
Module– 1

Introduction to UML
Dr. C RAGHAVENDRA

Associate Professor

IT Dept. IARE

OBJECT ORIENTED ANALYSIS AND DESIGN

Module - 1

• Importance of Modeling

• Principles of Modeling

• Object Oriented Modeling

• Conceptual model of UML

• Architecture

• Software Development life Cycle

• Classes

• Relationships

• Common mechanism and Diagrams

Text Books:

1. Grady Booch, James Rumbaugh, Ivar Jacobson, “The Unified

Modeling Language User Guide”, Pearson Education, 2nd

Edition, 2004.

2. Craig Larman, “Applying UML and Patterns”, 3rd Edition,

Pearson Education, 2011.

4

Introduction

• Importance of Modeling

• Principles of Modeling

5

Course outcome /
Topic learning outcome

Name of the Topic

covered

Topic Learning

Outcome
Course Outcome

• Importance of
Modeling

• Principles of
Modeling

• Representing the

importance of

modeling concept for

object oriented

development in

system.

1. Describe the importance of
Object Oriented concepts,
UML diagrams and their
relationships.

List the course outcome / Topic outcome

6

Outcome achieved

Name of the topic:

Students will be able to do:

1 Summarize the importance of modeling concept.

2
Describe the Object Oriented concepts, UML diagrams and their
relationships.

What is UML?

• “The Unified Modeling Language is a family of graphical

notations, based by a single meta-model, that help in

describing and designing software systems, particularly

software systems built using the object-oriented style.”

• UML first appeared in1997

• UML is standardized one and its content is controlled by the

Object Management Group (OMG), a consortium of companies.

• UML combined the best from object-oriented software

modeling methodologies that were in existence during the

early1990’s.

Modeling:

• Used to present a simplified view of reality in order to facilitate

the design and implementation of object-oriented software

systems.

• All creative disciplines use some form of modeling as part of

the creative process.

Language

• UML is a language for documenting design

• Provides a record of what has been built.

• Useful for bringing new programmers up to speed.

• UML is primarily a graphical language that follows a precise

syntax.

• UML 2.5 is the most recent version.

Things

Things are the most important building blocks of UML. Things

can be −

1. Behavioral

2. Grouping

3. Structural

4. Annotational

Behavioural Things

• A behavioral thing consists of the dynamic parts of UML

models. Following are the behavioral things −

Interaction − Interaction is defined as a behavior that

consists of a group of messages exchanged among elements

to accomplish a specific task.

• State machine − It defines the sequence of states an object

goes through in response to events.

• Events are external factors responsible for state change.

• Grouping Things:

• It can be defined as a mechanism to group elements of a UML

model together. There is only one grouping thing available −

• Package − Package is the only one grouping thing available

for gathering structural and behavioral things.

• Annotational Things:

• It can be defined as a mechanism to capture remarks,

descriptions, and comments of UML model elements.

• Note - It is the only one Annotational thing available. A

note is used to render comments, constraints, etc. of an

UML element.

Relationship

• It is another most important building block of UML.

• It shows how the elements are associated with each other and

this association describes the functionality of an application.

• There are four kinds of relationships available.

 1. Dependency 3.Generalization

 2. Association 4.Relization

1. Dependency

• Dependency is a relationship between two things in which

change in one element also affects the other.

2. Association

• Association is basically a set of links that connects the elements

of a UML model.

• It also describes how many objects are taking part in that

relationship.

3. Generalization

• Generalization can be defined as a relationship which connects

a specialized element with a generalized element.

• It basically describes the inheritance relationship in the real

world of objects.

4. Realization

• Realization can be defined as a relationship in which two

elements are connected.

• One element describes some responsibility, which is not

implemented and the other one implements them.

• This relationship exists in case of interfaces.

UML Diagrams

• All the elements, relationships are used to make a complete

UML diagram and the diagram represents a system.

• The visual effect of the UML diagram is the most important part

of the entire process.

• All the other elements are used to make it complete.

• UML includes the following nine diagrams, the details of which

are described in the subsequent chapters.

UML Diagrams

1. Class diagram

2. Object diagram

3. Use case diagram

4. Sequence diagram

5. Collaboration diagram

6. Activity diagram

7. Statechart diagram

8. Deployment diagram

9. Component diagram

22

Introduction

• Importance of Modeling

• Principles of Modeling

23

Course outcome /
Topic learning outcome

Name of the Topic

covered

Topic Learning

Outcome
Course Outcome

• Importance of
Modeling

• Principles of
Modeling

• Representing the

importance of

modeling concept for

object oriented

development in

system.

1. Describe the importance of
Object Oriented concepts,
UML diagrams and their
relationships.

List the course outcome / Topic outcome

24

Outcome achieved

Name of the topic:

Students will be able to do:

1 Summarize the importance of modeling concept.

2
Describe the Object Oriented concepts, UML diagrams and their
relationships.

Object-Oriented Concepts

• UML can be described as the successor of object-oriented (OO)

analysis and design.

• An object contains both data and methods that control the data.

• The data represents the state of the object.

• A class describes an object and they also form a hierarchy to

model the real-world system.

• The hierarchy is represented as inheritance and the classes can

also be associated in different ways as per the requirement.

• Objects are the real-world entities that exist around us and the

basic concepts such as abstraction, encapsulation, inheritance,

and polymorphism all can be represented using UML.

• UML is powerful enough to represent all the concepts that exist

in object-oriented analysis and design.

Following are some fundamental concepts of the object-oriented world −

• Objects − Objects represent an entity and the basic building block.

• Class − Class is the blue print of an object.

• Abstraction − Abstraction represents the behavior of an real world entity.

• Encapsulation − Encapsulation is the mechanism of binding the data

together and hiding them from the outside world.

• Inheritance − Inheritance is the mechanism of making new classes from

existing ones.

• Polymorphism − It defines the mechanism to exists in different forms.

The purpose of OO analysis and design can described as −

• Identifying the objects of a system.

• Identifying their relationships.

• Making a design, which can be converted to executables using

OO languages.

Structural Things

• Structural things define the static part of the model.

• They represent the physical and conceptual elements.

• Following are the brief descriptions of the structural things

• Class − Class represents a set of objects having similar

responsibilities.

• Interface − Interface defines a set of operations, which specify

the responsibility of a class.

• Collaboration −Collaboration defines an interaction between

elements.

• Use case −Use case represents a set of actions performed by a

system for a specific goal.

• Component −Component describes the physical part of a

system.

• Node − A node can be defined as a physical element that exists

at run time.

33

Introduction

• Structural things

• Structural diagrams

• Importance of Modeling

• Conceptual Modeling of UML

34

Course outcome /
Topic learning outcome

Name of the Topic

covered

Topic Learning

Outcome
Course Outcome

• Structural things

• Structural
diagrams

• Importance of
Modeling

• Conceptual
Modeling of UML

• Importance of

Structural behaviour

• Representing the

importance of

modeling concept for

object oriented

development in

system.

1. Importance of Structural
behaviour

2. Describe the importance of
Object Oriented concepts,
UML diagrams and their
relationships.

List the course outcome / Topic outcome

35

Outcome achieved

Name of the topic:

Students will be able to do:

1 Importance of Structural behaviour

2 Summarize the role of modeling in real world environment.

3
Describe the Object Oriented concepts, UML diagrams and their
relationships.

• UML plays an important role in defining different perspectives of

a system. These perspectives are −

1. Design

2. Implementation

3. Process

4. Deployment

• The center is the Use Case view which connects all these four. A

Use Case represents the functionality of the system.

• Hence, other perspectives are connected with use case.

• Design of a system consists of classes, interfaces, and

collaboration. UML provides class diagram, object diagram to

support this.

• Implementation defines the components assembled together

to make a complete physical system. UML component diagram

is used to support the implementation perspective.

• Process defines the flow of the system. Hence, the same

elements as used in Design are also used to support this

perspective.

• Deployment represents the physical nodes of the system that

forms the hardware. UML deployment diagram is used to

support this perspective.

• Structural model represents the framework for the system and this

framework is the place where all other components exist.

• Behavioral model describes the interaction in the system. It shows

show the dynamic sequence of flow in a system.

• Architectural model represents the overall framework of the

system.

• It contains both structural and behavioral elements of the system.

• Architectural model can be defined as the blueprint of the entire

system.

Structural Things

• Graphical notations used in structural things are most widely

used in UML.

• These are considered as the nouns of UML models.

• Classes

• Object

• Interface

• Collaboration

• Use case

• Active classes

• Components

• Nodes

• Class Notation

• Object Notation

• The object is represented in the same

way as the class. The only difference is

the name which is underlined as shown

in the following figure.

• As the object is an actual implementation

of a class, which is known as the instance

of a class. Hence, it has the same usage

as the class.

• Interface Notation

• Interface is represented by a circle as shown in the following

figure. It has a name which is generally written below the circle.

• Interface is used to describe the functionality without

implementation.

• Collaboration Notation

• Collaboration is represented by a dotted eclipse as shown in the

following figure. It has a name written inside the eclipse.

• Collaboration represents responsibilities.

