**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous)



# **MECHANICALENGINEERING**

# **COURSE DESCRIPTOR**

| Course Title      | DYNAMIC     | S OF MACHIN     | ERY       |            |         |
|-------------------|-------------|-----------------|-----------|------------|---------|
| Course Code       | AMEB17      | AMEB17          |           |            |         |
| Programme         | B. Tech     | 3. Tech         |           |            |         |
| Semester          | FIVE        | FIVE            |           |            |         |
| Course Type       | Core        |                 |           |            |         |
| Regulation        | IARE - R18  |                 |           |            |         |
|                   |             | Theory          |           | Pra        | ctical  |
| Course Structure  | Lectures    | Tutorials       | Credits   | Laboratory | Credits |
| 2 1 3             |             |                 |           |            |         |
| Chief Coordinator | Dr. K Viswa | nath Allamraju, | Professor |            |         |

## I. COURSE OVERVIEW:

This course focuses on mechanical devices that are designed to have mobility to perform certain functions. In this process they are subjected to some forces. The study of Dynamics of machinery leads us to design machines by understanding the relationship between the movement of various parts of machine and the different forces that are acting on them. This course will provide the knowledge on how to analyze the motions of mechanisms and design mechanisms to give required strength. This includes relative static and dynamic force analysis and consideration of gyroscopic effects on aero planes, ships, automobiles like two wheelers and four wheelers.

| Level   | Course Code | Semester | Prerequisites           | Credits |
|---------|-------------|----------|-------------------------|---------|
| B. Tech | AME009      | IV       | Kinematics of Machinery | 4       |
| B. Tech | AME001      | Ι        | Engineering Drawing     | 4       |

## **II.** COURSE PRE-REQUISITES:

## **III. MARKSDISTRIBUTION:**

| Subject               | SEE Examination | CIA Examination | Total Marks |
|-----------------------|-----------------|-----------------|-------------|
| Dynamics of machinery | 70 Marks        | 30 Marks        | 100         |

| ×                        | Chalk & Talk | ~ | Quiz     | ~ | Assignments  | × | MOOCs  |
|--------------------------|--------------|---|----------|---|--------------|---|--------|
| ~                        | LCD / PPT    | ~ | Seminars | × | Mini Project | ~ | Videos |
| ✗ Open Ended Experiments |              |   |          |   |              |   |        |

## IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

## V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" "or" choice will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

| Percentage of Cognitive Level | <b>Blooms Taxonomy Level</b> |
|-------------------------------|------------------------------|
| 10 %                          | Remember                     |
| 50 %                          | Understand                   |
| 25 %                          | Apply                        |
| 15 %                          | Analyze                      |
| 0 %                           | Evaluate                     |
| 0 %                           | Create                       |

Table1: The expected percentage of cognitive level of questions in SEE

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks Alternative Assessment Tool (AAT).

| Component          | Theory            |    |     | Total Marka   |
|--------------------|-------------------|----|-----|---------------|
| Type of Assessment | CIE Exam Quiz AAT |    | AAT | i otai wiarks |
| CIA Marks          | 20                | 05 | 05  | 30            |

Table 2: Assessment pattern for CIA

### **Continuous Internal Examination (CIE):**

Two CIE exams shall be conducted at the end of the 8<sup>th</sup> and 16<sup>th</sup> week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

### **Quiz - Online Examination**

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

## Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

| 5 Minutes Video | Assignment | Tech-talk | Seminar | <b>Open Ended Experiment</b> |
|-----------------|------------|-----------|---------|------------------------------|
| 20%             | 30%        | 30%       | 10%     | 10%                          |

