MACHINE LEARNING

VIII Semester: CSE / IT								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
ACS014	Core	L	T	P	C	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: NIL	Practical Classes: Nil				Total Classes:45		

OBJECTIVES:

The course should enable the students to:

- I. Apply knowledge of computing and mathematics appropriate to the discipline.
- II. Illustrate the concepts of machine learning and related algorithms.
- III. Understand the dimensionality problems using linear discriminants.
- IV. Study various statistical models for analyzing thedata.
- V. Learn clustering algorithms for unlabeleddata.

COURSE OUTCOMES (COs):

- CO 1: Understand the concept of learning and candidate elimination algorithms
- CO 2: Understand the concept of perception and explore on forward and backward practices
- CO 3: Explore on basic statistics like variance, covariance and averages
- CO 4: Explore on Evolutionary learning techniques used in genetic algorithms
- CO 5: Explore on similarity concept and different distance measures

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the concept of learning and candidate eliminationalgorithms
- 2. Explore on different types of learning and explore On tree basedlearning
- 3. Understand the construction process of decision trees used for classification problem
- 4. Understand the concept of perception and explore on forward and backwardpractices
- 5. Illustrate on kernel concept and optimal separation used in support vectormachines
- 6. Explore on basic statistics like variance, covariance and averages
- 7. Understand the concepts of Gaussian and bias-variancetradeoff
- 8. Understand the concepts of Bayes theorem and Bayes optimal classifiers
- 9. Explore on Bayesian networks and approximate inference on markovmodels
- 10. Explore on Evolutionary learning techniques used in geneticalgorithms
- 11. Illustrate the ensemble learning approaches used in bagging andboosting
- 12. Explain the importance of principal component analysis and itsapplications
- 13. Explore on similarity concept and different distancemeasures
- 14. Understand the outlier concept and explain about dataobjects
- 15. Understand the hierarchical algorithms and explainCART
- 16. Understand the partitioned algorithms and explainsegmentation

- 17. Explore on clustering large databases and explain K-means clustering algorithm
- 18. Understand the clustering with categorical Attributes and comparison with other datatypes
- 19. Understand the clustering large databases and explain clusteringmethods
- 20. Describe clustering with categorical attributes and explainKNN.

UNIT-I

TYPES OF MACHINE LEARNING

Classes: 9

Concept learning: Introduction, version spaces and the candidate elimination algorithm; Learning with trees: Constructing decision trees, CART, classification example.

UNIT-II

LINEAR DISCRIMINANTS

Classes: 9

Perceptron (MLP): Going forwards, backwards, MLP in practices, deriving back; Propagation support vector Machines: Optimal separation, kernels.

UNIT-III

BASIC STATISTICS

Classes: 9

Averages, variance and covariance, the Gaussian; The bias-variance tradeoff Bayesian learning: Introduction, Bayes theorem, Bayes optimal classifier, naïve Bayes classifier.

Graphical models: Bayesian networks, approximate inference, making Bayesian networks, hidden Markov models, theforward algorithm.

UNIT-IV

EVOLUTIONARY LEARNING

Classes: 9

Genetic Algorithms, genetic operators; Genetic programming; Ensemble learning: Boosting, bagging; Dimensionality reduction: Linear discriminate analysis, principal component analysis (JAX-RPC).

UNIT-V

CLUSTERING

Classes: 9

Similarity and distance measures, outliers, hierarchical methods, partitional algorithms, clustering large databases, clustering with categorical attributes, comparison

Text Books:

- 1. Tom M. Mitchell, "Machine Learning", McGraw Hill, 1st Edition, 2013.
- 2. Stephen Marsland, "Machine Learning An Algorithmic Perspective", CRC Press, 1st Edition, 2009.

Reference Books:

- 1. Margaret H Dunham, "Data Mining", Pearson Edition, 2nd Edition, 2006.
- 2. Galit Shmueli, Nitin R el, Peter C Bruce, "Data Mining for Business Intelligence", John Wiley and Sons, 2nd Edition, 2007.
- 3. Rajjal Shinghal, "Pattern Recognition and Machine Learning", Springer-Verlag, New York, 1st Edition, 2006.

Web References:

- 1. https://www.oracle.com/in/cloud/application-development
- 2. http://computingcareers.acm.org/?page_id=12
- 1. http://en.wikibooks.org/wiki/cloudapplication

E-Text Books:

- 1. http://www.acadmix.com/eBooks_Download
- 2. http://www.ibm.com