INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTOR

Course Title	OBJECT OF	OBJECT ORIENTED PROGRAMMING THROUGH PYTHON				
Course Code	AITB01	AITB01				
Program	B.Tech					
Semester	THREE	THREE				
Course Type	Core					
Regulation	IARE - R18					
		Theory		Practio	cal	
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3		3	-	-	
Course Coordinator	Ms. A Lakshr	ni, Assistant Pr	ofessor			

I. COURSE OVERVIEW:

This course explains the fundamental ideas behind the object oriented approach to programming. Knowledge of python helps to create the latest innovations in programming. Like the successful computer languages that came before, python is the blend of the best elements of its rich heritage combined with the innovative concepts required by its unique environment. This course involves OOP concepts, python basics, inheritance, polymorphism, interfaces, packages, Exception handling. This course is presented to students by power point projections, course handouts, lecture notes, assignments, objective and subjective tests.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB01	II	Programming for problem solving

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Object Oriented Programming through Python	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	PPT	>	Chalk & Talk	>	Assignments	X	MOOCs
~	Open Ended Experiments	>	Seminars	X	Mini Project	~	Videos
~	Others:						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Table 1: The expected percentage of cognitive level of questions in SEE.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 2: Assessment pattern for CIA

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz	AAT	Total Warks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

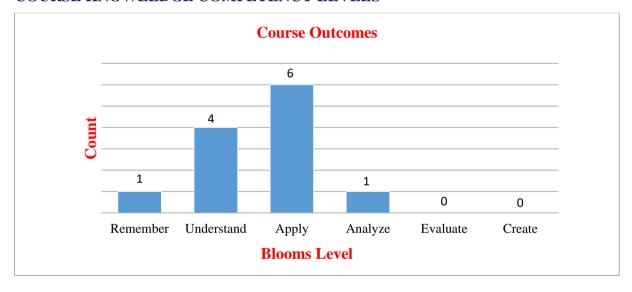
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

Table 3: Assessment pattern for AAT

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
30%	30%	30%	10%	

VI. COURSE OBJECTIVES:


The stu	The students will try to learn:						
I	The fundamental concepts of object-oriented approach for solving real-time problems.						
II	The basic and advanced constructs of Python programming for developing object oriented concepts.						
III	The design concepts for developing user interface of real time applications.						

VII. COURSE OUTCOMES:

After su	After successful completion of the course, students will be able to::					
	Course Outcomes					
CO 1	Recall the basic programming constructs in implementing in Python.	Remember				
CO 2	Identify classes, objects, members of a class and relationship among them for real world entities.	Apply				
CO 3	Summarize the object-oriented concepts such as Abstraction, Encapsulation, Inheritance and Polymorphism in real time context.	Understand				

CO 4	Demonstrate abstraction feature with the help of python class	Understand
	properties	
CO 5	Make use of polymorphism and inheritance concepts for achieving	Apply
	code reusability.	
CO 6	Apply inbuilt strings for creating, performing basic operations and	Apply
	testing on text data.	
CO 7	Develop user-defined functions for better modularity and a high degree	Apply
	of code reusability.	
CO 8	Explain parameter-passing techniques while invoking recursive and	Understand
	non-recursive functions for solving problems.	
CO 9	Analyze the Python exception mechanisms for handling errors and	Analyze
	abnormal termination of program.	
CO 10	Develop user-defined exceptions for handling un-interrupted execution	Apply
	of specific programs.	
CO 11	Demonstrate Python GUI tool kit for designing static user interfaces.	Understand
CO 12	Make use of widgets, containers and frames for creating user interface	Apply
	of web application.	

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency
			Assessed by
PO1	Engineering knowledge: Apply the knowledge of	3	CIE/Quiz/AAT
	mathematics, science, engineeringfundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO2	Problem analysis: Identify, formulate, review research	2	CIE/Quiz/AAT
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences.		

	Program Outcomes	Strength	Proficiency
			Assessed by
PO 3	Design/development of solutions : Design solutions for	3	Seminar/
	complex engineering problems and design system		Conferences
	components or processes that meet the specified needs with		
PO 5	Modern tool usage: Create, select, and apply appropriate	3	Assignments /
	techniques, resources, and modern engineering and IT tools		Discussion
	including prediction and modeling to complex engineering		
	activities with an understanding of the limitations.		

