',
== A:.
D= A,
Do Ly
= —Ip" o
—— D A]
—_— D A,
—_— D A,
— e y
D’l A:‘
ADS .A;:
~A - ';
BS,. -
— IrFaDV oo
R 5]
HOI D ILOCE
— 1 HOIL DA PEREQ
BTUSY
INTR
NALT ERROR]
RESET
-l cxx,

342

Signal Descriptions of 80386

*CLK2 :The input pin provides the basic system clock timing for the
operation of 80386.

D0 — D31:These 32 lines act as bidirectional data bus during different
access cycles.

eA31 — A2: These are upper 30 bit of the 32- bit address bus.

*BEO toBE3 : The 32- bit data bus supported by 80386 and the memory
system of 80386 can be viewed as a 4- byte wide memory access
mechanism.

*ADS: The address status output pin indicates that the address bus and
bus cycle definition pins(W/R#, D/C#, M/IO#, BEO# to BE3#) are
carrying the respective validsignals.

343

Signal Descriptions of 80386

*VVCC: These are system power supply lines.

*VSS: These return lines for the power supply.

*BS16: The bus size — 16 input pin allows the interfacing of 16 bit devices
with the 32 bit wide 80386 databus.

*HOLD: The bus hold input pin enables the other bus masters to gain
control of the system bus if it is asserted.

*HLDA: The bus hold acknowledge output indicates that a valid bus
hold request has been received and the bus has been relinquished by
the CPU.

344

Signal Descriptions of 80386

e ERROR: The error input pin indicates to the CPU that the
coprocessor has encountered an error while executing its
instruction.

*PEREQ: The processor extension request output signal indicates to
the CPU to fetch a data word for the coprocessor.
¢INTR: This interrupt pin is a maskable interrupt, that can be

masked using the IF of the flag register.

e NMI: A valid request signal at the non-maskable interrupt request

input pin internally generates a non- maskable interrupt of type?2.

345

Signal Descriptions of 80386

® READY: The ready signals indicates to the CPU that the previous bus
cycle has been terminated and the bus is ready for the next cycle.

® BUSY. The busy input signal indicates to the CPU that the
coprocessor is busy with the allocated task.

® RESET: A high at this input pin suspends the current operation
and restart the execution from the starting location.

® N/ C: No connection pins are expected to be left open.

346

80386 Register Organization

® The 80386 has eight 32 - bit general purpose registers which may
be used as either 8 bit or 16 bit registers.

® A 32 - bit register known as an extended register, is represented by
the register name with prefix E.

® The six segment registers available in 80386 are CS, SS, DS, ES, FS
and GS.

@ The CS and SS are the code and the stack segment registers
respectively, while DS, ES, FS, GS are 4 data segment registers.

® A 16 bit instruction pointer IP is available along with 32 bit
counterpart EIP.

347

80386 Register Organization

GEMERAL DATA AND ADDRESS
K] | 15

BX

CX

R =R

SEGMENT SELECTOR

INSTREUCTION POINTER AND FLAG
K] | I 15

P

FLAG

EA
EB
EC
ED
ES

EB
ES

cSs

88

DS
ES
F5

G5 —

EI
EFLA

CODE
STACK SEGMENT

— DATA
SEGMENT

348

FLAGS

K] | 182 17

T

15 1413 12 11 10 9
RESERVED
MWH

FOR JNTEL NT [IOPL| OF {r) IF

W

T
F

SF [ZF

1 =

ol

FLAG REGISTER OF 80386

® The Flag register of 80386 is a 32 bit register. Out of the 32 bits, Intel

has reserved bits D18 to D31, D5 and D3, while D1 is always set at 1.

® Two extra new flags are added to the 80286 flag to derive the flag

register of 80386. They are VM and RF flags.

349

® VM - Virtual Mode Flag: If this flag is set, the 80386 enters the virtual

8086 mode within the protection mode.