Use Case Notation

• Use case is represented as an

eclipse with a name inside it. It may

contain additional responsibilities.

• Use case is used to capture high

level functionalities of a system.

Actor Notation

• An actor can be defined as some internal or external entity that

interacts with the system.

• Initial State Notation

• Initial state is defined to show

the start of a process. This

notation is used in almost all

diagrams.

• Final State Notation

• Final state is used to show the

end of a process.

• Component Notation

• A component in UML is shown in the

following figure with a name inside.

Additional elements can be added

wherever required.

• Component is used to represent any

part of a system for which UML

diagrams are made.

• Node Notation

• A node represents the

physical component of the

system.

• Node is used to represent

the physical part of a

system such as the server,

network, etc.

Structural Diagrams

• The four structural diagrams are −

• Class diagram

• Object diagram

• Component diagram

• Deployment diagram

Structural Diagrams

• Class Diagram

• Class diagrams are the most common diagrams used in UML.

Class diagram consists of classes, interfaces, associations, and

collaboration.

• Class diagram represents the object orientation of a system.

Hence, it is generally used for development purpose.

• Object Diagram

• Object diagrams can be described as an instance of class

diagram.

• Thus, these diagrams are more close to real-life scenarios

where we implement a system.

• The usage of object diagrams is similar to class diagrams but

they are used to build prototype of a system from a practical

perspective.

• Component Diagram

• Component diagrams represent a set of components and their

relationships.

• During the design phase, software artifacts (classes, interfaces,

etc.) of a system are arranged in different groups depending

upon their relationship. Now, these groups are known as

components.

• Finally, it can be said component diagrams are used to visualize

the implementation.

• Deployment Diagram

• Deployment diagrams are a set of nodes and their relationships.

• Component diagrams are dependent upon the classes,

interfaces, etc. which are part of class/object diagram.

• Again, the deployment diagram is dependent upon the

components, which are used to make component diagrams.

55

Introduction

• Behavioral Diagrams

• UML Architecture

56

Course outcome /
Topic learning outcome

Name of the Topic

covered

Topic Learning

Outcome
Course Outcome

• Behavioral
Diagrams

• UML Architecture

• Understand the role

and function of each

UML model in software

development using

object-oriented

approach.

1. Design of a new models
based on requirements and
documentation process for
future use.

List the course outcome / Topic outcome

57

Outcome achieved

Name of the topic:

Students will be able to:

1 Describe the Behavioral Diagrams of UML and importance of each.

Behavioral Diagrams

• UML has the following five types of behavioral diagrams −

• Use case diagram

• Sequence diagram

• Collaboration diagram

• Statechart diagram

• Activity diagram

Use Case Diagram

• Use case diagrams consists of actors, use cases and their

relationships. The diagram is used to model the

system/subsystem of an application.

• Use case diagrams are a set of use cases, actors, and their

relationships.

• Hence, use case diagram is used to describe the relationships

among the functionalities and their internal/external

controllers. These controllers are known as actors.

• A single use case diagram captures a particular functionality of

a system.

• To model a system, the most important aspect is to capture the

dynamic behavior.

• Dynamic behavior means the behavior of the system when it is

running/operating.

• Now as we have to discuss that the use case diagram is

dynamic in nature, there should be some internal or external

factors for making the interaction.

Purpose of Use Case Diagrams

• Use case diagrams are used to gather the requirements of a

system including internal and external influences.

• These requirements are mostly design requirements. Hence,

when a system is analyzed to gather its functionalities, use

cases are prepared and actors are identified.

In brief, the purposes of use case diagrams can be said to be as

follows −

1. Used to gather the requirements of a system.

2. Used to get an outside view of a system.

3. Identify the external and internal factors influencing the

system.

4. Show the interaction among the requirements and actors.

How to Draw a Use Case Diagram?

• When the requirements of a system are analyzed, the

functionalities are captured in use cases.

• Use cases are nothing but the system functionalities written in

an organized manner.

• Actors can be defined as something that interacts with the

system.

• When we are planning to draw a use case diagram, should

have the following items identified.

 Functionalities to be represented as use case

 Actors

 Relationships among the use cases and actors.

• After identifying the above items, we have to use the following

guidelines to draw an efficient use case diagram

• The name of a use case is very important. The name should be

chosen in such a way so that it can identify the functionalities

performed.

• Give a suitable name for actors.

• Show relationships and dependencies clearly in the diagram.

• Do not try to include all types of relationships, as the main

purpose of the diagram is to identify the requirements.

• Use notes whenever required to clarify some important points.

• The sample use case diagram representing the order

management system. Hence, if we look into the diagram then

we will find three use cases (Order, SpecialOrder, and

NormalOrder) and one actor which is the customer.

• The SpecialOrder and NormalOrder use cases are extended

from Order use case. Hence, they have extended relationship.

• Another important point is to identify the system boundary,

which is shown in the picture. The actor (Customer) lies outside

the system as it is an external user of the system.

Use case diagrams can be used for −

• Requirement analysis and high level design.

• Model the context of a system.

• Reverse engineering.

• Forward engineering.

• In forward engineering, use case diagrams are used to make

test cases and in reverse engineering use cases are used to

prepare the requirement details from the existing application.

An example of a use-case diagram

Sequence Diagram

• A sequence diagram is an interaction diagram. From the name,

it is clear that the diagram deals with some sequences, which

are the sequence of messages flowing from one object to

another.

• Sequence diagram is used to visualize the sequence of calls in a

system to perform a specific functionality.

73

Introduction

• Behavioral Diagrams

• Importance of Modeling

74

Course outcome /
Topic learning outcome

Name of the Topic

covered

Topic Learning

Outcome
Course Outcome

• Behavioral
Diagrams

• Understand the role

and function of each

UML model in software

development using

object-oriented

approach.

1. Design of a new models
based on requirements and
documentation process for
future use.

List the course outcome / Topic outcome

75

Outcome achieved

Name of the topic:

Students will be able to:

1 Describe the Behavioral Diagrams of UML and importance of each.

Behavioral Diagrams

• UML has the following five types of behavioral diagrams −

• Use case diagram

• Sequence diagram

• Collaboration diagram

• Statechart diagram

• Activity diagram

• Collaboration Diagram

• Collaboration diagram is another form of interaction diagram.

• It represents the structural organization of a system and the

messages sent/received.

• The purpose of collaboration diagram is similar to sequence

diagram.

• However, the specific purpose of collaboration diagram is to

visualize the organization of objects and their interaction.

• Statechart Diagram

• Any real-time system is expected to be reacted by some kind of

internal/external events.

• These events are responsible for state change of the system.

• State chart diagram is used to visualize the reaction of a system

by internal/external factors.

• Activity Diagram

• Activity diagram describes the flow of control in a system.

• It consists of activities and links.

• The flow can be sequential, concurrent, or branched.

• Activities are nothing but the functions of a system.

• This is prepared to have an idea of how the system will work

when executed.

Importance of Modeling

• To know the importance of modeling let us assume that you are

going to build a dog house, a house for your family and a high

rise office for a client.

• In the case of a dog house you need minimal resources and the

satisfaction of the dog is not that important.

• In the case of building a house for your family, you need to

satisfy the requirements of your family members and the

amount resources are non-trivial.

• In the case of building a high rise office, the amount of risk is

very high.

• Unsuccessful software projects fail in their own unique ways,

but all successful software projects are alike in many ways.

• There are many elements that contribute to a successful

software organization; one common element is the use of

modeling.

• Modeling is a proven and well-accepted engineering technique.

• We build architectural models of houses and high rises to help

their users visualize the final product.

• Modeling is not only limited to the construction industry, it is

also applied in the fields of aeronautics, automobile, picture,

sociology, economics, software development and many more.

• We build models so that we can validate our theories or try out

new ones with minimal risk and cost.

• Why do we model?

• We build models so that we can better understand the system

we are developing.

• Every project can benefit from modeling. Modeling can help the

development team better visualize the plan of their system and

allow them to develop more rapidly by helping them build the

right thing.

87

Introduction

• UML Architecture

• Classes and Relationships

• Common Mechanisms

88

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• UML Architecture

• Classes and
Relationships

• Common
Mechanisms

• Understand the role and

function of each UML model

in software development

using object-oriented

approach.

• Demonstrate the Conceptual

model of UML architecture,

common mechanisms

1. Recalling the procedure
and architecture of
SDLC.

2. Identify classes and
their relationships

List the course outcome / Topic outcome

89

Outcome achieved

Name of the topic:

Students will be able to:

1
Describe the importance of various common mechanisms used in
classes and their associated relationships.

2
Apply architectural modelling techniques for design and drawing UML
diagrams for real time applications.

Through modeling, we achieve four aims:

1. Models help us to visualize a system as it is or as we want it

to be.

2. Models permit us to specify the structure or behavior of a

system.

3. Models gives us a template that guides us in constructing a

system.

4. Models document the decisions we have made.

UML - Architecture

• Any real-world system is used by different users.

• The users can be developers, testers, business people,

analysts, and many more.

• Hence, before designing a system, the architecture is made

with different perspectives in mind.

