

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMUS) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE INFORMATION SHEET

Course Title	INTERNET OF	THINGS				
Course Code	BES006					
Regulation	R17					
Semester	II-SEM					
Program	M.Tech					
Course Structure	Lectures	Tutorials	Practicals	Credits		
Course Structure	3	-	-	3		
Course Coordinator	DR. K.RameshBabu, Professor, ECE					
Course Faculty	Shashikanth Reddy	Shashikanth Reddy, AssistantProfessorECE				

I. COURSE OVERVIEW:

This course starts by introducing some basic issues, policies and challenges in internet .After that understand various protocols and their behavior in IOT environment. Next we build a low cost embedded system and we develop a embedded communication software to interface the interface the protocols using various protocol based management techniques. Next we operate various modes of communication in IOT environment using embedded software application. Next we design a enabling constrained devices in the cloud environment of IOT. Finally we implement case studies like E-Health source platform and be close elderly monitoring in IOT Environment.

II. PREREQUISITE(S):

Level	Credits	Course Code	Periods/ Week	Prerequisites
PG	3	AEC103	3	Microprocessors and Microcontrollers, Digital System Design, Assembly and C Programming, Basic Processor Architecture.

III. MARKS DISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks
Internet Of Things	70 Marks	30 Marks	100

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weight age in terms of marks distribution. The question paper pattern is as follows: two full questions with 'either' 'or' choice will be drawn from each unit. Each question carries 14 marks.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz / Alternative Assessment Tool (AAT).

Continuous Internal Examination (CIE):

The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 20 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, micro projects, five minutes video and MOOCs.

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

ſ	 CHALK & TALK		QUIZ	\checkmark	ASSIGNMENTS		MOOCs	
	 LCD / PPT	\checkmark	SEMINARS	\checkmark	MINI PROJECT	\checkmark	VIDEOS	
	 OPEN ENDED EXPERIMENTS							

V. ASSESSMENT METHODOLOGIES – DIRECT

	CIE EXAMS		SEE EXAMS	\checkmark	ASSIGNEMNTS		SEMINARS
\checkmark	LABORATORY PRACTICES	\checkmark	STUDENT VIVA	\checkmark	MINI PROJECT	\checkmark	ERTIFICATION
	TERM PAPER						

VI. ASSESSMENT METHODOLOGIES – INDIRECT

2	ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)		
	✓ ASSESSMENT OF MINI PROJECTS BY EXPERTS				

VII. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

- i. Learn the basic issues, policy and challenges in the Internet
- ii. Understand the components and the protocols in Internet
- iii. Build a small low cost embedded system with the internet
- iv. Understand the various modes of communications with internet
- v. Learn to manage the resources in the Internet
- vi. Deploy the resources into business
- vii. Understand the cloud and internet environment.

VIII. COURSE LEARNING OUTCOMES:

CBES006.01	Identify and analyze the constraints and characteristics of processor architectures, Hardware,
	software partitioning distributed system
CBES006.02	Understand the interfacing concept with memory subsystem organization and input/output subsystem
	organization.
CBES006.03	Understand instruction types, addressing modes and their formats in the assembly language
	programs.
CBES006.04	Describe the instruction set architecture design for relatively simple microprocessor or Central
	Processing Unit.
CBES006.05	Understand the typical computer hardware and software components and computer technology
	trends
CBES006.06	Understand the register transfer languages and micro operations involved in bus and memory
	transfers.
CBES006.07	Understand the future developments in emulation and prototyping architecture specialization
	techniques, system communication infrastructure target architectures.
CBES006.08	Understand the connections among the circuits and the functionalities in the hardwired control unit.
CBES006.09	Describe the various phases involved in the instruction cycle viz. fetching, decoding, reading
	effective address and execution of instruction.
CBES006.10	Apply the practical consideration in a compiler development environment.
CBES006.11	Classify the various instructions formats to solve the arithmetic expressions in different addressing
	modes.
CBES006.12	Understand the functionality of various instruction formats for writing assembly language programs.
CBES006.13	Describe the implementation of fixed point and floating point addition, subtraction operations.
CBES006.14	Understand the concept of memory hierarchy and different typed of memory chips.
CBES006.15	Describe various modes of data transfer between CPU and I/O devices
CBES006.16	Analyze the level specification, design representation for system level synthesis system design-I and
	design-II.
CBES006.17	Describe the hardware organization of associate memory and understand the
	read and write operations
CBES006.18	Describe the parallel processing concept with multiple functional units.
CBES006.19	Understand the multiprocessor concept with system bus structure and the concept of inter processor
	communication and synchronization
CBES006.20	Identify, formulate, review research literature, and analyze complex engineering problems reaching
	substantiated conclusions using first principles of mathematics, natural sciences, and
CDECCC 4 D	engineering sciences
CBES006.21	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
CBES006.22	Possess the knowledge and skills to design advanced computer architecture for current industry
	requirements.
	r • 1 •·· •···•······