^{3 =} High; 2 = Medium; 1 = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 3	Practical experience in shipping real world software, using		Group
	industry standard tools and collaboration techniques will	2	discussion /
	equip to secure and succeed in first job upon graduation in	2	Short term
	IT industry.		courses

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes		Program Outcomes													Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	$\sqrt{}$																
CO 2	√	√															
CO 3	√																
CO 4	√																
CO 5	√	√													√		
CO 6	√	√													√		
CO 7	√	√	V												V		
CO 8	√	√															
CO 9	√	√													V		
CO 10	√	√	√												√		
CO 11	√	√	√		√										√		
CO 12	√	√	V		V										V		

XI. JUSTIFICATIONS FOR CO-PO MAPPING:

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Recall (knowledge) the basic programming constructs such	2
001	101	as variables, operators, control statements and their	2
		importance and applicability (apply) in implementing	
		(complex) in python by applying the principles of	
		mathematics and basic programming engineering	
		fundamentals.	
CO 2	PO 1	Identify (knowledge) the classes, objects, members of a	2
		class and relationship among them in <i>solving</i> (<i>complex</i>)	
		engineering problems by applying the principle so	
		mathematics and engineering fundamentals.	
	PO 2	Understand the given problem statement and formulate	3
		(complex) specific engineering problems related to classes,	
GO 4	DO 4	objects from the information and data collection.	2
CO 3	PO 1	Summarize (knowledge) abstraction, encapsulation,	2
		inheritance (apply) and polymorphism etc., in <i>solving</i>	
		(complex) object oriented concepts by applying the principles of mathematics and engineering	
		fundamentals.	
CO 4	PO 1	Demonstrate (Knowledge)the abstraction features in <i>solving</i>	2
	101	(complex) engineering problems with the help of python	2
		class properties by applying the principles of mathematics	
		and engineering fundamentals.	
CO 5	PO 1	Make use of (Apply) the polymorphism and inheritance	2
		concepts in solving (complex) engineering problems to	
		achieving the code reusability by applying the principles of	
		mathematics and engineering fundamentals of object	
		oriented programming.	
	PO 2	Understand the given problem statement and formulate	4
		(complex) specific engineering problems related to code	
		reusability from the collection of data and information in	
		reaching substantiated conclusions by the interpretation	
	DCO 2	of variations in the results.	2
	PSO 3	Make use of the polymorphism and inheritance concepts	2
		using industry standard tools and collaboration technique in the field of object-oriented programming.	
CO 6	PO 1	Apply inbuilt string functions and testing methods of	2
	101	(complex) engineering problems by applying string	2
		operations on text data and their integration and support	
		with other engineering disciplines, mathematical	
		principles.	
	PO 2	Understand the given problem statement and formulate	3
		(complex) specific engineering problems related to string	
		operations and testing methods from the information and	
		data collection.	
	PSO 3	Apply inbuilt string functions and testing methods in real	2
		world software, using industry standard tools and	
		collaboration technique in the field of Pyhton	
~~ -		programming.	
CO 7	PO 1	Develop (knowledge, understand and apply) the user	2
		defined functions for better modularity (complex)	
		engineering problems by applying the principles of	<u> </u>

	1	mothematics and engineering fundamentals	I
	DO 2	mathematics and engineering fundamentals.	4
	PO 2	Understand the given problem statement and formulate	4
		high degree of code reusability (complex) engineering	
		problems from the information and data collection in	
		reaching substantiated conclusions by the Interpretation	
		of results.	
	PO 3	Understand the user needs of user-defined functions, use	5
		creativity of code reusability in applying the methods of	
		model analyses for innovative solutions, evaluate the	
		outcomes of the model analysis for handling better	
		modularity to achieve engineering objectives.	
	PSO 3	Develop the user-defined functions for better modularity in	2
		real world software, using industry standard tools and	
		collaboration technique in the field of Python	
		programming.	
CO 8	PO 1	Explain (understand) the parameter passing techniques in	2
		solving (complex) the functions of engineering problems by	_
		applying the principles of mathematics and engineering	
		fundamentals of python programming.	
	PO 2	Understand the given problem statement and formulate	4
	102	recursive and non-recursive functions (complex)	4
		engineering problems from the collection of data and	
		information in reaching substantiated conclusions by the	
		interpretation of results.	
CO 9	PO 1		2
009	POI	Analyze the python exception mechanisms (knowledge) of	2
		solving the errors in solving (complex) engineering	
		problems related to programs by applying the principles of	
		and their integration and support with other	
	DO 4	engineering disciplines, mathematical principles.	2
	PO 2	Understand the given problem statement and formulate	3
		the handling errors (complex) engineering problems in a	
	D GG 4	program from the information and data collection.	
	PSO 3	Analyze the python exception mechanisms, using industry	2
		standard tools and collaboration technique in the field	
		of object-oriented programming.	
CO 10	PO 1	Develop (knowledge, understand and apply) the user	2
		defined exceptions for handling uninterrupted execution	
		(complex) engineering problems by applying the principles	
		of mathematics and engineering fundamentals.	
	PO 2	Understand the given problem statement and formulate	6
		the (complex) engineering problems of un-interrupted	
		execution of specific programs from the collection of data	
		and information, develop solutions based on the user	
		defined exceptions, validate the un-interrupted execution	
		in reaching substantiated conclusions by the	
		Interpretation of results.	
	PO 3	Understand the user needs of user-defined exceptions,	5
		use creativity of exception handling in applying the	
		methods of model analyses for innovative solutions,	
		evaluate the outcomes of the model analysis for handling	
		un-interrupted execution to achieve engineering	
		objectives.	
	PSO 3	Develop user-defined exceptions in real world software,	2
	1503	using industry standard tools and collaboration	
		technique in the field of object oriented programming.	

