

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous)

Dundigal, Hyderabad - 500 043

### ELECTRONICS AND COMMUNICATION ENGINEERING

# **COURSE DESCRIPTION FORM**

| Course Title        | <b>MATHEMATICS</b> | MATHEMATICS -III                   |            |         |  |  |  |  |  |  |  |
|---------------------|--------------------|------------------------------------|------------|---------|--|--|--|--|--|--|--|
| Course Code         | <b>R15-</b> A30007 | 1 <b>5-</b> A30007                 |            |         |  |  |  |  |  |  |  |
| Course Structure    | Lectures           | Tutorials                          | Practicals | Credits |  |  |  |  |  |  |  |
|                     | 4                  | 1                                  | -          | 4       |  |  |  |  |  |  |  |
| Course Coordinator  | Ms Subba Laxmi     |                                    |            |         |  |  |  |  |  |  |  |
| Team of Instructors | Ms. C Rachana, Mr. | Ms. C Rachana, Mr. Ch Soma Shekhar |            |         |  |  |  |  |  |  |  |

# I. COURSE OVERVIEW:

The course matter is divided into 5 chapters covering duly-recognized areas of theory and study. This Course develops abstract and critical reasoning by studying linear ODE's and complex analysis. The course covers the basic principles (both theory and applications) of differentiable complex-valued functions of a single complex variable. Topics include the complex number system, Cauchy-Riemann conditions, analytic functions and their properties, special analytic functions including linear fractional transformations, roots, exponential, Log, trigonometric and hyperbolic functions of a complex variable; Complex integration and line integrals, Cauchy's theorem, Cauchy representation, conformal

mapping, Taylor and Laurent Series expansions; the calculus of residues and various applications.

# **II. PREREQUISITE(S):**

| Level | Credits | Periods / Week | Prerequisites  |
|-------|---------|----------------|----------------|
| UG    | 4       | 5              | Basic Calculus |

# **III. MARKS DISTRIBUTION:**

| Sessional Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | University End<br>Exam Marks | Total<br>Marks |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|
| There shall be 2 midterm examinations. Each midterm examination consists of one objective paper, one subjective paper and one assignment. The objective paper is for 10 marks and subjective paper is for 10 marks, with duration of 1 hour 20 minutes (20 minutes for objective and 60 minutes for subjective paper). Objective paper is set for 20 bits of – multiple choice questions, fill-in the blanks, 10 marks. Subjective paper consists of 4 full questions of which, the student has to answer 2 questions, each question carrying 5 marks. First midterm examination shall be conducted for $1^{st}$ , $2^{nd}$ and $3^{rd}$ unit(half) of syllabus, second midterm examination shall be conducted for $3^{rd}$ (half), $4^{th}$ and | 75                           | 100            |

| 5 <sup>th</sup> units. 5 marks are allocated for assignments (as specified by the |  |
|-----------------------------------------------------------------------------------|--|
| concerned subject teacher) – first assignment should be submitted                 |  |
| before the conduct of the first mid, second assignment should be                  |  |
| submitted before the conduct of the second mid. The total marks                   |  |
| secured by the student in each midterm examination are evaluated for              |  |
| 25 marks, and the average of the two midterm examination marks shall              |  |
| be taken as the final sessional marks secured by each candidate                   |  |

# **IV. EVALUATION SCHEME:**

| S. No   | Component                   | Duration (hours)             | Marks         |
|---------|-----------------------------|------------------------------|---------------|
| 1       | I Mid Examination           | 1 hour and 20 min            | 20            |
| 2       | I Assignment lot            |                              | 5             |
|         |                             | TOTAL                        | 25            |
| 3       | II Mid Examination          | 1 hour and 20 min            | 20            |
| 4       | II Assignment lot           |                              | 5             |
|         |                             | TOTAL                        | 25            |
| 5 MID E | xamination marks to be cons | idered as average of above 2 | 2 MID's TOTAL |
| 6       | EXTERNAL<br>Examination     | 3                            | 75            |
| 7       |                             | GRAND TOTAL                  | 100           |

# V. COURSE OBJECTIVES:

- 1. The objective is to expose the students to series solutions, special functions, complex functions and conformal mapping.
- 2. To provide an introduction to special functions and its properties.
- 3. Develop an understanding the role of complex functions in Engineering.