## VI. COURSE OBJECTIVES:

| The s | The students will try to learn:                                                                  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------|--|--|--|
| Ι     | The concepts of precision, static and dynamic forces of planer mechanisms by neglecting          |  |  |  |
|       | friction of aero planes, sea vessels, auto mobiles and various force members.                    |  |  |  |
| II    | The knowledge of engineering mechanics for identifying the coefficient of friction and           |  |  |  |
|       | engine speed of the various contact bodies (Clutches and Brakes) and speed controlled            |  |  |  |
|       | devices, variations of torques and fluctuation of speeds of IC engines.                          |  |  |  |
| III   | The magnitude and direction of balanced mass for unbalanced rotary and reciprocating             |  |  |  |
|       | engines with the fundamentals of applied physics.                                                |  |  |  |
| IV    | Mathematical modeling of various degree of freedom systems to interpret the various              |  |  |  |
|       | vibration parameters.                                                                            |  |  |  |
| V     | The affluence of real world engineering problems and examples towards gaining the experience for |  |  |  |
|       | how dynamics of machinery is applied in engineering practice.                                    |  |  |  |

## VII. COURSE OOUTCOMES:

| After successful completion of the course, students will be able to: |                                                                                |            |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------|------------|--|
|                                                                      |                                                                                | Knowledge  |  |
|                                                                      | Course Outcomes                                                                |            |  |
|                                                                      |                                                                                | Taxonomy)  |  |
| CO 1                                                                 | <b>Discuss</b> the Gyroscopes, effect of precession motion on the stability of | Understand |  |
|                                                                      | moving vehicles such as motor car, motor cycle, aero-planes and ships.         |            |  |

| CO 2  | Determine the angle of heel to avoid upside down of a two wheeler              | Evaluate   |
|-------|--------------------------------------------------------------------------------|------------|
|       | vehicle while taking in left and right turns.                                  |            |
| CO 3  | <b>Illustrate</b> the static and dynamic force analysis of two and three force | Understand |
|       | members by graphical super position method.                                    |            |
| CO 4  | Apply the laws of friction on clutches, brakes and dynamometers to             | Apply      |
|       | reduce the power losses for the effective torque transmission.                 |            |
| CO 5  | Justify the importance of torque and fluctuation of speeds for single          | Evaluate   |
|       | and multi cylindered engines to increase the mechanical efficiency.            |            |
| CO 6  | Estimate the height of a governor to regulate the speed of a prime             | Apply      |
|       | mover at various load conditions.                                              |            |
| CO 7  | Determine the balanced mass for unbalanced rotary and reciprocating            | Evaluate   |
|       | engines by analytical and graphical methods.                                   |            |
| CO 8  | Develop a mathematical modelling of free and forced vibration                  | Apply      |
|       | systems under damped and un-damped conditions to avoid the                     |            |
|       | vibratory damages of aero-mechanical-civil structures and electrical           |            |
|       | and electronic components at various operated frequencies.                     |            |
| CO 9  | Use the resonance phenomenon to predict the critical or whirling or            | Analyze    |
|       | whipping speeds of various structures under vibrations to avoid                |            |
|       | catastrophic failures.                                                         |            |
| CO 10 | Apply the principles of dynamics of machinery to a real world                  | Apply      |
|       | problems for obtaining optimum solutions.                                      |            |

## COURSE KNOWLEDGE COMPETENCY LEVELS



## VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes                                                                                                                                                                                                                                  | Strength | Proficiency<br>Assessed by |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems                                                           | 3        | CIE/Quiz/AAT               |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research<br>literature, and analyze complex engineering problems<br>reaching substantiated conclusions using first principles of<br>mathematics, natural sciences, and engineering sciences | 3        | CIE/Quiz/AAT               |

|      | Program Outcomes                                                                                                                                                                                                                                      | Strength | Proficiency<br>Assessed by                  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------|
| PO 4 | <b>Conduct Investigations of Complex Problems:</b> Use<br>research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information to<br>provide valid conclusions. | 2        | Seminar/<br>conferences/<br>Research papers |