CO 11	PO 1	Demonstrate (understand, apply) the python graphical user	2
		interface (GUI) tool kit for designing static user interfaces	_
		(complex) engineering problems by applying the principles	
		of mathematics and engineering fundamentals.	
	PO 2	Understand the given problem statement and formulate	6
		the (complex) engineering problems of designing static	
		user interfaces from the information and data collection,	
		develop solutions based on the designing static user	
		interfaces, validate the python GUI tool kit in reaching	
		substantiated conclusions by the Interpretation of results.	
	PO 3	Understand the user needs of designing static user	5
		interfaces, use creativity of python GUI tool kit in	
		applying the methods of model analyses for innovative	
		solutions , evaluate the outcomes of the model analysis	
		for developing the web applications to achieve	
		engineering objectives.	
	PO 5	Create the Python GUI tool kit for designing static user	1
		interfaces (complex) Engineering activities in Computer	
		software.	
	PSO 3	Demonstrate the python graphical user interface (GUI) tool	2
		kit in real world software, using industry standard tools	
		and collaboration technique in the field of web	
	DO 4	application programming.	_
	PO 2	Understand the given problem statement and formulate	6
		the (complex) engineering problems of creating user	
		interface of web application from the collection of data	
		and information, develop solutions based on the widgets,	
		containers and frames, validate the web application in	
		reaching substantiated conclusions by the Interpretation of results.	
	PO 3	Understand the user needs of creating user interfaces,	5
	103	use creativity of widgets, containers and frames in	3
		applying the methods for innovative solutions, evaluate	
		the outcomes of the model analysis for developing the	
		web applications to achieve engineering objectives.	
	PO 5	Create the widgets, containers and frames for creating user	1
	100	interface of web application (complex) Engineering	1
		activities in Computer software.	
	PSO 3	Make use of the widgets, containers and frames in shipping	2
		real world software, using industry standard tools and	_
		collaboration technique in the field of web application	
		programming.	
L	1		

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

	Program Outcomes / No. of Key Competencies Matched												PSO / No. of key competencies		
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	2														
CO 2	2	3													

CO 3	2								
CO 4	2								
CO 5	2	4							2
CO 6	2	3							2
CO 7	2	4	5						2
CO 8	2	4							
CO 9	2	3							2
CO 10	2	6	5						2
CO 11	2	6	5	1					2
CO 12	2	6	5	1					2

XIII.PERCENTAGE FOR KEY COMPETENCIES FOR CO-PO MAPPING:

					0	am O						I	PSO / No. of key competencies			
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	12	6	1	2	
CO 1	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 2	66.7	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 3	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 4	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 5	66.7	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
CO 6	66.7	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
CO 7	66.7	40.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
CO 8	66.7	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 9	66.7	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
CO 10	66.7	60.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
CO 11	66.7	60.0	50.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
CO 12	66.7	60.0	50.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	

XIV. COURSE ARTICULATION MATRIX (CO-PO/PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, **0** being **no correlation**, **1** being the **low correlation**, **2** being **medium correlation** and **3** being **high correlation**.

0− **0**≤ C≤ 5%–Nocorrelation;

 $1-5 < C \le 40\%$ Low/Slight;

2 − 40 % <**C**< 60% –Moderate.

 $3 - 60\% \le C < 100\% - Substantial / High$

Course Outcomes		Program Outcomes												Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 5	3	1	-	-	-	-	-	-	-	-	-	-	-	-	3	
CO 6	3	1	-	-	-	-	-	-	-	-	-	-	-	-	3	
CO 7	3	1	2	-	-	-	-	-	-	-	-	-	-	-	3	
CO 8	3	1	-	-	-	-	-	-	-	-	-	-	1	-	-	
CO 9	3	1	-	-	-	-	-	-	-	-	-	-	-	-	3	
CO 10	3	3	2	-	-	-	-	-	-	-	-	-	-	-	3	
CO 11	3	3	2	-	3	-	-	-	-	-	-	-	-	-	3	
CO 12	3	3	2	-	3	-	-	-	-	-	-	-	-	-	3	
TOTAL	36	15	8		6										21	
AVERAGE	3.0	1.6	2.6		3.0										3.0	

XV. ASSESSMENT METHODOLOGY -DIRECT

CIE Evama	PO 1, PO 2,	SEE	Exams PO 1,PO 2, PO 3, PO 5		DO 2 DO 5	Cominons	PO 3,PO 5	
CIE Exams	PO 3,PO 5	Exams	PO 3, PO 5	Assignments	ro 3,ro 3	Seminars	10 3,10 3	
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-	
Term Paper	PO 5							

XVI. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

MODULE-I INTRODUCTION TO PYTHON AND OBJECT ORIENTED CONCEPTS

Introduction to Python: Features of Python, Data types, Operators, Input and output, Control Statements.