# VI. COURSE OUTCOMES:

By the end of the module students should be able to

- a. Solve Cauchy's and Legendre's differential equations.
- b. Identify ordinary points, singular points and regular singular points for the given ODE.
- **c. Determine** the solution of ordinary differential equations in series form, Frobenius method to obtain a series solution for the given linear ODE.
- **d.** Identify Bessel equation and Legendre equation and solve them under special conditions with the help of series solutions method.
- e. Analyze the complex functions with reference to their analyticity, Integration using Cauchy's integral theorem.
- f. Identify the conditions for a complex variable function to be analytic and/or harmonic.
- g. Define singularities of a function; know the different types of singularities.
- h. Determine the points of singularities of a function.
- i. Solve integrals using residues.
- j. Apply techniques of Complex analysis to summation of series.
- k. Solve the Taylor's and Laurent series expansion of complex functions.
- **I.** Explain the concept of transformation in a complex space and sketch associated diagrams.

# VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes                                                                                                                                                                                                                                                                                                         | Level | Proficiency assessed<br>by |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| PO1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                                 | Н     | Assignments,<br>Tutorials  |
| PO2  | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                                | Н     | Assignments                |
| PO3  | <b>Design/development of solutions</b> : Design solutions for<br>complex engineering problems and design system<br>components or processes that meet the specified needs with<br>appropriate consideration for the public health and safety,<br>and the cultural, societal, and environmental<br>considerations.         | S     | Assignments                |
| PO4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                               | S     | Assignments                |
| PO5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                                | N     |                            |
| PO6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assessocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                                | N     |                            |
| PO7  | <b>Environment and sustainability</b> : Understand the impact<br>of the professional engineering solutions societal and<br>environmental contexts, and demonstrate the knowledge<br>of, and need for sustainable development.                                                                                            | N     |                            |
| PO8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                                   | N     |                            |
| PO9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings.                                                                                                                                                                   | N     |                            |
| PO10 | <b>Communication</b> : Communicate effectively on complex<br>engineering activities with the engineering community and<br>with society at large, such as, being able to comprehend<br>and write effective reports and design documentation,<br>make effective presentations, and give and receive clear<br>instructions. | N     |                            |
| PO11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                                              | N     |                            |
| PO12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage inindependent and life-long learning in the broadest context of technological                                                                                                                                         | N     |                            |

| Program Outcomes | Level | Proficiency assessed<br>by |
|------------------|-------|----------------------------|
| change.          |       |                            |

N - None S - Supportive H - Highly Related

#### VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| PROGR | AM SPECIFIC OUTCOMES                                              | LEVEL | PROFICIENCY  |
|-------|-------------------------------------------------------------------|-------|--------------|
|       |                                                                   |       | ASSESSED BY  |
| PSO 1 | Professional Skills: An ability to understand the basic concepts  | Н     | Lectures and |
|       | in Electronics & Communication Engineering and to apply them      |       | Assignments  |
|       | to various areas like Electronics, Communications, Signal         |       |              |
|       | processing, VLSI, Embedded systems etc.,in the design and         |       |              |
|       | implementation of complex systems.                                |       |              |
| PSO 2 | Problem-solving skills: An ability to solve complex Electronics   | S     | Tutorials    |
|       | and communication Engineering problems, using latest              |       |              |
|       | hardware and software tools, along with analytical skills to      |       |              |
|       | arrive cost effective and appropriate solutions.                  |       |              |
| PSO 3 | Successful career and Entrepreneurship: An understanding of       | S     | Seminars and |
|       | social-awareness & environmental-wisdom along with ethical        |       | Projects     |
|       | responsibility to have a successful career and to sustain passion |       | -            |
|       | and zeal for real-world applications using optimal resources as   |       |              |
|       | an Entrepreneur.                                                  |       |              |

N - None

#### **S** - Supportive

H – Highly Related

## IX. SYLLABUS:

## UNIT – I:

#### Linear ODE with variable coefficients and series solutions (second order only):

Equations reducible toconstant coefficients-Cauchy's and Lagrange's differential equations. Motivation for series solutions, Ordinary point and Regular singular point of a differential equation , Transformation of non-zero singular point to zero singular point. Series solutions to differential equations around zero, Frobenius Method about zero.

#### Unit-II

#### **Special Functions:**

Legendre's Differential equation, General solution of Legendre's equation, Legendrepolynomials Properties: Rodrigue's formula – Recurrence relations, generating function of Legendre's polynomials – Orthogonality. Bessel's Differential equation, Bessel functions properties: – Recurrence relations, Orthogonality, Generating function, Trigonometric expansions involving Bessel functions.