Students, who complete the course, will have demonstrated the ability to do the following:

IX. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering Knowledge Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	Н	Assignments, Tutorials
PO2	Problem Analysis Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	S	Assignments
PO3	Design/Development of Solutions Design solutions for complex meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	S	Real time Applications
PO4	Conduct Investigations of Complex Problems Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions	C	Real time Applications

	N - None S - Supportive	н.н.	ohlv Related
PO12	Life-long Learning Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	Н	Development of Prototype, Projects
PO11	Project Management and Finance Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments	S	Seminars, Discussions
PO10	Communication Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	a	Presentations
PO9	Individual and Team Work Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	Ν	
PO8	Ethics Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice	Ν	
PO7	Environment and Sustainability Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development	S	Assignments
PO6	The Engineer and Society Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	N	
PO5	Modern Tool Usage Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations	S	Projects

N - None

S - Supportive

H - Highly Related

X. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	Н	Lectures, Assignments
PSO2	Problem-solving skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	S	Tutorials
PSO3	Successful career and Entrepreneurship: An understanding of social- awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.	S	Seminars and Projects

N - None

S - Supportive

H - Highly Related

XI. SYLLABUS:

UNIT-I: INTRODUCTION:

Definition – phases – Foundations – Policy– Challenges and Issues - identification - security – privacy. Components in internet of things: Control Units – Sensors – Communication modules – Power Sources – Communication Technologies – RFID – Bluetooth – Zigbee – Wifi – RFlinks – Mobile Internet – Wired Communication.

UNIT-II:

PROGRAMMING THE MICROCONTROLLER FOR IOT :

Ecosystem, embedded communications software, software partitioning, module and task decomposition: Partitioning case study, protocol software, debugging protocols, tables and other data structures, table access routines, buffer and timer management, management software, device and router management: CLI based management and HTTP based management, agent to protocol interface, device to manager communication, system setup, boot and post-boot configuration, saving and restoring the configuration.

UNIT-III RESOURCE MANAGEMENT IN THE INTERNET OF THINGS: Clustering - Software Agents - Data Synchronization - Clustering Principles in an Internet of Things Architecture - The Role of Context - Design Guidelines -Software Agents for Object. Data Synchronization - Types of Network Architectures

1. Fundamental Concepts of Agility and Autonomy-Enabling Autonomy and Agility by the Internet of Things-Technical Requirements for Satisfying the New Demands in Production - The Evolution from the RFIDbased EPC Network to an Agent based Internet of Things- Agents for the Behaviour of Objects.

UNIT-IV BUSINESS MODELS FOR THE INTERNET OF THINGS :

The Meaning of DiY in the Network Society- Sensor-actuator Technologies and Middleware as a Basis for a DiY Service Creation Framework - Device Integration - Middleware Technologies Needed for a DiY 32 | P a g e Internet of Things Semantic Interoperability as a Requirement for DiY Creation -Ontology- Value Creation in the Internet of Things-Application of Ontology Engineering in the Internet of Things-Semantic Web-Ontology - The Internet of Things in Context of EURIDICE - Business Impact.