• The better we understand the better we can build the system.

Architecture

Software Development Life Cycle

• UML is involved in each phase of the software development life

cycle.

• The UML development process is

– Use case driven

• Use case driven means that use cases are used as a primary

artifact for establishing the desired behavior of the system,

for verifying and validating the system's architecture, for

testing, and for communicating among the stakeholders of

the project.

– Architecture-centric

• Architecture-centric means that a system's architecture is

used as a primary artifact for conceptualizing,

constructing, managing, and evolving the system under

development.

– Iterative and incremental

• It is an iterative process and involves managing a stream

of executable releases.

• It involves the continuous integration of the system's

architecture to produce these releases, with each new

release representing incremental improvements over the

other

UML - Class Diagram

• Class diagram shows a collection of classes, interfaces,

associations, collaborations, and constraints. It is also known

as a structural diagram.

• Class diagram is a static diagram.

• Class diagram is not only used for visualizing, describing, and

documenting different aspects of a system but also for

constructing executable code of the software application.

• Class diagram describes the attributes and operations of a class

and also the constraints imposed on the system.

Basic Class Diagram Symbols and Notations

Classes

• Classes represent an abstraction of entities with

common characteristics. Associations represent

the relationships between classes.

• Illustrate classes with rectangles divided into

compartments. Place the name of the class in

the first partition (centered, bolded), list the

attributes in the second partition (left-aligned,

not bolded, and lowercase), and write operations

into the third.

• Active Classes

• Active classes initiate and control the flow of activity, while

passive classes store data and serve other classes.

Visibility

• Use visibility markers to signify who can access the information

contained within a class.

• Private visibility, denoted with a - sign, hides information from

anything outside the class partition.

• Public visibility, denoted with a + sign, allows all other classes to

view the marked information.

• Protected visibility, denoted with a # sign, allows child classes to

access information they inherited from a parent class.

Associations

• Associations represent static relationships between classes.

Place association names above, on, or below the association

line. Use a filled arrow to indicate the direction of the

relationship.

Generalization

• A generalization relationship is a parent-child relationship

between use cases.

• The child use case is an enhancement of the parent use case.

• Generalization is shown as a directed arrow with a triangle

arrowhead.

• The child use case is connected at the base of the arrow. The

tip of the arrow is connected to the parent use case.

109

Introduction

• Classes and Relationships

• Common Mechanisms

110

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Classes and
Relationships

• Common
Mechanisms

• Understand the role and

function of each UML model

in software development

using object-oriented

approach.

• Demonstrate the Conceptual

model of UML architecture,

common mechanisms

1. Recalling the procedure
and architecture of
SDLC.

List the course outcome / Topic outcome

111

Outcome achieved

Name of the topic:

Students will be able to:

1
Describe the importance of various common mechanisms used in
classes and their associated relationships.

2
Apply architectural modelling techniques for design and drawing UML
diagrams for real time applications.

Purpose of Class Diagrams

The purpose of the class diagram can be summarized as −

• Analysis and design of the static view of an application.

• Describe responsibilities of a system.

• Base for component and deployment diagrams.

• Forward and reverse engineering.

How to Draw a Class Diagram?

The following points should be remembered while drawing a class

diagram −

• The name of the class diagram should be meaningful to describe the

aspect of the system.

• Each element and their relationships should be identified in

advance.

• Responsibility (attributes and methods) of each class should be

clearly identified

• For each class, minimum number of properties should be specified,

as unnecessary properties will make the diagram complicated.

Where to Use Class Diagrams?

class diagrams are used for −

• Describing the static view of the system.

• Showing the collaboration among the elements of the static

view.

• Describing the functionalities performed by the system.

• Construction of software applications using object oriented

languages.

Common Mechanisms

• UML provides common mechanism that apply throughout the

language namely stereotype, tagged values and constraints

1. Note: It is a graphical symbol for rendering comments or

constraints attached to an elements.

• Notes are used to specify things like requirements, observations,

reviews and explanations.

• A note may contain any combination of text or graphics.

• A note represented by a rectangle with dog-eared corner along

with text.

Sample fig.

2. Adornments: Adornments are added to an elements basic

notation.

• It helps to visualize the details.

• It is represented by placing text at the element or with a graphic

symbol to the basic notation.

3. Stereotypes: It provides new semantics to a mode. Which means

additional features can be provided to a model, by extracting the

existing properties, relevant to the situation being modelled.

• These are included in separate rectangular boxes with type of

information.

• EX: consider a class file. The major operation of files include

read, write, append. When a given file name is typed, which is

not existing, then a message ‘File Not Found’ can be

represented using stereotypes in the following way.

Representation od stereotypes

Files

Read()
Write()
Append()

<<Stop>>
File Not Found

4. Tagged Values:

• These are used to provide the information related to an

existing data

• EX: Consider a washing machine class, most probable tagged

values for this class can be the “model no”, “company” etc.

 Fig: Representation of Tagged Value

Washing Machine
{Model No: 1111
Company : IFB}

Tagged Value

5. Constraints: Constraints specifies conditions that must be

held true for the model to be well formed with constraints we

can add new semantics or change existing rules.

Ex:

Cash Account..

Current Balance: real;

Overdrawn : bool = (current balance < 100.0)

End

• Constraints will use boolean, relational, and arithmetic

functions on values.

• Operations like ~, ^,{} =>, and ~= will be used for not, and,

or implies and not equal to respectively.

• For example, some

properties of

associations (order

and

• changeability) are

rendered using

constraint notation.

6. Standard Elements:

• Stereo type : It specifies that the classifier is a stereo type

that may be applied to other elements.

• Documentation: It specifies a comment, description or

explanation of the elements to which it is attached.

 Diagram

• Class diagram is used for visualizing, specifying and

documenting the structural modelling.

Contents of class diagram:

1. Classes

2. Interfaces

3. Collaboration

4. Relationships

Benefits of Class Diagram

• Class Diagram Illustrates data models for even very complex

information systems

• It provides an overview of how the application is structured

before studying the actual code. This can easily reduce the

maintenance time

• It helps for better understanding of general schematics of an

application.

Essential elements of A UML class diagram

Essential elements of UML class diagram are:

Class Name:

• Following rules must be taken care of while representing a class:

• A class name should always start with a capital letter.

• A class name should always be in the center of the first

compartment.

• A class name should always be written in bold format.

• An abstract class name should be written in italics format.

Attributes:

• An attribute is named property of a class

which describes the object being

modeled.

• In the class diagram, this component is

placed just below the name-

compartment.

• A derived attribute is computed from

other attributes.

• For example, an age of the student

can be easily computed from his/her

birth date.

Attributes characteristics

• Attributes must have a meaningful name that describes the

use of it in a class.

• The attributes are generally written along with the visibility

factor.

• Visibility describes the accessibility of an attribute of a class.

• Public, private, protected and package are the four visibilities

which are denoted by +, -, #, or ~ signs respectively.

Relationships

• There are mainly three kinds of relationships in UML:

1. Dependencies

2. Generalizations

3. Associations

 Dependency

• A dependency means the relation between two or more classes

in which a change in one may force changes in the other.

• However, it will always create a weaker relationship.

• Dependency indicates that one class depends on another.

In the following example, Student has a dependency on College

 Generalization

• In UML modeling, a generalization relationship is a relationship

in which one model element (the child) is based on another

model element (the parent).

• Generalization relationships are used in class, component,

deployment, and use-case diagrams to indicate that the child

receives all of the attributes, operations, and relationships

that are defined in the parent.

• Generalization relationship can be

used between actors or between

use cases; however, it cannot be

used between an actor and a use

case.

• Generalization relationships do not

have names.

 Example

• The following figure illustrates an e-commerce application for a

website that sells a variety of merchandise.

• The application has an InventoryItem class that is a parent

class (also called a superclass).

• This class contains the attributes, such as Price, and

operations, such as setPrice, that all pieces of merchandise

use.

• After defining the parent class, a child class (also called a subclass)

is created for each type of merchandise, such as books and DVDs.

• The book class uses the attributes and operations in the inventory

class and then adds attributes such as author and operations such

as setAuthor.

• A DVD class also uses the attributes and operations in the inventory

class, but it adds attributes such as manufacturer and operations

such as setManufacturer, which are different from those in the book

class.

 Association

• For example, a class called Student represents a student and

has an association with a class called Course, which

represents an educational course. The Student class can enroll

in a course.

• An association class called Enrollment further defines the

relationship between the Student and Course classes by

providing section, grade, and semester information related to

the association relationship.

 Aggregation

• An aggregation describes a group of objects and how you

interact with them.

• For example, a Department class can have an aggregation

relationship with a Company class, which indicates that the

department is part of the company.

• As the following figure illustrates, an aggregation association

appears as a solid line with an unfilled diamond at the

association end, which is connected to the classifier that

represents the aggregate.

• Aggregation relationships do not have to be unidirectional.