## UNIT-III:

## **Complex Functions – Differentiation and Integration:**

Complex functions and its representation on Argandplane, Concepts of limit Continuity, Differentiability, Analyticity, Cauchy-Riemann conditions, Harmonic functions– Milne – Thompson method. Line integral – Evaluation along a path and by indefinite integration – Cauchy's integral theorem – Cauchy's integral formula – Generalized integral formula.

## **UNIT-IV:**

Power series expansions of complex functions and contour Integration:

Radius of convergence –Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point –Isolated singular point – pole of order m – essential singularity. Residue – Evaluation of residue by formula and by Laurent series – Residue theorem. Evaluation of integrals

## UNIT-V:

# **Conformal mapping:**

Transformation of z-plane to w-plane by a function, conformal transformation. Standard transformations- Translation; Magnification and rotation; inversion and reflection, Transformations like  $e^z$ , logz,  $z^2$ , and Bilinear transformation. Properties of Bilinear transformation, determination of bilinear transformation when mappings of 3 points are given.

# **TEXT BOOKS:**

- 1. Advanced Engineering Mathematics by Kreyszig, John Wiley & Sons.
- 2. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers.

# **REFERENCES:**

- 1. Complex Variables Principles And Problem Sessions By A.K.Kapoor, World Scientific Publishers
- 2. Engineering Mathematics-3 By T.K.V.IyengarandB.Krishna Gandhi Etc
- 3. A Text Book Of Engineering Mathematics By N P Bali, ManeshGoyal
- 4. Mathematics for Engineers and Scientists, Alan Jeffrey, 6<sup>th</sup> Edit. 2013, Chapman & Hall/CRC
- 5. Advanced Engineering Mathematics, Michael Greenberg, Second Edition. Person Education
- 6. Mathematics For Engineers By K.B.Datta And M.A S.Srinivas, Cengage Publications

# X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes.

| Lecture | Course Learning Outcomes                                                                             | Topics to be covered                                                                                                                                                                   | Reference |
|---------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| No      |                                                                                                      |                                                                                                                                                                                        |           |
| 1-2     | <b>Solve</b> Cauchy's and Legendre's differential equations                                          | Linear ODE with variable<br>coefficients and series<br>solution(second order only)<br>Equations reducible to constant<br>coefficient Cauchy's and Legendre's<br>differential equations | T1,R2     |
| 3-4     | <b>Identify</b> ordinary points, singular<br>points and regular singular points<br>for the given ODE | Motivation for series solution<br>Ordinary and regular point of a<br>differential equation                                                                                             | T1,R2     |
| 5-8     | <b>Determine</b> the solution of ordinary<br>differential equations in series<br>form                | Transformation of non-zero singular<br>point to zero singular point<br>Series solutions of differential<br>equations around zero                                                       | T1,R2     |
| 9-10    | <b>Apply</b> the Frobenius method to obtain a series solution for the given linear ODE               | Frobenius Method about zero                                                                                                                                                            | T1,R2     |
| 11-14   | Identify Legendre equation                                                                           | Special Functions<br>General solution of Legendre's<br>differential equation ,Legendre<br>polynomials properties,Rodrigue's<br>formula                                                 | T1,R2     |
| 15-16   | <b>Explain</b> Recurrence relations                                                                  | Recurrence relations                                                                                                                                                                   | T1,R2     |