Introduction to Object Oriented Concepts: Features of Object oriented programming system (OOPS) - Classes and Objects, Encapsulation, Abstraction, Inheritance, Polymorphism.

MODULE-II PYTHON CLASSES AND OBJECTS

Classes and Objects: Creating a class, The Self variable, Constructor, Types of Variable, Namespaces, Types of Methods, Inheritance and Polymorphism – Constructors in inheritance, The super() method, Types of inheritance, Polymorphism, Abstract classes and Interfaces.

MODULE-III | STRINGS AND FUNCTIONS

Strings: Creating strings and basic operations on strings, String testing methods.

Functions: Defining a function, Calling a function, Returning multiple values from a function, Functions are first class objects, Formal and actual arguments, Positional arguments, Recursive functions.

MODULE-IV EXCEPTION HANDLING

Exception: Errors in a Python program, Exceptions, Exception handling, Types of exceptions, The Except block, The assert statement, user-defined exceptions.

MODULE-V GRAPHICAL USER INTERFACE

GUI in Python: The Root window, Fonts and colors, Working with containers, Canvas, Frames, Widgets Button widget, Label Widget, Message widget, Text widget, Radio button Widget, Entry widget.

Text Books:

- 1. R Nageswara Rao, Core Python Programming, Dreamtech press, 2017 Edition.
- 2. Dusty Philips, Python 3 Object Oriented Programming, PACKT Publishing, 2nd Edition 2015.

Reference Books:

 Michael H.Goldwasser, David Letscher, Object Oriented Programming in Python, Prentice Hall; 1st Edition, 2007.

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be Covered	CO	Reference
1	Describe the Features of Python, Data types.	CO 1	T1:1.2
2-3	Summarize the concept of Operators, Input and output, Control Statements.	CO 1	T1:4,5,6
4-5	Identify the features of Object Oriented Programming System (OOPS),	CO 2,CO3	T12.3
6-7	Use the concept of Classes and Objects, Encapsulation.	CO 2,CO 3	T1:12.4,12.5
8-9	Describe Abstraction, Inheritance, and Polymorphism.	CO 2,CO 3	T1:12.6-12.8

Lecture No	Topics to be Covered	СО	Reference
10-11	Determine Creating a class, The Self variable.	CO 4	T1:13.1,13.2
12-13	Understand types of variable, Namespaces.	CO 4	T1:13.4,13.5
14-15	Determine types of Methods, Inheritance and Polymorphism.	CO 4,CO 5	T1:13.6,14
16-18	Use Constructors in inheritance, the super() method.	CO 5	T1:14.1,14.3
19-20	Illustrate types of inheritance, Polymorphism, Abstract classes and Interfaces.	CO 5	T1:14.4,14.6
21-22	Understand Creating strings and basic operations on strings.	CO 6	T1:8.1
23	Analyze the concept of String testing methods.	CO 6	T1:8.17
24-25	Defining a function.	CO 7	T1:9.2
26-27	Illustrate Calling a function.	CO 7	T1:9.3
28	Illustrate Returning multiple values from a function.	CO 7	T1:9.5
29	Contrast the Usage of Functions is first class objects.	CO 8	T1:9.6
30	Contrast the Usage of Formal and actual arguments.	CO 8	T1:9.8
31	Define Positional arguments, Recursive functions.	CO 8	T1:9.9,9.16
32-34	Discuss the concept of Errors in a Python program.	CO 9	T1:16.1
35	Understand Exceptions, Exception handling.	CO 9	T1:16.2,16.3
36	Summarize the concept of types of exceptions.	CO 9	T1:16.4
37	Discuss the Except block, the assert statement.	CO 9	T1:16.5,16.6
38	Understand the concept of user-defined exceptions.	CO 10	T1:16.7
39	Knowledge about the Root window, Fonts and colors.	CO 11	T1:22.2,22.3
40-41	Apply Working with containers, Canvas.	CO 11,CO 12	T1:22.4,22.5
42	Understand Widgets, Button widget, Label Widget.	CO 12	T1:22.7
43	Implement Message widget, Text widget.	CO 12	T1:22.11
44-45	Illustrate Radio button Widget, Entry widget.	CO 12	T1:22.8

Prepared by: Ms. A. Lakshmi, Assistant Professor

HOD, IT