UNIT-V FROM THE INTERNET OF THINGS TO THE WEB OF THINGS:

Resource-oriented Architecture and Best Practices- Designing REST ful Smart Things - Web- enabling Constrained Devices - The Future Web of Things - Set up cloud environment – send data from microcontroller to cloud – Case studies – Open Source e-Health sensor platform – Be Close Elderly monitoring – Other recent projects.

Text Books:

1. CharalamposDoukas, Building Internet of Things with the Arduino, Create space, April2002 Dieter Uckelmann et.al, "Architecting the Internet of Things", Springer, 2011.

Reference Books:

1.LuigiAtzor et.al, "The Internet of Things: A survey, ", Journal on Networks, Elsevier Publications, October 2010. Web References:

4. http://postscapes.com/

5. http://www.theinternetofthings.eu/what-is-the-internet-of-things

E-Text Books:

- 1. https://mitpress.mit.edu/books/internet-things
- 2. http://atkinsapps.uncc.edu/etextbooks
- 3. https://cloud.oracle.com/iot?tabname=LearnMoreInfo&lmResID=1441186561464

XII. COURSE PLAN:

Lecture					
No.	CLO	Unit	Learning Objective	Topics to be covered	Reference
		Course	Content Delivery Lecture Wi	se Break-up of Topics	
I SPELL			1	I	Т
1-3	1.		Define phases and foundation, policy of internet of things.	Introduction of internet of things	R6 1.1, 1.4
4-5	2.		List out Challenges and Issues in internet of things.	challenges andits issues in IOT	R6 1.5-14
6	3.		Define the concept of security and privacy IOT	Security and privacy of IOT	R6 1.36
7-10	4.		Explain the control units used in internet of things Describe communication	Control units used in internet of things Communication	R6 1.17
11	5.		modules used in IOT	modules in IOT	R7 6.3(II)
12-15	6.	I	Classify various communication technologies used in IOT	Various communication technologies used in IOT	R6 2.36
16-17	7.		Summarize the RF links and mobile internet used in IOT environment	RF links and mobile internet used in IOT	R6 2.2.4,5,2.3, 2.4.1
18	8.		Explain about protocols software and debugging tools used in IOT environment	Protocols and software debugging tools in IOT	R6 3.3.1
19-20	9.		Evaluate table access routines and other data structures used in IOT	Table access routines and other data structures in IOT	R6 3.5,6,7,8
21-22	10.	II	Describe buffer and timer management used in IOT	Buffer and Timer management in IOT	R6 3.9
23	11.		Distinguish CLI based management and HTTP Management	CLI and HTTP management	R6 3.10

At the end of the course, the students are able to achieve the following course learning outcomes:

			Explain boot and post boot		
24	12.		configuration in microcontroller IOT	Boost and post boot	D6 2 11
24	12.			configuration in IOT	R6 3.11
			Analyze storing and restoring		
			configuration using		
25-26	13.		microcontroller in IOT environment	Storing and restoring configuration in IOT	R6 3.4
Lecture	15.		environment		NU 3.4
No.	CLO	Unit	Learning Objective	Topics to be covered	Reference
			Summarize concepts of data synchronization used	Data synchronization in	Т3
27-29	14.		in IOT	IOT	2.1,2,3,4
			Describe Clustering of things		
30-32	15.			Clustering of things in IOT	T3 3.1,.2.1
33	16.		Sketch the design of IOT and its software agents	Iot design and its software agents	R6 5.1,.2
	10.		Classify architectures		
			used		
34	7.		in	Architectures of IOT	R6 5.4
			Explain the concept of agility	Concept of agility and	
25.26	10		and autonomyand how it is	autonomy and enabling	
35-36	18.	III	enabled in IOT List outTechnical requirements	in IOT Technical requirements	R6 5.5,.6
			satisfying the new demands	satisfy new demands in	
			Of roduction in IOT	IOT	
37-40	19.	a a			R6 5.7,.8
		Course C	ontent Delivery Lecture Wise II SPELL	e Break-up of Topics	
			Explain the Evolution from		
				Evolution of RFID based	R6
41	20.		agent based IOT	network to agent based IOT	6.4,.2,.3
			Summarize the agents of	behaviourAgents of	R6 6.5,-
42-45	21.	III	behavior of objects in IOT	objects in IOT	6.10
			Explain DiY in the	Di Y in the network	
46-47	22.		network society of IOT	society of IOT	R6 6.12,13
			Describe sensors and	Sensor and actuator	, í
				technologies and	
48	23.			middleware in network society of IOT	R6 6.14,15
40	23.		Classify Middleware	Middle ware	R6 7.5-
			technologies needed for DiY	technologies needed for	.7,.11,.12,
49-55	24.	IV	internet of things	DiY internet of things	.13,
	25		Illustrate the context of IOT in	Context of IOT in	R6
56-58			EURIDICE - Business Impact	EURIDICE – business impact	7.8,9,10,11
59-60	26.			Explain brieflythe	Application
				application of ontology	of ontology
				engineering in internet of things	engineering in internet
1				111105	i in internet
				unings	of things