® RF- Resume Flag: This flag is used with the debug register

breakpoints.

® Segment Descriptor Registers: This registers are not available for
programmers, rather they are internally used to store the descriptor

information, like attributes, limit and base addresses of segments

350

® Control Registers: The 80386 has three 32 bit control registers
CRO, CR2 and CR3 to hold global machine status

® System Address Registers: Four special registers are defined to

refer to the descriptor tables supported by 80386.

® Debug and Test Registers: Intel has provide a set of 8 debug

registers for hardware debugging.

Real and Protected Mode

Real Address Mode ADDRESS CALCULATION

15 0
OFFSET

0000 OFFSET ADDRESS

|]

15 0

SEGMENT 0000/ SEGMENT
SELECTION ADDRESS

| |

20-BIT PHYSICAL
MEMORY ADDRESS

Real Address Mode ADDRESS CALCULATION

* Act as afast 8086

* |t addresses only 1 M byte of physical memory using AO-A19.

* In real addressing mode of operation of 80286, it just acts as
a fast 8086. The instruction set is upward compatible with
that of 8086.

 The 80286 addresses only 1Mbytes of physical memory using
AO- A19. The lines A20-A23 are not used by the internal
circuit of 80286 in this mode.

* Inreal address mode, while addressing the physical memory,
the 80286 uses BHE along with AO- A19. The 20-bit physical
address is again formed in the same way as that in 8086.

354

Protected Mode of 80386:

»>All the capabilities of 80386 are available for utilization in its
protected mode of operation.

»The 80386 in protected mode support all the software written for
80286 and 8086 to be executed under the control of memory
management and protection abilities of 80386.

»The protected mode allows the use of additional instruction,
addressing
modes and capabilities of 80386.

355

4+ :-FITFOINTER

SELECTOR

OFFSET

471 31

11 f15

ACCE 5'5 RIGHT

LINTIT
F
BASE
SECGWMENT SCREIFTOR

MEMORY

FECMENT EASFE ADDRESS

SEGMENT
maT

ur
4 6B | cReMENT

Protected Mode Addressmg Without Pagmg Unit

356

Addressing in protected mode

>In this mode, the contents of segment registers are used as
selectors to address descriptors which contain the segment
limit, base address and access rights byte of the segment.

»The effective address (offset) is added with segment base
address to calculate linear address.

> This linear address is further used as physical address, if the
paging unit is disabled, otherwise the paging unit converts the
linear address into physical address.

357

Addressing in protected mode

> The paging unit is a memory management unit enabled only in
protected mode.

» The paging mechanism allows handling of large segments of memory
in terms of pages of 4Kbyte size.

> The paging unit operates under the control of segmentation unit.

» The paging unit if enabled converts linear addresses into physical
address, in protected mode.

358

Paging

Paging Unit:

»The paging unit of 80386 uses a two level table mechanism to
convert a linear address provided by segmentation unit into
physicaladdresses.

»The paging unit converts the complete map of a task into pages,
each of size 4K. The task is further handled in terms of its page,

rather than segments.

> The paging unit handles every task in terms of three components
namely page directory, page tables and page itself.

360

Paging Unit:

»The Paging unit organizes the physical memory in terms of
pages of 4kbytes size each.

»Paging unit works under the control of the segmentation
unit, i.e. each segment is further divided into pages.

»The virtual memory is also organizes in terms of segments
and pages by the memory management unit.

»Paging unit converts linear addresses into physical
addresses.

361

Paging Unit

» The control and attribute PLA checks the privileges at the
page level.

»Each of the pages maintains the paging information of the
task.

»>The limit and attribute PLA checks segment limits and

attributes at segment level to avoid invalid accesses to code
and data in the memory segments.