142

Introduction

• Classes and Relationships

• Common Mechanisms

143

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Classes and
Relationships

• Common
Mechanisms

• Demonstrate the Conceptual

model of UML architecture,

common mechanisms

1. Understand the
concepts of classes,
relationships and
common mechanisms.

List the course outcome / Topic outcome

144

Outcome achieved

Name of the topic:

Students will be able to:

1
Describe the importance of various common mechanisms used in
classes and their associated relationships.

 Composition

• A composition association relationship represents a whole–part

relationship and is a form of aggregation.

• A composition association relationship specifies that the life

time of the part classifier is dependent on the life time of the

whole classifier.

• For example, a composition association relationship connects a

Student class with a Schedule class, which means that if you

remove the student, the schedule is also removed.

• As the following figure illustrates, a composition association

relationship appears as a solid line with a filled diamond at the

association end, which is connected to the whole, or

composite, classifier.

 Aggregation vs. Composition

Aggregation Composition

Aggregation indicates a

relationship where the child can

exist separately from their

parent class.

Example: Automobile (Parent)

and Car (Child). So, If you

delete the Automobile, the child

Car still exist.

Composition display relationship

where the child will never exist

independent of the parent.

Example: House (parent) and

Room (child). Rooms will never

separate into a House.

 Abstract Classes

• It is a class with an operation prototype, but not the

implementation.

• An abstract is useful for identifying the functionalities across

the classes.

• Suppose we have an abstract class called as a motion with a

method or an operation declared inside of it. The method

declared inside the abstract class is called a move ().

• This abstract class method can be used by any object such as

a car, an animal, robot, etc. for changing the current position.

• It is efficient to use this abstract class method with an object

because no implementation is provided for the given function.

• We can use it in any way for multiple objects.

• In UML, the abstract class has the same notation as that of the

class. The only difference between a class and an abstract

class is that the class name is strictly written in an italic font.

• The abstract class notation,

there is the only a single

abstract method which can be

used by multiple objects of

classes.

UML Class Diagram

• Creating a class diagram is a straightforward process. It does

not involve many technicalities. Here, is an example:

• ATMs system is very simple as customers need to press some

buttons to receive cash.

• However, there are multiple security layers that any ATM

system needs to pass.

• This helps to prevent fraud and provide cash or need details to

banking customers.

 Conclusion

• UML is the standard language for specifying, designing, and

visualizing the artifacts of software systems

• A class is a blueprint for an object

• A class diagram describes the types of objects in the system

and the different kinds of relationships which exist among

them

• It allows analysis and design of the static view of a software

application

• Class diagrams are most important UML diagrams used for software

application development

• Essential elements of UML class diagram are

 1) Class 2) Attributes 3) Relationships

• Class Diagram provides an overview of how the application is

structured before studying the actual code. It certainly reduces the

maintenance time

• The class diagram is useful to map object-oriented programming

languages like Java, C++, Ruby, Python, etc.

157

Introduction

• ADVANCED BEHAVIORAL MODELING

158

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• ADVANCED
BEHAVIORAL
MODELING

• Understand the concepts of

Advanced classes

1. Understand the concepts
of Advanced classes

List the course outcome / Topic outcome

159

Outcome achieved

Name of the topic:

Students will be able to:

1

Understand the concepts of Advanced classes include Classifiers,

Visibility, Scope, Multiplicity, Attributes, Operations, Common,

Modeling Techniques

UNIT –II

ADVANCED BEHAVIORAL MODELING

Contents

• Advanced classes, advanced relationships, interfaces, types

and roles, packages, terms, concepts;

• Class and Object Diagrams: Terms, concepts, common

modeling techniques for class and object diagrams.

Advanced Classes

• The fundamental building block in a object-oriented system is

an object or class.

• It is only one of the general building blocks in UML, called as

classifiers.

• A classifier describes a set of instances that have common

behavioral and structural features (operations and attributes,

respectively).

• A classifier is a mechanism which describes structural and

behavioral features in a system.

• Other classifiers in UML are: interfaces, datatypes, signals,

components, nodes, use cases and subsystems.

• Class is the frequently used classifier.

• Every classifier represents structural aspects in terms of

properties and behavioral aspects in terms of operations.

• Beyond these basic features, there are several advanced

features like multiplicity, visibility, signatures, polymorphism

and others.

Scope

• Another feature that can be applied to the classifier’s attributes

and operations is the scope.

• The scope of an attribute or an operation denotes whether

they have their existence in all the instances of the classifier or

only one copy is available and is shared across all the

instances of the classifier.

• The scope specifiers in UML are:

Example:

Multiplicity

• Multiplicity can be set for attributes, operations and

associations in a UML class diagram, and for associations in a

use case diagram.

• The multiplicity is an indication of how many objects may

participate in the given relationship, or the allowable number

of instances of the element.

• When modeling classes it is reasonable to assume that a class

can have any number of instances.

• In some cases a class might not have any instances at all.

• Such a class with no instances is called a utility class which

contains only attributes and operations with the classifier

scope.

• A class with exactly one instance is called a singleton class.

• Similarly other classes might have any number of instances

which is the default in UML.

• The specification of how many instances a class can have is

known as multiplicity.

• In UML, we can mention the multiplicity as an expression in

the top right hand corner of the class icon.

• Attributes too can have multiplicity. The multiplicity of an

attribute is represented in brackets after the attribute name.

Example

• For example, one fleet may include

multiple airplanes, while one

commercial airplane may contain

zero to many passengers. The

notation 0..* in the diagram means

“zero to many”.

Multiplicity Option Cardinality

0..0 0 Collection must be empty

0..1 No instances or one instance

1..1 1 Exactly one instance

0..* * Zero or more instances

1..* At least one instance

5..5 5 Exactly 5 instances

m..n
At least m but no more than n
instances

Attributes

• While modeling classes, it is reasonable to write only the

attribute name.

• Along with the name, you can also specify multiplicity, visibility

and scope.

• Apart from these features, we can also specify the type, initial

value and changeability of each attribute.

• The syntax of an attribute in UML is:

[visibility] name [multiplicity] [: type] [=initial value]

[{property string}]

Examples:

• The three predefined properties that can be used with

attributes in UML are:

Example Notation

Operations

• Along with the name we can also mention the visibility and

scope.

• Apart from these basic details, we can also specify the return

type, parameters, concurrency semantics and other features.

• The syntax of an operation in UML is:

[visibility] name [(parameters-list)] [: return-type]

[{property-string}]

Example

• The signature of parameter in the parameters list of an
operation is as follows:

[direction] name :type [=initial value]

• Direction may be anyone of the following values:

• The operation name, parameters list and its return type is

collectively known as the signature of the operation.

• There are four predefined properties (stereotypes) that can be

applied to operations, in UML. They are:

184

Introduction

• Common Modeling Techniques

• Advanced Relationships

185

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Common Modeling
Techniques

• Advanced
Relationships

• Describe Modeling the

semantic of a class

• Understand the concepts of

Advanced Relationships

1. Describe Modeling the
semantic of a class

2. Understand the
representation of different
Advanced Relationships
concepts.

List the course outcome / Topic outcome

186

Outcome achieved

Name of the topic:

Students will be able to:

1 Describe Common Modeling Techniques

2
Understand the concepts of Advanced Relationships & graphics

representations

Common Modeling Techniques

Modeling the semantic of a class

• To model the semantics of a class:

1. Specify the responsibilities of the class in a note and attach it

to the class with a dependency relationship.

2. Specify the semantics of a class as a whole in a note

stereotyped with “semantics”.

3. Specify the body of a method using structured text or a

programming language in a note and attach it to the class or

operation using a dependency relationship.

4. Specify the pre-conditions and post-conditions for operations

using structured text in a note.

5. Specify a state machine for a class which represents different

states the object undergoes.

6. Specify a collaboration that represents a class.

Advanced Relationships

• The things in diagrams are connected with one another

through relationships.

• So, relationships are the connections between things.

• In UML, the four important relationships are dependency,

generalization, association and realization.

• Each type of relationship has its own graphical representation.

• Contents

1. Dependency

2. Generalization

3. Association

4. Realization

5. Common Modeling Techniques

 1. Dependency

• The dependency relationship is also known as using

relationship i.e., if the specification of one thing changes then

it will automatically affect the behavior of another thing that

uses it.

• A dependency relationship is graphically represented as a

dashed arrow.

• In general, a plain dependency relationship is reasonable for

representing the using relationship between two things.

• But, if the user needs to specify extra information like the

nature of the dependency relationship, he/she can use the

predefined stereotypes that can be applied to dependency

relationship.

• There are about 17 such stereotypes and are organized into 6

groups based on which things are participating in the

dependency relationship.

• First group consists of eight stereotypes that apply to

dependency relationship between classes. They are as follows:

1.Bind:

• Specifies that the source instantiates (creates object) the

target template using the given actual parameters.

• Ex:

2. Derive:

• Specifies that the source may be computed from the target.

Source Target

3. friend:

• Specifies that the source is accessible by the target regardless

of the visibility of the source element

Source Target

4. instanceOf:

• Specifies that the source object is an instance of the target

classifier

Source Target

5. instantiate:

• Specifies that the source creates instances of the target

Source Target

6. powertype:

• Specifies that the target is a powertype of the source.