Lecture No.	CLO	UNIT	Learning Objective	Topics to be covered	Reference
59	27.		Design REST full Smart Things and web enabling constrained devices in IOT environment	Design REST full smart things and web enabling constrained devices in IOT environment	R8 5.1
60-63	28		Explain about web enabling constrained devices in IOT	Web enabling constrained devices in IOT	R8 5.2,.3,.4,.5
64	29.	- V	Summarize the set up from micro controller to cloud in IOT	Set up from microcontroller to cloud in IOT	R6 8.10,
65-66	30.		Explain Case study – Open Source e-Health sensor platform	Set up from microcontroller to cloud in IOT	R6 8.9,.11,.14
67-68	31.		Define case study of be close elderly monitoring	Case study of be close elderly monitoring	R6 8.15

XIII GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Data Representation – Arithmetic multiplication, division	Seminars / Guest Lectures / NPTEL	PO 1, PO 2, PO 3	PSO 1, PSO 2
2	RISC ,CISC Characteristics	Seminars / Guest Lectures / NPTEL	PO 2, PO 3	PSO 1
3	Vector Processing	Assignments / Laboratory Practices	PO 1, PO 3, PO 4	PSO 2

XIV MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course		Program Outcomes										Program Specific Outcomes			
Objectives	ives PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO								PO12	PSO1	PSO2	PSO3			
Ι	Η		S					S			S	Н		S	S
II	Η				S		S				S		Н	S	
III		S			S			S				Н	Н	S	
IV	Н			S	S		S	S		S	S			S	
V	Η			Н			S	S		S	S			S	Н

XV MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course learning	Program Outcomes													Program Specific Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CBES006.01			Н					Н					S			
CBES006.02	S	S								S	Н		Н			
CBES006.03					Н		S							S		
CBES006.04			S										Н			
CBES006.05	Н		Н						Н				S			
CBES006.06					Н							S	S			
CBES006.07			Н	S										S		
CBES006.08		Н		S				Н			S		S			
CBES006.09		Н									1					
CBES006.10				S			Н							Н		
CBES006.11	S													S	-	
CBES006.12					Н						S		S			
CBES006.13	S													S		
CBES006.14					Н				S		S			S		
CBES006.15		S	Н						S				S	Н		
CBES006.16														S		
CBES006.17	S	S					S							Н		
CBES006.18		Н								S				S		
CBES006.19	S												S			
CBES006.20				Н										S		
CBES006.21																
CBES006.22	S			S			t.									

S= Supportive

H = Highly Related

XVI. DESIGN BASED PROBLEMS (DP) / OPEN ENDED PROBLEM:

- 1. Differentiate power PC processor based and Mocro Blaze processor based embedded system
- 2. What are the processor architectures should be taken into consideration while designing an Embedded system
- 1. Explain about Board memories of an Embedded system a. ROM b. RAM c. Auxiliary memory
- 4. Explain about Aptix Prototyping System and Explain about Architecture of 8051 Micro Controller
- 5. Briefly explain about Compiler validation. Explain about The Co-design Computational model.
- 6. What are the processor architectures should be taken into consideration while designing an embedded system

Prepared by: SHASHIKANTH REDDY

HOD,ECE