362

Salient Features of Pentium

I

Features of Pentium

64 bit data bus

Instruction cache

Data cache

Two parallel integer execution units
Floating point unit

Branch Prediction Logic

Data Integrity and Error Detection
Dual Integer Processor

Functional redundancy check
Superscalar architecture

vV VV V V V V V VYV VY

Branch Prediction

I

Branch Prediction

Prefetcher

- .

BTB
Hit

Branch

U Pairing

Target

V Painng H Bufler
“hesc

= | (BTB)

The history bits can indicate one of four possible states.

1. Strongly Taken: The history bits are initialized to this state when

the entry is first made. In addition, if a branch marked weakly
taken is taken again, it is upgraded to strongly taken stage.
When a branch marked strongly taken is not taken the next
time, it is downgraded to weakly taken.

Weakly Taken: It is upgraded to the strongly taken state when a
branch marked weakly taken is taken again. When the
corresponding marked branch is not taken, then it is
downgraded to weakly not taken state. In D1 stage, a hit on
strongly or weakly taken entry will result in a positive prediction.
(i.e., the branch is predicted taken)

367

3. Weakly Not Taken: If a branch marked weakly not taken is taken
again, it is upgraded to the weakly taken state. When a branch
marked weakly not taken is not taken the next time, it is
downgraded to strongly not taken.

4. Strongly Not Taken: If a branch marked strongly not taken is
taken again it is upgraded to the weakly not taken state. When a
branch marked strongly not taken is not taken the next time, it
remains in the strongly not taken state. In D1 Stage, a hit on weakly
not taken or Strongly not taken entry will result in a negative
prediction (i.e., the branch is predicted not taken)

368

Movement when branch is not taken
—

Strongh St

—

Movement when branch is taken

Overview of RISC Processors

I

RISC Architecture

(Instruction) (Data)

Main memory

RISC ARHITECTURE

371

The features of RISC

 The demand of decoding is less

* Few data types in hardware

* General purpose register Identical
e Uniform instruction set

* Simple addressing nodes

CISC Architecture

Main memory

CISC ARCHITECTURE

373

Comparison between CISC and RISC

1) CISC architecture gives
more importance to hardware

1) RISC architecture gives
more importance to Software

2) Complex instructions.

2) Reduced instructions.

3) It access memory directly

3) It requires registers.

4) Coding in CISC processor is
simple.

4) Coding in RISC processor
requires more number of lines.

5) As it consists of complex
instructions, it take multiple
cycles to execute.

5) It consists of simple
instructions that take single
cycle to execute.

6) Complexity lies in
microporgram

6) Complexity lies in
compiler.

The Advantages of RISC architecture

RISC(Reduced instruction set computing)architecture has a set of
instructions, so high-level language compilers can produce more efficient
code

It allows freedom of using the space on microprocessors because of its
simplicity.

Many RISC processors use the registers for passing arguments and holding
the local variables.

RISC functions use only a few parameters, and the RISC processors cannot
use the call instructions, and therefore, use a fixed length instruction which
is easy to pipeline.

The speed of the operation can be maximized and the execution time can
be minimized.

Very less number of instructional formats, a few numbers of instructions
and a few addressing modes are needed.

http://en.wikipedia.org/wiki/Reduced_instruction_set_computing

The Disadvantages of RISC architecture

* Mostly, the performance of the RISC processors depends on the
programmer or compiler as the knowledge of the compiler plays
a vital role while changing the CISC code to a RISC code

* While rearranging the CISC code to a RISC code, termed as a code
expansion, will increase the size. And, the quality of this code
expansion will again depend on the compiler, and also on the
machine’s instruction set.

* The first level cache of the RISC processors is also a disadvantage
of the RISC, in which these processors have large memory caches
on the chip itself. For feeding the instructions, they require very
fast memory systems.

376

Advantages of CISC architecture

* Microprogramming is easy assembly language to implement, and
less expensive than hard wiring a control unit.
* The ease of micro coding new instructions allowed designers to

make CISC machines upwardly compatible:
e As each instruction became more accomplished, fewer

instructions could be used to implement a given task.