• A powertype is a classifier whose objects are the children of a

given parent.

Source Target

7. refine:

• Specifies that the target is at a lower level of abstraction than

the source

8. use:

• Specifies that the source element depends on the target for its

functionality.

Source Target

• There are two stereotypes that apply to dependencies between

packages. They are:

1. Access

2. Import

1. Access:

• Specifies that the source package has the right to access the

elements of the target package.

Source Target

2. Import:

• Specifies that the public elements of the target package enter

the namespace of the source package as if they were declared

in the source

Source Target

• Two stereotypes apply to dependency relationship among use

case. They are:

1. Extend

2. Include

1. Extend:

• Specified that the target use case extends the functionality of

the source use case

Source Target

2. include:

• Specifies that the source use case incorporates the behaviour

of the target use case to function as a whole

Source Target

• Three stereotypes apply to interactions among objects. They

are:

1. Become

2. Call

3. Copy

1. Become:

• Specifies that the source object becomes the target object at

some point in time

Source Target

2. Call:

• Specifies that an operation in source calls another operation of

the target

Source Target

3. Copy:

• Specifies that the target is an exact, but independent copy of

the source.

Source Target

• One stereotype applies to dependencies in the context of state

machines: send

1. Send:

• Specifies that the source, an operation whose target is a

signal, sends the target signal

• One stereotype applies to dependencies in the context of

subsystem: trace

1. Trace:

• Specifies that the source element has a conceptual connection

to the target which individually belong to different models

Source Target

 2. Generalization

• A generalization relationship represents generalization-

specialization relationship between classes.

• The class with the general structure and behavior is known as

the parent or superclass and the class with specific structure

and behavior is known as the child or subclass.

• Consider the below class hierarchy:

• Shape class is the parent or super class and the remaining

three classes namely Rectangle, Circle and Polygon are the

child or subclasses of the Shape class.

• A subclass in the generalization relationship automatically

inherits the state and behavior of the superclass.

• The generalization relationship is also known as the “is-a”

relationship.

• If a class has only one parent, such inheritance is known as

single inheritance and if a class has one or more parents, such

inheritance is known as multiple inheritance.

• To represent extra semantics in a generalization relationship,

UML provides one stereotype and four constraints.

• The stereotype on generalization relationship is

implementation.

1. Implementation:

• Specifies that the child inherits the implementation of the

parent but does not support its interfaces, there by violating

the principles of substitutability.

 There are four standard constraints that apply to the

generalization relationship are complete, incomplete, disjoint,

overlapping.

3. Association

• Association is a structural relationship which denotes a

connection between two or more things.

• The association relationship can represent either physical or

logical connections between things.

• The graphical representation of the association relationship is a

solid line.

• The four basic adornments for an association relationship are:

name, role at each end of the association, multiplicity at each

end of the association and aggregation.

• Over these basic features, there are other advanced features

like: navigation, visibility, qualification, composition and

association classes.

• Navigation

• Given an association between two things, we can navigate

from one thing to another and vice versa.

• By default the navigation of an association is bidirectional.

• In some cases we may need to navigate in only direction.

• Visibility

• Given an association, we can navigate from one object to

another.

• However, in some situations we may want to limit the visibility

(access) of an object to the objects outside the association

relationship.

• To limit the visibility of an object, we can use the visibility

specifiers: public (+), private (-) and protected (#).

• For example, a usergroup object can access the user object

and an user object can access the password.

• If, private visibility is specified for the password object, the

usergroup object cannot access the password of the user

object.

• Qualification

• In binary associations, where two classes are connected

together, if one object of a class has to identify a set of

instances of another class, we can use qualifiers.

• A qualifier is a set of attributes of an association which is used

to identify a set of instances of a class.

• Each qualifier is represented with a name and type in a

rectangle box at the qualified end of the association

relationship.

• For example, a bank object is able to recognize the person

(account holder) based on the account number.

• So, account number is the qualifier which is used to identify an

account holder.

• Composition

• The composition is a flavor of association relationship.

• Composition as well as aggregation relationships represent

whole-part relationships, in which one thing is a part of the

other thing.

• There is a simple difference between the association and

composition relationships.

• In composition, the lifetime of the part is dependent of the

lifetime of the whole thing.

• Where as in aggregation, the lifetime of the part is

independent of the whole thing.

• Composition is graphically represented by adorning the

association relationship with a filled diamond head near the

whole end.

227

Introduction

• Advanced Relationships

• Interfaces, types and roles

• Packages

228

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Advanced
Relationships

• Interfaces, types
and roles

• Packages

• Understand the concepts of

Advanced Relationships

• Interfaces, types and roles

• Identify purpose of

Packages

1. Understand the

representation of different
Advanced Relationships
concepts.

2. Understand usage of
interface, types and roles

3. Identify the importance of
Package

List the course outcome / Topic outcome

229

Outcome achieved

Name of the topic:

Students will be able to:

1
Understand the concepts of Advanced Relationships & graphics

representations

2 Understand usage of interface, types and roles

3 Identify the importance of Package

• Contents

1. Dependency

2. Generalization

3. Association

4. Realization

5. Common Modeling Techniques

• Association Class

• Sometimes in an association relationship, the

association might have attributes or

properties like a class does.

• In such cases, it is modeled as an association

class.

• An association class in UML is represented

with a class icon attached to the association

with a dashed line.

• Apart from the above advanced features, UML provides six

constraints that can be applied to an association. They are:

• Association is a relationship between classifiers which is used

to show that instances of classifiers could be either linked to

each other or combined logically or physically into some

aggregation.

• UML specification categorizes association as semantic

relationship.

 4. Realization

• Realization is a semantic relationship between classifiers,

where one classifier provides the specification which is

implemented by the other classifier.

• Realization can exist between an interface and class, interface

and a component and between a use case and collaboration.

• Realization is graphically represented as dashed line with a

hollow arrow head pointing towards the classifier which

provides the specification.

 Common Modeling Techniques

• Modeling Webs of Relationships: To model webs of relationships,

1. Apply use cases and scenarios to find the relationships between

the abstractions in the system.

2. Start by modeling the structural relationships (associations)

between the things. These specify the structure of the system.

3. Then, model the generalization-specialization relationships.

4. Finally, after modeling the remaining relationships go for

dependency relationships.

5. After representing all the relationships, transform their basic

representation by applying the advanced features to your intent.

 Interfaces , Types and Roles

• Interface

• An interface is a collection of operations that are used to specify

a service of a class or a component.

• Graphically, an interface is rendered(represented) as a circle; in

its expanded form, an interface may be rendered as a

stereotyped class as shown in below figure 1.

• An interface name must be unique within its enclosing package.

Figure: 1

• There are two naming mechanism;

 a simple name (only name of the interface),

 a path name is the interface name prefixed by the name of

the package in which that interface lives represented in

Figure: 2.

• To distinguish an interface from a class, prepend an ‘I’ to every

interface name.

• Operations in an interface may be adorned with visibility

properties, concurrency properties, stereotypes, tagged values,

and constraints.

• Interface don't have attributes.

Figure: 2

• Interface relationships

• An interface may participate in generalization, association,

dependency and realization relationships.

• Note: Interfaces may also be used to specify a contract for a

use case or subsystem.

 Type

• A type is a stereotype of a class used to specify a domain of

objects, together with the operations (but not the methods)

applicable to the object of that type.

• To distinguish a type from an interface or a class, prepend a ‘T’

to every type.

• Stereotype type is used to formally model the semantics of an

abstraction and its conformance to a specific interface.

 Role

• A role indicates a behavior of an entity participating in a particular

context. Or, a role is the face that an abstraction presents to the

world.

• For example, consider an instance of the class Person.

• Depending on the context, that Person instance may play the role of

Mother, Comforter, PayerOfBills, Employee, Customer, Manager,

Pilot, Singer, and so on.

• When an object plays a particular role, it presents a face to the

world, and clients that interact with it expect a certain behavior

depending on the role that it plays at the time.

• For example, an instance of Person in the role of Manager

would present a different set of properties than if the instance

were playing the role of Mother.

• Figure:3 indicates a role employee played by person and is

represented statically there.

Figure: 3

• The above fig 3 describes the Person presents the role of

Employee to the Company, and in that context, only the

properties specified by Employee are visible and relevant to

the Company.

• Static and Dynamic modeling in UML

• A class diagram that indicates a particular role is useful for

modeling the static binding of an abstraction to its interface.

• To model the dynamic binding of an abstraction to its interface

by using the become stereotype in an interaction diagram,

showing an object changing from one role to another.

• To model a dynamic type,

• Specify the different possible types of that object by rendering

each type as a class stereotyped as type (if the abstraction

requires structure and behavior) or as interface (if the

abstraction requires only behavior).

• Model all the roles the class of the object may take on at any

point in time. It can be done in two ways:

• First, in a class diagram, explicitly type each role that the class

plays in its association with other classes.

• Doing this specifies the face instances of that class put on in

the context of the associated object.

• Second, also in a class diagram, specify the class-to-type

relationships using generalization

• In an interaction diagram, properly render each instance of the

dynamically typed class.