| 17-18 | Definegenerating function                | generating function of Legendre's              | T1,R2 |
|-------|------------------------------------------|------------------------------------------------|-------|
|       |                                          | polynomials – Orthogonality                    |       |
| 19-26 | <b>Demonstrate</b> Bessel's Differential | Bessel's Differential equation, Bessel         | T1,R2 |
|       | equation                                 | functions properties: – Recurrence             |       |
|       |                                          | relations, Orthogonality, Generating           |       |
|       |                                          | function                                       |       |
| 27    | Explaining trigonometric expansions      | Trigonometric expansions involving             | T1,R2 |
|       |                                          | Bessel functions.                              |       |
| 28-32 | <b>Define</b> complex function           | Complex Functions –                            | T1,R2 |
|       |                                          | Differentiation and Integration:               |       |
|       |                                          | Complex functions and its                      |       |
|       |                                          | representation on Argandplane,                 |       |
|       |                                          | Concepts of limit Continuity,                  |       |
|       |                                          | Differentiability, Analyticity,                |       |
|       |                                          | Cauchy-Riemann conditions                      |       |
| 33-38 | Evaluate line integrals                  | Harmonic functions– Milne –                    | T1,R2 |
|       |                                          | Thompson method. Line integral –               |       |
|       |                                          | Evaluation along a path and by                 |       |
|       |                                          | indefinite integration                         |       |
| 39-42 | ApplyCauchy's integral theorem           | Cauchy's integral theorem –                    | T1,R2 |
|       |                                          | Cauchy's integral formula –                    |       |
|       |                                          | Generalized integral formula                   |       |
| 43-46 | Define power series expansions           | Power series expansions of                     | T1,R2 |
|       |                                          | complex functions and contour                  |       |
|       |                                          | Integration:                                   |       |
|       |                                          | Radius of convergence – Expansion              |       |
|       |                                          | in Taylor's series, Maclaurin's series         |       |
|       |                                          | and Laurent series.                            |       |
| 47-54 | Evaluate integrals                       | Singular point –Isolated singular              | T1,R2 |
|       |                                          | point – pole of order m – essential            |       |
|       |                                          | singularity. Residue – Evaluation of           |       |
|       |                                          | residue by formula and by Laurent              |       |
|       |                                          | series – Residue theorem. Evaluation           |       |
|       |                                          | of integrals                                   |       |
| 55-61 | Describe standard                        | Conformal mapping:                             | T1,R2 |
|       | transformation                           | Transformation of z-plane to w-plane           |       |
|       |                                          | by a function, conformal                       |       |
|       |                                          | transformation.                                |       |
|       |                                          | Standardtransformations-                       |       |
|       |                                          | Translation; Magnification and                 |       |
|       |                                          | rotation; inversion and reflection,            |       |
| 62-65 | Determine bilinear transformation        | Transformations like $e^z$ , logz, $z^2$ , and | T1,R2 |
|       |                                          | Bilinear transformation. Properties of         |       |
|       |                                          | Bilinear transformation,                       |       |
|       |                                          | determination of bilinear                      |       |
|       |                                          | transformation when mappings of 3              |       |
| 1     |                                          | noints are given                               |       |

# XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Objectives |            | Program Outcomes |      |      |     |     |            |            |     |             |             |             |      | Program Specific<br>Outcomes |      |  |
|----------------------|------------|------------------|------|------|-----|-----|------------|------------|-----|-------------|-------------|-------------|------|------------------------------|------|--|
|                      | <b>PO1</b> | PSO1             | PSO2 | PSO3 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | <b>PO10</b> | <b>PO11</b> | <b>PO12</b> | PSO1 | PSO2                         | PSO3 |  |
| Ι                    | Н          | Н                | S    |      |     |     |            |            |     |             |             |             | Н    | S                            |      |  |
| II                   | S          | Н                | S    |      |     |     |            |            |     |             |             |             | Н    | S                            |      |  |
| III                  | Н          | S                | Н    |      |     |     |            |            |     |             |             |             | Н    | S                            |      |  |

# **S** - Supportive H - Highly Related

# XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course   |            | Program Outcomes |     |     |     |     |            |     |     |      |      |      | Program Specific<br>Outcomes |      |      |
|----------|------------|------------------|-----|-----|-----|-----|------------|-----|-----|------|------|------|------------------------------|------|------|
| Outcomes | <b>PO1</b> | <b>PO2</b>       | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1                         | PSO2 | PSO3 |
| а        | Н          | Н                | S   |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| b        | Н          | S                |     |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| с        | S          | S                |     | S   |     |     |            |     |     |      |      |      | Н                            | S    |      |
| d        | Н          |                  |     |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| e        | S          |                  | Н   |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| f        | Н          |                  |     |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| g        |            | Н                |     |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| h        | Н          |                  |     |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| i        |            | S                |     |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| j        |            | S                | S   |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| k        | S          |                  |     |     |     |     |            |     |     |      |      |      | Н                            | S    |      |
| 1        | Н          |                  |     | S   |     |     |            |     |     |      |      |      | Н                            | S    |      |

**S** - Supportive

H - Highly Related

Prepared by: Ms. Subba Laxmi, Ms. C Rachana, Mr. Ch Soma Shekhar.

HOD, ELECTRONICS AND COMMUNICATION ENGINEERING