377

Disadvantages of CISC architecture

 The performance of the machine slows down due to the amount
of clock time taken by different instructions will be dissimilar

e Only 20% of the existing instructions is used in a typical
programming event, even though there are various specialized
instructions in reality which are not even used frequently.

* The conditional codes are set by the CISC instructions as a side
effect of each instruction which takes time for this setting — and,
as the subsequent instruction changes the condition code bits —
so, the compiler has to examine the condition code bits before
this happens.

378

MODULE-V

8051 MICROCONTROLLER
ARCHITECTURE

I

™ =
2 IARE §
< \

7 PN

COURSE OUTCOMES

8051 Microcontroller
Architecture

I

Disadvantages of Microprocessor

» The overall system cost is high.

» A large sized PCB is required for assembling all the
components.

» Overall product design requires more time.

» Physical size of the product is big.

» A discrete components are used, the system is notreliable.

Advantages of Microcontroller based System

» As the peripherals are integrated into a single chip, the overall system

cost is very less.

» As the peripherals are integrated with a microprocessor the system is

more reliable.

» Though microcontroller may have on chip ROM,RAM and |I/O ports,
addition ROM, RAM 1/O ports may be interfaced externally if required.

On chip ROM provide a software security.

8051 Basic Component

vV V V V V V VYV VY

4K bytes internal ROV

128 bytes internal RAMI

Four 8-bit I/O ports (PO - P3).
Two 16-bit timers/counters
One serial interface

64k external memory for code
64k external memory for data
210 bit addressable

Microcontroller

384

Block Diagram

External inteIru pts

l

Interrupt
Control

OSC

On-chip
ROM for
program
code

On-chip
RAM

o

G

CPU <

A4

~

<— | Counter
Inputs
<4

ial

Canl::ol 4 1/0 Ports iirrlta
P b
PO P1 P2P3 TxD RxD

Add res_Ys_/} Data

385

The system bus connects all the support devices to the CPU.

The system bus consists of

8-bit data bus

16-bit address bus and bus control signals.
All other devices like program memory, ports, data memory,
serial interface, interrupt control, timers, and the CPU are all

interfaced together through the system bus.

| |
| | |
_ 1111
% mm i i m ag
| || | it : : |
_ mmm : TE mw Z |
_ -
- _
I | _
| g
_ g
!
4
; 1t
o _
S =
0 ; |
s kK M
= i m
© : M_
. |
o0 — |
B |
D ¥ m_
%
= [§ [T
8 2
2 iHh;
B _nm] w“ Y
—_— E
5 e 1
< T {5
— i
)
o
c

Pin Diagram of 8051

~
P1.OC]1 40 |1 vCC
P1.1]2 39 |11 PO.O (ADO)
P120C]3 38 [1 PO.1 (AD1)
P1.30]4 37 |11 PO.2 (AD2)
P14aC]5s 36 [1 PO.3 (AD3)
P1.50|®6 35 |71 PO.4 (AD4)
P16]7 34 [1 PO.5 (ADS)
P1.70]8 33 |1 PO.6 (ADB)
RST (]9 32 [PO.7 (AD7)
(RXD) P3.0 | 10 8051 31 |11 EA/VPP
(TXD) P3.1] 11 30 [ALE/PROG
(INTO) P32 1|12 29 |1 PSEN
(INT1) P3.3[] 13 28 [[1 P2.7 (A15)
(TO) P3.4 | 14 27 |11 P2.6 (A14)
(T1) P3.5] 15 26 [1 P2.5 (A13)
(WR) P36] 16 25 |1 P2.4 (A12)
(RD) P3.7 |17 24 [P2.3 (A11)
XTAL2]| 18 23 |11 P2.2 (A10)
XTAL1] 19 22 [P2.1 (A9)
GND (] 20 21 |71 P2.0 (A8)

40 - PIN DIP

e 8051 microcontrollers have 4 |/O ports each of 8-bit, which
can be configured as input or output. Hence, total 32
input/output pins allow the microcontroller to be connected
with the peripheral devices.