• Display the role of the instance in brackets below the object’s

name.

• To show the change in role of an object, render the object once

for each role it plays in the interaction, and connect these

objects with a message stereotyped as become.

• They are represented in the following figures:

Figure:4 Static modeling

Figure:5 Dynamic-modeling

• Figure:4 shows statically that instances of the Person class

may be any of the three types namely, Candidate, Employee,

or Retiree.

• Figure:5 shows the dynamic nature of a person’s type.

• In this fragment of an interaction diagram, p (the Person

object) changes its role from Candidate to Employee.

Package Diagram

• A package is an organized group of elements. A package may

contain structural things like classes, components, and other

packages in it.

• Notation − Graphically, a package is represented by a tabbed

folder. A package is generally drawn with only its name.

• However it may have additional details about the contents of

the package. See the following figures.

Purpose of Package Diagrams

• Package diagrams are used to structure high level system

elements.

• Packages are used for organizing large system which contains

diagrams, documents and other key deliverables.

 Package Diagram can be used to simplify complex class

diagrams, it can group classes into packages.

 A package is a collection of logically related UML elements.

 Packages are depicted as file folders and can be used on any

of the UML diagrams.

Package Diagram at a Glance

• Package diagram is used to simplify complex class diagrams,

you can group classes into packages.

• A package is a collection of logically related UML elements.

• The below diagram is a business model in which the classes

are grouped into packages:

 Packages appear as rectangles with small tabs at the top.

 The package name is on the tab or inside the rectangle.

 The dotted arrows

are dependencies.

 One package

depends on another

if changes in the

other could possibly

force changes in the

first.

Basic Concepts of Package Diagram

• Package diagram follows hierarchal structure of nested packages.

• There are few constraints while using package diagrams, they are

as follows.

 Package name should not be the same for a system, however

classes inside different packages could have the same name.

 Packages can include whole diagrams, name of components alone

or no components at all.

 Fully qualified name of a package has the following syntax.

Packages can be represented by the notations with some examples shown
below:

260

Introduction

• Packages

• Terms And Concepts

• Common Modeling Techniques

261

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Packages

• Terms And
Concepts

• Common Modeling
Techniques

• Identify purpose of

Packages

• Understand the concepts of

Class and Object diagrams

1. Identify the importance of

Package
2. Understand the concepts

of Class and Object
diagrams

List the course outcome / Topic outcome

262

Outcome achieved

Name of the topic:

Students will be able to:

1 Identify the importance of Package

2 Understand the concepts of Class and Object diagrams

Package Diagram — Dependency Notation

• There are two sub-types involved in dependency.

• They are <<import>> & <<access>>.

• Though there are two stereotypes users can use their own

stereotype to represent the type of dependency between two

packages.

Key Elements of Package Diagram

• Packages are used to organize a large set of model elements:

When to Use Packages?

• To organize a large model

• To group related elements

• To separate namespaces

Visibility of Packages

• A public element is visible to elements outside the package,

denoted by ‘+’

• A protected element is visible only to elements within

inheriting packages, denoted by ‘#’

• A private element is not visible at all to elements outside the

package, denoted by ‘-’

• Same syntax for visibility of attributes and operations in

classes

Import Relationship between Packages

Import and Access

• To know shipping information,

"Shipping" can import "Track Order"

to make the navigation easier.

• <<import>> - one package imports

the functionality of other package

• <<access>> - one package requires

help from functions of other package.

• Finally, Track Order dependency to UI Framework is also

mapped which completes our Package Diagram for Order

Processing subsystem.

Modeling Complex Grouping

• A package diagram is often used to describe the hierarchical

relationships (groupings) between packages and other

packages or objects.

• A package represents a namespace.

• Package Diagram Example — Layering Structure

Terms And Concepts

• A class is a description of a set of objects that share the same

attributes, operations, relationships, and semantics.

• Graphically, a class is rendered as a rectangle.

Common Properties :

• A class diagram is just a special kind of diagram and shares

the same common properties as do all other diagrams.

• A name and graphical content that are a projection into a

model.

• What distinguishes a class diagram from all other kinds of

diagrams is its particular content.

• Class diagrams commonly contain the following things:

 Classes

 Interfaces

 Collaborations

 Dependency, generalization, and association relationships

• Like all other diagrams, class diagrams may contain notes and

constraints.

• Class diagrams may also contain packages or subsystems

 Common Uses:

1. To model the vocabulary of a system

• Modeling the vocabulary of a system involves making a

decision about which abstractions are a part of the system

under consideration and which fall outside its boundaries.

• You use class diagrams to specify these abstractions and their

responsibilities

2. To model simple collaborations

• A collaboration is a society of classes, interfaces, and other

elements that work together to provide some cooperative

behavior that's bigger than the sum of all the elements.

3. To model a logical database schema

• Think of a schema as the blueprint for the conceptual design of

a database.

• In many domains, you'll want to store persistent information in

a relational database or in an object-oriented database.

• You can model schemas for these databases using class

diagrams

 Common Modeling Techniques

1. Modeling Simple Collaborations

2. Modeling a Logical Database Schema

3. Forward and Reverse Engineering

1. Modeling Simple Collaborations

• Identify the mechanism you'd like to model.

• A mechanism represents some function or behavior of the part

of the system you are modeling that results from the

interaction of a society of classes, interfaces, and other things.

• For each mechanism, identify the classes, interfaces, and other

collaborations that participate in this collaboration.

• Identify the relationships among these things, as well.

• Use scenarios to walk through these things.

• Along the way, you'll discover parts of your model that were

missing and parts that were just plain semantically wrong.

• Be sure to populate these elements with their contents.

• For classes, start with getting a good balance of

responsibilities.

• Then, over time, turn these into concrete attributes and

operations.

• For example, Figure shows a set of classes drawn from the

implementation of an autonomous robot.

• The figure focuses on the classes involved in the mechanism

for moving the robot along a path.

• You'll find one abstract class (Motor) with two concrete

children, SteeringMotor and MainMotor.

• Both of these classes inherit the five operations of their parent,

Motor.

• The two classes are, in turn, shown as parts of another class,

Driver.

• The class PathAgent has a one-to-one association to Driver and

a one-to-many association to CollisionSensor.

• No attributes or operations are shown for PathAgent, although

its responsibilities are given

286

Introduction

• Common Modeling Techniques

287

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Common Modeling
Techniques

• Understand the concepts of

Class and Object diagrams

1. Understand the concepts

of Class and Object
diagrams

List the course outcome / Topic outcome

288

Outcome achieved

Name of the topic:

Students will be able to:

1 Understand the concepts of Class and Object diagrams

2. Modeling a Logical Database Schema

• Identify those classes in your model whose state must go

beyond the lifetime of their applications.

• Create a class diagram that contains these classes and mark

them as persistent (a standard tagged value).

• You can define your own set of tagged values to address

database-specific details.

• Expand the structural details of these classes.

• In general, this means specifying the details of their attributes

and focusing on the associations and their cardinalities that

structure these classes.

• Watch for common patterns that complicate physical database

design, such as cyclic associations, one-to-one associations,

and n-ary associations.

• Where necessary, create intermediate abstractions to simplify

your logical structure.

• Consider also the behavior of these classes by expanding

operations that are important for data access and data

integrity.

• In general, to provide a better separation of concerns,

business rules concerned with the manipulation of sets of

these objects should be encapsulated in a layer above these

persistent classes.

• Where possible, use tools to help you transform your logical

design into a physical design.

• Figure shows a set of classes drawn from an information

system for a school.

• find the classes named Student, Course, and Instructor.

• There's an association between Student and Course,

specifying that students attend courses.

• Furthermore, every student may attend any number of courses

and every course may have any number of students.

 Forward and Reverse Engineering

• Identify the rules for mapping to your implementation

language or languages of choice.

• Depending on the semantics of the languages choose, may

have to constrain use of certain UML features.

• For example, the UML permits you to model multiple

inheritance.

• Use tagged values to specify your target language.

• Can do this at the level of individual classes if you need precise

control.

• Can also do so at a higher level, such as with collaborations or

packages.

• Use tools to forward engineer of models.

• Figure illustrates a simple class diagram specifying involves

three classes: Client, EventHandler, and GUIEventHandler.

• Client and EventHandler are shown as abstract classes,

whereas GUIEventHandler is concrete.

• EventHandler has the usual operation expected of this pattern

(handleRequest), although two private attributes have been

added for this instantiation.

MODULE-III

ARCHITECTURAL MODELING

299

Introduction

• Interaction diagrams

300

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Interaction
Diagrams

• Describe interaction diagrams

and their modeling techniques

• Apply advanced behavioral

modeling techniques in design and
drawing UML diagrams for various
systems

List the course outcome / Topic outcome

301

Outcome achieved

Name of the topic:

Students will be able to:

1 Describe interaction diagrams and their modeling techniques

 Interaction Diagram

• This is having dynamic behaviour and it is used to describe

interactions among the different elements in the model.

• This interactive behavior is represented in UML by two

diagrams known as Sequence diagram and Collaboration

diagram.

