OPTIMIZATION TECHNIQUES

IV Semester: ME								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
AMEB12	Com	L	Т	Р	С	CIA	SEE	Total
	Core	3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 60		

OBJECTIVES:

The course should enable the students to:

- I. Apply formulation and mathematical model of real time problems for optimization.
- II. Establish the problem formulation and optimization by using transportation, assignment models..
- III. Apply Sequencing and replacement models for optimized decisions
- IV. Apply Game theory, Inventory models for effective operational control.
- V. Visualize application of Waiting line, Dynamic programming, Simulation models in real time applications.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the characteristics, phases, types of operation research models and its applications.
- 2. Visualize modeling principles scope, decision making, general methods for solving OR models.
- 3. Understand linear programming concepts, problem formulation and graphical models.
- 4. Understand simplex method and artificial variable techniques.
- 5. Comprehend two-phase method and Big-M method of linear programming.
- 6. Apply to build and solve transportation models of balanced.
- 7. Understand the degeneracy model problem of transportation, unbalanced type, maxization.
- 8. Apply to build assignment models for optimal solution.
- 9. Understand variants of assignment model and travelling salesman model.
- 10. Understand the flow shop sequencing model of 'n' jobs through two machines and three machines.
- 11. Comprehend job shop sequencing of two jobs through 'm' machines.
- 12. Understand the concept of replacement of items that deteriorate with time when money value is not counted .
- 13. Understand the concept of replacement of items that deteriorate with time when money value is n counted .
- 14. Visualize the replacement of items that fail completely and group replacement.
- 15. Understand minimax (maximini) criterion, optimal strategy, solution od games with saddle point.
- 16. Visualize dominance principle while solving game theory problem.
- 17. Apply to solve m * 2, 2 *n model of games and graphical method.
- 18. Understand the concepts of deterministic inventory model and purchase inventory model with one price break and multiple price breaks.
- 19. Visualize stochastic inventory models demand may be discrete variable or continuous variable.
- 20. Understand the concepts of waiting line model of single channel and multi server model.
- 21. Visualize dynamic programming concepts and models
- 22. Comprehend the simulation models, phases of simulation, application l of simulation.
- 23. Visualize the application of simulation for inventory and queuing problems.

Module-I	e-I DEVELOPMENT OF O.R AND ALLOCATION C					
Development, definition, characteristics and phases, types of operation research models, applications; Allocation: linear programming, problem formulation, graphical solution, simplex method, artificial variables techniques, two-phase method, big-M method.						
Module-II	TRANSPORTATION AND ASSIGNMENT PROBLEM Classes: 15					
Transportation p	roblem: Formulation, optimal solution, unbalanced transportation problem,					
Degeneracy; Assignment problem, formulation, optimal solution, variants of assignment problem, traveling salesman problem.						
Module -III	SEQUENCING AND REPLACEMENT	ID REPLACEMENT Classes: 15				
Sequencing: Introduction, flow, shop sequencing, n jobs through two machines, n jobs through three machines, job shop sequencing, two jobs through 'm' machines.						
Replacement: Introduction: Replacement of items that deteriorate with time, when money value is not counted and counted, replacement of items that fail completely, group replacement.						
ModuleIV	THEORY OF GAMES AND INVENTORY	Classes: 10				
Theory Of Games: Introduction – Terminology, Solution of games with saddle points and without saddle points, 2×2 games, dominance principle, m X 2 & 2 X n games, Graphical method. Inventory: Introduction, Single item, Deterministic models, Purchase inventory models with one price break and multiple price breaks, Stochastic models, demand may be discrete variable or continuous variable, Single						
Module-V	WAITING LINES, DYNAMIC PROGRAMMIMG AND SIMULATION	Classes: 12				
Waiting Lines: Introduction, Terminology, Single Channel, Poisson arrivals and exponential service times with infinite population and finite population models, Multichannel, Poisson arrivals and exponential service times with infinite population.						
Dynamic Programming: Introduction, Terminology, Bellman's Principle of optimality, Applications of dynamic programming, shortest path problem, linear programming problem. Simulation: Introduction, Definition, types of simulation models, steps involved in the simulation process - Advantages and Disadvantages, Application of Simulation to queuing and inventory.						
Text Books:						
 J. K. Sharma, "Operations Research", Macmillan, 5th Edition, 2012. R. Pannerselvan, "Operations Research", 2nd Edition, PHI Publications, 2006. 						
Reference Books:						
 A. M. Natarajan, P. Balasubramani, A. Tamilarasi, "Operations Research", Pearson Education, 2013. Maurice Saseini, Arhur Yaspan, Lawrence Friedman, "Operations Research: Methods & Problems", 1st Edition, 1959. 						
 Hamdy A. Taha, "Introduction to O.R", PHI, 8th Edition, 2013. Harvey M.Wagner, "Operations Research", PHI Publications, 2nd Edition, 1980. 						
Web References:						
 https://www.aicte-india.org/flipbook/p≈/Vol.%20II%20UG/UG_2.html#p=8 https://www.britannica.com/topic/operations-research 						

ſ

E-Text Books:
1. http://www.pondiuni.edu.in/storage/dde/downloads/mbaii_qt.pdf
2. https://www.pdfdrive.com/operations-research-books.html