* Pin configuration, i.e. the pin can be configured as 1 for
input and O for output as per the logic state.

Input/output (I/0) pin - All the circuits within the
microcontroller must be connected to one of its pins except
PO port because it does not have pull-up resistors built-in.
Input pin — Logic 1 is applied to a bit of the P register. The
output FE transistor is turned off and the other pin remains
connected to the power supply voltage over a pull-up
resistor of high resistance.

389

Basic circuit of 8051

Button

N Pin 40
Pins1-8
. Pins 32 - 39
Pin 9
Pins 10-17
Pin 31
Pin 30
Pin 18 Pin 29
Pin 19 Pins 21 - 28

Pin 20

8051 Microcontroller

PORT 0-Description

— 8-bit R/W -General
Purpose /0

— Or acts as amultiplexed low byte
address and data bus
external memory design

for

PO.7 AD7
P0.6 AD6
P0.5 ADS
P0.4 AD4
P0O.3 AD3
P0.2 AD2
PO.1 ADI1
P0.0 ADO

PORT 1 -Description

P1.7
P1.6

-Only 8-bit R/W - General P1.5
Purpose /0O Pl1.4

P1.3
P1.2
P1.1
P1.0

I

N W] &) N O\] 00

PORT 2 -Description

Sbit R/ - G I P2.7 AlS
— 8-bi - Genera
Purpose I/O P2.6 Al4
P2.5 Al3
— Or high byte of the P2.4 Al2
address bus for external P2.3 All
memory design P29 A10
PZ.1 A9

P2.0 A8

PORT 3 - Description

P0rT 3 Pin

P3.0 RXD Serial Input

P3.1 TXD Serial Output

P3.2 INTO External Interrupt O
P3.3 INT1 External Interrupt 1
P3.4 T0 Timer 0

P3.5 T1 Timer 1

P3.6 WR External Memory Write

P3.7 RD External Memory Read

Register set of 8051

I

Types of Registers

The 8051 microcontroller contains mainly two types of registers:

* General-purpose registers (Byte addressable registers)
* Special function registers (Bit addressable registers)

@ Divided by @
-

General Purpose Registers

* There are four different bank registers with each bank
having 8 addressable 8-bit registers, and only one bank
register can be accessed at a time.

 But, by changing the bank register’'s number in the flag
register, we can access other bank registers

Special Function Registers

* The special function registers including the Accumulator,
Register B, Data pointer, PCON, PSW, etc., are designed for a
predetermined purpose during manufacturing with the
address 80H to FFH, and this area cannot be used for the
data or program storage purpose.

* These registers can be implemented by bit address and byte
address registers.

e The most widely used registers of the 8051 are A
(accumulator), B, RO-R7, DPTR (data pointer), and PC
(program counter). All these registers are of 8-bits, except
DPTR and PC.

Storage Registers in 8051

* Accumulator

* Rregister

* Bregister

e Data Pointer (DPTR)

* Program Counter (PC)
e Stack Pointer (SP)

PSW Register

PSW.6 Auxiliary Carry Flag
PSW.5 Flag 0 available to
f I .
B Register | Address
purpose.
Bank
PSW.4 Register Bank
selector bit 1
PSW.3 Register Bank 0 0 A
selector bit 0 07H
PSW.2 Overflow Flag 1 1 08H-OFH
PSW.1 User definable FLAG
PSW.0 Parity FLAG. Set/ 0 2 10H-
cleared by hardware 17H
during instruction
1 3 18H-1FH

cycle to indicate
even/odd number of
1 bit in accumulator.

Modes of timer operation

I

TIMER/COUNTER

» 8051 has two 16-bit programmable timers/counters. They can be
configured to operate either as timers or as event counters. The names of

the two counters are TO and T1 respectively.