• Sequence diagram emphasizes on time sequence of messages

and collaboration diagram emphasizes on the structural

organization of the objects that send and receive messages.

 Purpose of Interaction Diagrams

• The purpose of interaction diagrams is to visualize the

interactive behavior of the system.

The purpose of interaction diagram is −

• To capture the dynamic behaviour of a system.

• To describe the message flow in the system.

• To describe the structural organization of the objects.

• To describe the interaction among objects.

• Following are the different types of interaction diagrams

defined in UML:

1. Sequence diagram

2. Collaboration diagram

3. Timing diagram

 Timing Diagram

• The timing diagram is

merely just a waveform

or a graph which is

used to describe the

state of a lifeline at any

instance of time.

• The output of the previous phase at that given instance of time

is given to the second phase as an input.

• Thus, the timing diagram can be used to describe SDLC

(Software Development Life Cycle) in UML.

Drawbacks of a Timing Diagram

• Timing diagrams are difficult to understand.

• Timing diagrams are difficult to maintain.

• In UML, timing diagrams are read from left to right according

to the name of a lifeline specified at the left edge.

• Timing diagrams are used to explain the detailed time

processing of a particular object.

 Sequence Diagram

• The purpose of a sequence diagram in UML is to visualize the

sequence of a message flow in the system.

• sequence diagram is used to capture the behavior of any

scenario.

• In a sequence diagram, a lifeline is represented by a vertical

bar.

• A message flow between two or more objects is represented

using a vertical dotted line

• Benefits of a Sequence Diagram

• Sequence diagrams are used to explore any real application or a

system.

• Sequence diagrams are used to represent message flow from one

object to another object.

• Sequence diagrams are easier to maintain.

• Sequence diagrams can be easily updated according to the changes

within a system.

• Sequence diagram allows reverse as well as forward engineering.

 Forward and Reverse Engineering

• Forward engineering a object diagram is theoretically possible

but practically of limited value as the objects are created and

destroyed dynamically at runtime, we cannot represent them

statically.

• To reverse engineering a object diagram,

1. Choose the target (context) you want to reverse engineer.

2. Use a tool to stop execution at a certain moment in time.

3. Identify the objects that collaborate with each other and

represent them in an object diagram.

4. To understand their semantics, expose these object’s states.

5. Also identify the links between the objects to understand

their semantics.

S.N
O

Forward Engineering Reverse Engineering

1.
In forward engineering, the application are
developed with the given requirements.

In reverse engineering or backward
engineering, the information are collected
from the given application.

2. Forward Engineering is high proficiency skill.
Reverse Engineering or backward
engineering is low proficiency skill.

3.
Forward Engineering takes more time to
develop an application.

While Reverse Engineering takes less time to
develop an application.

4.
The nature of forward engineering is
Prescriptive.

The nature of reverse engineering or
backward engineering is Adaptive.

5.
In forward engineering, production is
started with given requirements.

In reverse engineering, production is started
by taking existing product.

6.
The example of forward engineering are
construction of electronic kit, construction
DC MOTOR etc.

The example of backward engineering are
research on Instruments etc.

 Collaboration diagram

• It is also called as a communication diagram.

• It emphasizes the structural aspects of an interaction diagram -

how lifeline connects.

• Its syntax is similar to that of sequence diagram except that lifeline

don't have tails.

• Messages passed over sequencing is indicated by numbering each

message hierarchically.

• Compared to the sequence diagram communication diagram is

semantically weak.

• It allows you to focus on the elements rather than focusing on

the message flow as described in the sequence diagram.

• Sequence diagrams can be easily converted into a

collaboration diagram as collaboration diagrams are not very

expressive.

• While modeling collaboration diagrams w.r.t sequence

diagrams, some information may be lost.

Drawbacks of a Collaboration Diagram

• Collaboration diagrams can become complex when too many

objects are present within the system.

• It is hard to explore each object inside the system.

• Collaboration diagrams are time consuming.

• The state of an object changes momentarily, which makes it

difficult to keep track of every single change the occurs within

an object of a system.

318

Introduction

• Activity Diagram

319

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Activity Diagram

• Identify importance of Activity

Diagram

• Identify importance of Activity

Diagram

List the course outcome / Topic outcome

320

Outcome achieved

Name of the topic:

Students will be able to:

1 Describe message flow among several activities.

 Activity Diagram

• It captures the dynamic behavior of the system.

• activity diagram is used to show message flow from one

activity to another

• Activity diagrams are not only used for visualizing the dynamic

nature of a system, but they are also used to construct the

executable system by using forward and reverse engineering

techniques.

 Activity Diagram

• In UML, an activity diagram provides a view of the behavior of

a system by describing the sequence of actions in a process.

• Activity diagrams are similar to flowcharts because they show

the flow between the actions in an activity;

• In activity diagrams, you use activity nodes and activity edges

to model the flow of control and data between actions.

• Activity diagrams are helpful in the following phases of a

project:

• Before starting a project, you can create activity diagrams to

model the most important workflows.

• During the requirements phase, you can create activity

diagrams to illustrate the flow of events that the use cases

describe.

• During the analysis and design phases, you can use activity

diagrams to help define the behavior of operations.

 Activity Diagram Notations

• Activity diagrams symbol can be generated by using the following

notations:

• Initial states: The starting stage before an activity takes place is

depicted as the initial state

• Final states: The state which the system reaches when a specific

process ends is known as a Final State

• State or an activity box or action box

• Decision box: It is a diamond shape box which represents a

decision with alternate paths. It represents the flow of control.

 Activity Diagram Notation and Symbol

Following rules must be followed while developing an activity

diagram,

• All activities in the system should be named.

• Activity names should be meaningful.

• Constraints must be identified.

• Activity associations must be known.

• It does not show any message flow from one activity to another.

• Activity diagram is sometimes considered as the flowchart.

• Before drawing an activity diagram, we should identify the following

elements

1. Activities

2. Association

3. Conditions

4. Constraints

• Following diagram is

drawn with the four main

activities

Send order by the

customer

Receipt of the order

Confirm the order

Dispatch the order

 Ex: processing e-mails

 Fork and Join nodes

• A fork node has one incoming edge and numerous outgoing edges.

• It is similar to one too many decision parameters.

• When data arrives at an incoming edge, it is duplicated and split

across numerous outgoing edges simultaneously.

• A join node is opposite of a fork node as it has many incoming

edges and a single outgoing edge.

• It performs logical AND operation on all the incoming edges. This

helps you to synchronize the input flow across a single output edge.

 Fork and Join nodes

• Fork

• Join

MODULE-IV

ADVANCED BEHAVIORAL MODELING

Contents

• Events and signals,

• state machines,

• processes and threads,

• time and space,

• state chart and state chart diagrams.

• Case study: The next gen POS system

 Introduction to Events

• In the real world, things happen, often simultaneously and

unpredictably. "Things that happen" are called 'events'.

• Events include signals, calls, the passage of time, or a change

in state.

• Events may be synchronous or asynchronous.

Kinds of events

• Events may be external or internal. External events are those

that pass between the system and its actors.

• Internal events are those which pass among the objects that

reside within the system.

• There are four kinds of events: signals, calls, the passing of

time, and a change in state,

 Example

• The transition from Waiting state to Riding state takes place

when the person gets a taxi.

• Likewise, the final state is reached, when he reaches the

destination.

• These two occurrences can be termed as events Get_Taxi and

Reach_Destination.

 Types of Events

1. Signals

2. Calls

3. Time Event

4. Change of state event

 External and Internal Events

• External events are those events that pass from a user of the

system to the objects within the system.

• For example, mouse click or key−press by the user are

external events.

• Internal events are those that pass from one object to another

object within a system.

• For example, stack overflow, a divide error, etc.

339

Introduction

• Signals

• State machines

• Processes and threads

340

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Signals

• State machines

• Processes and
threads

• Identify the importance of

Signals in UML diagrams
• State machines
• Processes and threads

• Identify the importance of

Signals in UML diagrams
• State machines
• Processes and threads

List the course outcome / Topic outcome

341

Outcome achieved

Name of the topic:

Students will be able to:

1 Describe the role of Signals while modeling UML diagrams

2 Identify the importance of State machines

3 Describe Processes and threads in UML

 Signals

• In UML models, signals are model elements.

• Signals specify one-way, asynchronous communications

between active objects.

• A signal represents an object that is dispatched

(thrown) asynchronously by one object and then

received (caught) by another.

• Exceptions are an example of a kind of signal.

• Signals may have attributes and these attributes of a signal

serve as its parameters.

• Signals may be involved in generalization relationships,

enabling the modeling of hierarchies of events.

• The execution of an operation can also send signals.

• When modeling a class or an interface, an important part of

specifying the behavior of the element is specifying the signals

that can be sent by its operations.

• You can add signals to the class diagrams in your model to

represent the following functions:

o Trigger events in objects in models that represent event-

driven systems

o Exceptions thrown by an operation when something

unexpected occurs in a software system

• A signal has a name describing its purpose in the system.

• As the following figure illustrates, the UML notation for a signal

is a rectangle with two compartments.

