MACHINE LEARNING

VIII Semester: CSE / IT

Course Code	Category	Hours / Week			Credits	Maximum Marks		
ACS014	Core	L	Т	Р	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: NIL	Practical Classes:			es: Nil	Total Classes:45		

OBJECTIVES:

The course should enable the students to:

- I. Apply knowledge of computing and mathematics appropriate to the discipline.
- II. Illustrate the concepts of machine learning and related algorithms.
- III. Understand the dimensionality problems using linear discriminants.
- IV. Study various statistical models for analyzing the data.
- V. Learn clustering algorithms for unlabeled data.

COURSE OUTCOMES (COs):

- CO 1: Understand the concept of learning and candidate elimination algorithms
- CO 2: Understand the concept of perception and explore on forward and backward practices
- CO 3: Explore on basic statistics like variance, covariance and averages
- CO 4: Explore on Evolutionary learning techniques used in genetic algorithms
- CO 5: Explore on similarity concept and different distance measures

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the concept of learning and candidate elimination algorithms
- 2. Explore on different types of learning and explore On tree based learning
- 3. Understand the construction process of decision trees used for classification problem
- 4. Understand the concept of perception and explore on forward and backward practices
- 5. Illustrate on kernel concept and optimal separation used in support vector machines
- 6. Explore on basic statistics like variance, covariance and averages
- 7. Understand the concepts of Gaussian and bias-variance tradeoff
- 8. Understand the concepts of Bayes theorem and Bayes optimal classifiers
- 9. Explore on Bayesian networks and approximate inference on markov models
- 10. Explore on Evolutionary learning techniques used in genetic algorithms
- 11. Illustrate the ensemble learning approaches used in bagging and boosting
- 12. Explain the importance of principal component analysis and its applications
- 13. Explore on similarity concept and different distance measures
- 14. Understand the outlier concept and explain about data objects
- 15. Understand the hierarchical algorithms and explain CART
- 16. Understand the partitioned algorithms and explain segmentation

- 17. Explore on clustering large databases and explain K-means clustering algorithm
- 18. Understand the clustering with categorical Attributes and comparison with other data types
- 19. Understand the clustering large databases and explain clustering methods
- 20. Describe clustering with categorical attributes and explain KNN.

	TYPES OF MACHINE LEARNING	Classes: 9						
UNIT-I Concept learning	UNIT-I Intestor Machine Elevation consists and the condidete elimination elevrithmy Learning with							
trees: Constructing decision trees. CART classification example								
UNIT-II	LINEAR DISCRIMINANTS	Classes: 9						
Perceptron (MLP): Going forwards, backwards, MLP in practices, deriving back; Propagation support								
vector Machines: Optimal separation, kernels.								
UNIT-III	BASIC STATISTICS	Classes: 9						
Averages, variance and covariance, the Gaussian; The bias-variance tradeoff Bayesian learning: Introduction, Bayes theorem, Bayes optimal classifier, naïve Bayes classifier.								
Graphical models: Bayesian networks, approximate inference, making Bayesian networks, hidden Markov models, theforward algorithm.								
UNIT-IV	EVOLUTIONARY LEARNING	Classes: 9						
Genetic Algorithms, genetic operators; Genetic programming; Ensemble learning: Boosting, bagging; Dimensionality reduction: Linear discriminate analysis, principal component analysis (JAX-RPC).								
UNIT-V	CLUSTERING	Classes: 9						
Similarity and distance measures, outliers, hierarchical methods, partitional algorithms, clustering large databases, clustering with categorical attributes, comparison								
Text Books:								
 Tom M. Mitchell, "Machine Learning ", McGraw Hill, 1st Edition,2013. Stephen Marsland, "Machine Learning - An Algorithmic Perspective ", CRC Press, 1st Edition,2009. 								
Reference Books:								
1. Margaret H Dunham, "Data Mining", Pearson Edition, 2 nd Edition, 2006.								
2. Gant Snmuen, Nitin K el, Peter C Bruce, "Data Mining for Business Intelligence", John Wiley and Sons. 2 nd Edition 2007.								
3. Rajjal Shinghal, "Pattern Recognition and Machine Learning", Springer-Verlag, New York, 1 st Edition,2006.								
Web References:								
1. https://www.oracle.com/in/cloud/application-development								
 2. http://computingcareers.acm.org/?page_id=12 1. http://en.wikibooks.org/wiki/cloudapplication 								
E-Text Books:								
1. http://www.acadmix.com/eBooks_Download								
2. http://www.ib	2. http://www.ibm.com							