» The timer content is available in four 8-bit special function registers,
viz, TLO,THO,TL1 and TH1 respectively.

» In the "timer" function mode, the counter is incremented in every
machine cycle. Thus, one can think of it as counting machine cycles.

Hence the clock rate is 1/12 th of theoscillatorfrequency.

» In the "counter" function mode, the register is incremented in response to
a 1 to O transition at its corresponding external input pin (TO or T1). It

requires 2 machine cycles to detect a high to low.

Operation of Timer/Counter

» The operation of the timers/counters is controlled by two special function

registers, TMOD and TCON respectively.

Timer Mode control (TMOD) Special FunctionRegister:
» TMOD register is not bit addressable.

» TMOD Address: 89 H

7 6 5 4 3 2 | 0

[oae [or [[o Joue [or [[wo

{ Timer 1 11 Timer O]

Timer/ Counter control logic:

To Timer
stages
=

Osc freq _ 12 Timer mode
CT=0
; N
I
I
T10 i |
Input pin Counter mocle |
| I
TR1/0 bit |
in TCON -\\ |
Gate bit
in TMOD {>¢-
mTi/0
input pin

Figure:

Timer/ Counter control logicDiagram

2 000

Difference between a Timer and a Counter f.m%g

Timers & Counters

Timers

0T,

ITHOlTLO I ITH1 l TLL

8-bit 8-bit 8-bit 8-bit

Timer Mode Control (TMOD):

Gate | C/T M1 MO [Gate | C1/TI M1 |NMO

Timerl/C1 TimerO/CO

Gate: If the gate bit is set to ,,0%, then we can start and stop the
“software” timer in the same way. If the gate is set to,, 1%, then
we can perform hardware timer.

C/T: If the C/T bitis , 1", then it is acting as a counter mode, and
similarly when set C+
=/T bit is ,0%; it is acting as a timer mode.

Mode select bits: The M1 and MO are mode select bits, which
are used to select the timer operations. There are four modes to
operate the timers.

Mode 0: This is a 13-bit mode that means the timer operation
completes with “8192” pulses.

Mode 1: This is al6-bit mode, which means the timer operation
completes with maximum clock pulses that “65535”.

Mode 2: This mode is an 8-bit auto reload mode, which means
the timer operation completes with only “256” clock pulses.

Mode 3: This mode is a split-timer mode, which means the
loading values in TO and automatically starts the T1.

Mode selection Bits

MO M1 Mode Timer Pulses

0 0 13-bit-2413-8192

0 1
16-bit-2716-65535 pulses

1 0 8-bit-autoreload mode-278=
256 pulses

1 1 Split mode(load the values in TO

automatically start the T1

Timer modes of operation

Timer Mode-0:

In this mode, the timer is used as a 13-bit UP counter as follows.

Interrupt
TLX Shits (Lower | Aol 4
i ()H THYX 8bits TFX

From previous

stage

Fig: Operation of Timer in Mode 2

»The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit count.

Upper 3 bits of TLX are ignored. When the counter rolls over from all O's to

all 1's, TFX flag is set and an interrupt is generated.

Timer Control Register (TCON):

TF1 TR1 TFO TRO IE1 ITO IEO ITO

Timer Control Register (TCON)

Timer modes of operation

>The input pulse is obtained from the previous stage. If TR1/0 bit is 1 and
Gate bit is 0, the counter continues counting up. If TR1/0 bit is 1 and Gate

bit is 1, then the operation of the counter is controlled by input. This mode

is useful to measure the width of a given pulse fed to input.

Timer Mode-1:

» This mode is similar to mode-0 except for the fact that the Timer operates

in 16-bit mode.