• The upper compartment contains the «signal» keyword and

the signal’s name.

• The lower compartment contains the signal’s attributes.

 State Machines

Terms and Concepts

• A state machine is a behavior that specifies the sequences

of states an object goes through during its lifetime in

response to events, together with its responses to those

events.

• A state is a condition or situation during the life of an object

during which it satisfies some condition, performs some

activity, or waits for some event.

• An object remains in a state for a finite amount of time.

 Example

Common Modeling Techniques :
Modeling the Lifetime of an Object

• Starting from the initial state to the final state, lay out the top-

level states the object may begin.

• Connect these states with transitions triggered by the

appropriate events. Continue by adding actions to these

transitions.

• Identify any entry or exit actions.

• Expand these states as necessary by using sub-states.

• Check that all actions mentioned in the state machine are

sustained by the relationships, methods, and operations of the

enclosing object.

• After rearranging your state machine, check it against

expected sequences again to ensure that you have not

changed the object's semantics.

Transitions

• A transition is a relationship between two states indicating that

an object in the first state will perform certain actions and

enter the second state when a specified event occurs and

specified conditions are satisfied.

Action

• An action is an executable atomic computation. Actions may

include operation calls the creation or destruction of another

object, or the sending of a signal to an object.

 Processes and Threads

• A process is a heavyweight flow that can execute concurrently

with other processes.

• A thread is a lightweight flow that can execute concurrently with

other threads within the same process.

• An active object is an object that owns a process or thread and

can initiate control activity.

• Processes and threads are rendered as stereotyped active

classes.

• An active class is a class whose instances are active objects.

Classes and Events

• Active classes are just classes which represents an

independent flow of control

• Active classes share the same properties as all other classes.

• When an active object is created, the associated flow of control

is started; when the active object is destroyed, the associated

flow of control is terminated

• Two standard stereotypes that apply to active classes are,

<<process>> – Specifies a heavyweight flow that can

execute concurrently with other processes.

• <<thread>> – Specifies a lightweight flow that can execute

concurrently with other threads within the same process

 Flow of Control

• In a sequential system, there is a single flow of control. i.e.,

one thing, and one thing only, can take place at a time.

• In a concurrent system, there is multiple simultaneous flow of

control i.e., more than one thing can take place at a time.

 Communication

• In a system with both active and passive objects, there are

FOUR possible combinations of interaction.

1. A message may be passed from one passive object to another.

2. A message may be passed from one active object to another.

3. A message may be passed from an active object to a passive

object.

4. A message may be passed from a passive object to an active

one.

• In inter-process communication there are two possible

styles of communication.

1. Active object might synchronously call an operation of

another object.

2. Active object might asynchronously call an operation of

another object.

• A synchronous message is rendered as a full arrow and an

asynchronous message is rendered as a half arrow.

358

Introduction

• Time and Space and its Common
modeling Techniques with examples

359

Course outcome /
Topic learning outcome

Name of the Topic

covered
Topic Learning Outcome Course Outcome

• Time and Space

• Categorize advanced behavioral

modeling for visualizing flow
control of objects and activities of
specified case study like next gen
POS system

• Categorize advanced behavioral

modeling for visualizing flow
control of objects and activities
of specified case study like next
gen POS system

List the course outcome / Topic outcome

360

Outcome achieved

Name of the topic:

Students will be able to:

1

Categorize advanced behavioral modeling for visualizing flow

control of objects and activities of specified case study like next gen

POS system

 Communication

• In a system with both active and passive objects, there are

FOUR possible combinations of interaction.

1. A message may be passed from one passive object to another.

2. A message may be passed from one active object to another.

3. A message may be passed from an active object to a passive

object.

4. A message may be passed from a passive object to an active

one.

• In inter-process communication there are two possible

styles of communication.

1. Active object might synchronously call an operation of

another object.

2. Active object might asynchronously call an operation of

another object.

• A synchronous message is rendered as a full arrow and an

asynchronous message is rendered as a half arrow.

 Time and Space

• A time expression is an expression that evaluates to an

absolute or relative value of time

• A timing constraint is a semantic statement about the

relative or absolute value of time

• Location is the placement of a component on a node.

Graphically, location is rendered as a tagged value.

• stereotype is a class, it may have properties.

• Properties of a stereotype are referred to as tag definitions.

• When a stereotype is applied to a model element, the values

of the properties are referred to as tagged values.

 Time

• Real time systems are, by their very name, time-critical

systems.

• Events may happen at regular or irregular times; the response

to an event must happen at predictable absolute times or at

predictable times relative to the event itself.

• The passing of messages represents the dynamic aspect of any

system, so when you model the time critical nature of a

system with the UML, you can give a name to each message in

an interaction to be used as a timing mark.

 Ex:

 Ex:

 State Chart Diagram

• State chart diagram shows a state machine, consisting of

states, transitions, events and activities

• It address the dynamic view of a system

• Especially important in modeling the behavior of an interface,

class, or collaboration and emphasize the event-ordered

behavior of an object, which is especially useful in modeling

reactive system.

• A statechart diagram shows a state machine, emphasizing

the flow of control from state to state.

• A state machine is a behavior that specifies the sequences

of states an object goes through during its lifetime in

response to events, together with its responses to those

events.

• A state is a condition or situation in the life of an object

during which it satisfies some condition, performs some

activity, or waits for some event.

 Common Usage

• A statechart diagram will use to model some dynamic aspect

of a system.

• It is also used in the context of virtually any modeling

element.

• Typically, use statechart diagrams in the context of the

system as a whole, a subsystem, or a class.

• It can also be used to attach a statechart diagrams to use

cases.

 Modeling Reactive Objects

• To model a reactive object, Choose the context for the

state machine, whether it is a class, a use case, or the

system as a whole.

• Choose the initial and final states for the object.

• To guide the rest of your model, possibly state the pre- and

post conditions of the initial and final states, respectively.

 Modeling Reactive Objects

• Decide on the stable states of the object by considering the

conditions in which the object may exist for some

identifiable period of time.

• Start with the high-level states of the object and only then

consider its possible sub-states.

• Decide on the meaningful partial ordering of stable states

over the lifetime of the object.

• Decide on the events that may trigger a transition from

state to state.

• Model these events as triggers to transitions that move from

one states to another.

• Attach actions to these transitions (as in a Mealy machine)

and/or to these states (as in a Moore machine).

• Consider ways to simplify your machine by using sub-states,

branches, forks, joins, and history states.

 Forward and Reverse Engineering

Forward engineering (the creation of code from a model) is

possible for statechart diagrams, especially if the context of the

diagram is a class.

• The forward engineering tool must generate the necessary

private attributes and final static constants.

Reverse engineering (the creation of a model from code) is

theoretically possible, but practically not very useful.

• The choice of what constitutes a meaningful state is in the

eye of the designer.

• Reverse engineering tools have no capacity for abstraction and

therefore cannot automatically produce meaningful statechart

diagrams.

A well-structured statechart diagram

• It is focused on communicating one aspect of a system's dynamics.

• Contains only those elements that are essential to understanding

that aspect.

• Provides detail consistent with its level of abstraction (expose only

those features that are essential to understanding).

• Uses a balance between the styles of Mealy and Moore machines.

• When you draw a statechart diagram

• Give it a name that communicates its purpose.

• Start with modeling the stable states of the object, then

follow with modeling the legal transitions from state to

state.

• Address branching, concurrency, and object flow as

secondary considerations, possibly in separate diagrams.

• Lay out its elements to minimize lines that cross.

Case study: The next gen POS system

380

• A POS system is a computerized application used (in part) to
record sales and handle payments; it is typically used in a
retail store.

• It includes hardware components such as a computer and bar
code scanner, and software to run the system.

• It interfaces to various service applications, such as a
thirdparty tax calculator and inventory control.

• These systems must be relatively fault-tolerant; that is, even
if remote services are temporarily unavailable (such as the
inventory system), they must still be capable of capturing
sales and handling at least cash payments (so that the
business is not crippled).

Case study: The next gen POS system

381

• A POS system increasingly must support multiple and varied
client-side terminals and interfaces.

• These include a thin-client Web browser terminal, a regular
personal computer with something like a Java Swing graphical
user interface, touch screen input, wireless PDAs, and so
forth.

• Each client will desire a unique set of logic to execute at
certain predictable points in scenarios of using the system,
such as when a new sale is initiated or when a new line item
is added.

• Therefore, will need a mechanism to provide this flexibility
and customization.

Case study: The next gen POS system

382

User-Level Goals

• The users (and external systems) need a system to fulfill
these goals:

• Cashier: process sales, handle returns, cash in, cash out

• System administrator: manage users, manage security,
manage system tables

• Manager: start up, shut down

• Sales activity system: analyze sales data ……….

Case study: The next gen POS system

383

User-Level Goals

Statechart Diagrams

QUESTIONS

• What is Statechart diagram?

• When to draw a Statechart diagram?

• What are the basic components of a Statechart diagram?

• What are the common modeling techniques of Statechart diagram ?

• Define the case study: The next gen POS system

384