TLX 8bits

Input pulse
From previous
stage

THX Bhits

TFX

Interrupt
==

Fig: Operation of Timer in Mode 1

Timer Mode-2: (Auto-Reload Mode)

>This is a 8 bit counter/timer operation. Counting is performed in TLX while
THX stores a constant value. In this mode when the timer overflows i.e. TLX
becomes FFH, it is fed with the value stored in THX. For example if we load
THX with 50H then the timer in mode 2 will count from 50H to FFH. After

that 50H is again reloaded. This mode is useful in applications like fixed

time sampling

Interrupt
—=1 TLX Bbits TFX ———=

Input pulse %

From previous
stage

THX 8bits

Timer Mode-3:

Timer 1 in mode-3 simply holds its count. The effect is same as setting TR1=0.

Timer0 in mode-3 establishes TLO and THO as two separate counters.

Interrupt
—= TLO 8hits TH ———
Input pulse

From previous
stage

Interrupt
fr12—1—= THO 8hits TF1 —
I

TE1 bit in TCON

Fig: Operation of Timer in Mode3

Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (THO) in Mode-3
while TRO and TFO are available to Timer-0 lower 8 bits(TLO).

Serial port operation

I

8051 Serial Communication: Sections

1. Basics of serial communication
2. 8051 connection to RS232
3. 8051 serial communication programming

8051 and PC:

/
COM 1 port

RS232

pe | m——

[1]

T

MAX?232

1 8051

\
UART

SCON Register:

SMO [SMI [SM2]REN[[TBS [RBS | TI [RI

¥ SCON 18 bit-addressable.

SCON Serial Port Control Register (Bit Addressable):

SMO [sMI [sSM2[REN | TBS [RBS] TI | RI

SMO
SM1
SM2
REN
TBS

RBS
Tl

RI

SCON.7
SCON.6
SCONS
SCON4
SCON.3
SCON2
SCON.1

SCON.O

Serial port mode specifier

Serial port mode specifier

Used for multiprocessor communication. (Make 1t ()
Set/cleared by software to enable/disable reception.
Not widelv used.

Not widely used.

Transmit interrupt flag. Set by hardware at the beginning of
the stop bit in mode 1. Must be cleared by software.

Receive intermupt flag. Set by hardware halfiway through the
stop bit time in mode 1. Must be cleared by software.

Note: Make SM2. TBS. and RBE = (.

Interrupt structure of 8051

I

Interrupts

»> An interrupt is an external or internal event that interrupts the

microcontroller to inform it that a device needs itsservice.

Interrupts vs. Polling

» A single microcontroller can serve several devices.
» There are two ways to do that:

— interrupts

— polling.

Interrupts

» In Polling , the microcontroller ‘s program simply checks each
of the 1/0O

devices to see if any device needs servicing. If so, it performs the
service.

» In the interrupt method, whenever any device needs microcontrollers

service, it tells to microcontroller by sending an interruptsignal.

» The program which is associated with the interrupt is called the

interrupt service routine (ISR) or interrupt handler.

Steps in executing an interrupt

» Finish current instruction and saves the PC on stack.

» Jumps to a fixed location in memory depend on type of
interrupt.

» Starts to execute the interrupt service routine until RETI
(return from interrupt).

» Upon executingthe RETI the microcontroller returns tothe
place where it was interrupted. Get pop PC from stack.

Interrupt Sources

» Original 8051 has 6 sources ofinterrupts

Reset

Timer O overflow
Timer 1 overflow
External InterruptO
External Interrupt1

Serial Port events buffer full, buffer empty,
etc)

o U hsE wh e

Interrupt Vectors

» Each interrupt has a specific place in code memory where program

execution (interrupt service routine)begins.

External InterruptO : 0003h

Timer O overflow : 000Bh

External Interrupt 1 : 0013h

Timer 1 overflow _ 001Bh

Serial : 0023h Nolte: that thereare
Timer 2 overflow(8052+) only 8 memory

: 002bh locations between
vectors.

Interrupt Enable (IE) register

» All interrupt are disabled after reset
» We can enable and disable them byIE

D7

Do

E&

ETZ

ES ETI EX1 ETO EX0

FA

ET2
ES

ET1
EX1
ET0
EX0

IE.7
IE.G
IE.3
IE. 4
IE. 3
IE.2
IE.1
IE.O

Enables / disables all interrupts
No maplemented, reserved for future use

Enables or disables timer 2 overflow interrupt
Enables or disables the senal port mterrupt
Enables or dizables timer 2 overflow interrupt
Enables or disables external mterrupt 1
Enables or dizables timer 0 overflow interrupt
Enables or disables external mterrupt

Enabling an interrupt

» by bit operation

» Recommended in the middle of program

SETB
SETB
SETB
SETB
SETB
SETB

» by mov instruction

EA
ETO
ET1
EXO
EX1
ES

SETB
SETB
SETB
SETB
SETB
SETB

IE.
IE.
IE.
IE.
IE.
IE.

= N O Wk Jd

:Enable All

:Enable TimerO overflow
:Enable Timerl overflow
:EnableINTO
:EnableINT1

;Enable Serial port

» Recommended in the first of program
« MOV IE, #100101108B

Disabling an interrupt

CLRB EA :Disable All

CLRB ETO : Disable TimerO overflow
CLRB ET1 : Disable Timerl overflow
CLRB EXO ; Disable INTO

CLRB EX1 ; Disable INT1

CLRB ES ; Disable Serial port

Interrupt Priorities

» What if two interrupt sources interrupt at the sametime?
» The interrupt with the highest PRIORITY gets servicedfirst.
» All interrupts have a power on default priority order.

1. External interrupt O(INTO)
Timer interruptO (TFO)
External interrupt 1 (INT1)

oW

. Timer interruptl (TF1)
5. Serial communication (RI+Tl)

» Priority can also be set to “high” or “low” by IP reg.

Interrupt Priorities (IP) Register AR
7 6 5 4 3 2 1 0

* * PT2 PS PT1 PX1 PTO PX0

IP.7:reserved
IP.6:reserved

IP5:timer 2 interrupt priority bit(8052 only)
IP4:serial port interrupt priority bit
IP.3:timer 1 interrupt priority bit

IP.2: external interrupt 1 priority bit
IP.1:timer O interrupt priority bit

IP.O: external interrupt O priority bit

Interrupt Addresses

Memory and I/O interfacing
with 8051

I

Block Diagram

interfacing 64KB of External RAM and 64KB of External ROM
with the 8051 Microcontroller.

ADO-7

RAM
(64K)

1]

8051
MICROCONTROLLER

ROM
(64K)

PSEN

OE

Interfacing 1/O Devices

Intelligent LCD Display

(ELLT P S Y

D1 (3) 8 o
P Ez f‘“ a- Dz . 1 VSS (Ground)
A DIG5) 10 D3 2 Line x 16 Character VB s ishage)
r D4() 111 g LCD Display 4 Register Select
A Dalh 12 DS 6 Enable
|_ DE fﬂ] 13 DE é §:§z
L o o7 19 B
E E_RW_ RS GND VO Vee 13 Data 6
- GND [18-25) B 5 @4 |1 3 |2 15 Backight Anode (+ve)

: V_;E 16 Backligt Cathode (Ground)
P - Vee = '
: 10k - 1
R =
T Strobe (1)] e Cortrast
10K
Select Printer (17)

«5

L=

[

+SWF

4

=
10uFM 0

R3

B2

+

— X1

c2 110582 MHE
a

Ve

P35
P34
P23

[K

P11
P2
P13
P4
[-3
S
PAT

=5

LN 3

15

16x2 LCD Module (JHD 162A)

Was Voo VEE RS RW E DBO DBV DBZ DB DB+ 085 DBE par LED= LED-

<

14

sl &l 7] 8 @] 10 0| 12

13

0 | (o |oh & o | Ra e