**3** = High; **2** = Medium; **1** = Low

## IX. HOW PROGRAM SPECIFC OUTCOMES ARE ASSESSED

|       | Program Specific Outcomes                                                                                                                                 | Strength | Proficiency<br>assessed by                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------|
| PSO 1 | Formulate and evaluate engineering concepts of design, thermal<br>and production to provide solutions for technology aspects in<br>digital manufacturing. | 1        | Research papers/<br>Group discussion/<br>Short term courses |
| PSO 2 | Focus on ideation and research towards product development<br>using additive manufacturing, CNC simulation and high speed<br>machining.                   | 2        | Research papers /<br>Industry exposure                      |
| PSO 3 | Make use of computational and experimental tools for creating<br>innovative creative paths, to be an entrepreneur and desire for<br>higher studies.       | 3        | Research papers /<br>Industry exposure                      |

**3** = **High; 2** = **Medium; 1** = Low

## X. MAPPING OF EACH CO WITH PO(s), PSO(s):

| Course   |              | Program Outcomes |   |   |   |   |   |   |   |    |    |    |   |   | Program<br>Specific<br>Outcomes |  |
|----------|--------------|------------------|---|---|---|---|---|---|---|----|----|----|---|---|---------------------------------|--|
| Outcomes | 1            | 2                | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3                               |  |
| CO 1     |              | $\checkmark$     | - | - | - | - | - | - | - | -  | -  | -  | - | - | -                               |  |
| CO 2     | -            | $\checkmark$     | - | - | - | - | - | - | - | -  | -  | -  | - | - | -                               |  |
| CO 3     | -            | $\checkmark$     | - |   | - | - | - | - | - | -  | -  | -  | - | - | -                               |  |
| CO 4     | $\checkmark$ | -                | - | - | - | - | - | - | - | -  | -  | -  | - | - | -                               |  |
| CO 5     | $\checkmark$ | -                | - | - | - | - | - | - | - | -  | -  | -  | - | - | -                               |  |
| CO 6     | -            | $\checkmark$     | - |   | - | - | - | - | - | -  | -  | -  |   | - | -                               |  |
| CO 7     | -            | $\checkmark$     | - | - | - | - | - | - | - | -  | -  | -  | - | - | -                               |  |
| CO 8     | $\checkmark$ | $\checkmark$     | - | - | - | - | - | - | - | -  | -  | -  |   | - | -                               |  |
| CO 9     | $\checkmark$ | -                | - | - | - | - | - | - | - | -  | -  | -  |   | - | -                               |  |
| CO 10    | -            | $\checkmark$     | - | - | - | - | - | - | - | -  | -  | -  | - | - | -                               |  |

## XI. JUSTIFICATIONS FOR CO-PO MAPPING:

| Course<br>Outcomes | POs /<br>PSOs | Justification for mapping (Students will be able to)                                                                                                                             | No. of key competencies |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| CO 1               | PO 1          | <b>Discuss</b> the knowledge and principals of mathematics to<br>engineering problems for determining gyroscopic effect<br>using the knowledge of <b>mathematics and science</b> | 2                       |
|                    |               | fundamentals                                                                                                                                                                     |                         |
|                    | PO 2          | Analyse and formulate the engineering problems to                                                                                                                                | 4                       |
|                    |               | determine the gyroscopic couple and angel of heel. Analyse                                                                                                                       |                         |
|                    |               | and identify the problem statement, formulation and                                                                                                                              |                         |
| CO 2               | PO 2          | <b>Collect the data</b> from complex engineering problems and                                                                                                                    | 2                       |
| 02                 | 102           | <b>implement</b> them to draw the free body diagrams and                                                                                                                         | 3                       |
|                    |               | <b>interpret the results</b> for static and dynamic forces of four                                                                                                               |                         |
|                    |               | bar mechanisms.                                                                                                                                                                  |                         |
| CO 3               | PO 2          | Formulate the forces of four bar mechanism and identify                                                                                                                          | 4                       |
|                    |               | the appropriate equilibrium equation and <b>develop the</b>                                                                                                                      |                         |
|                    |               | solution from the first principals of mathematics.                                                                                                                               |                         |
|                    | <b>PO 4</b>   | Understand the principals of engineering and apply them                                                                                                                          | 2                       |
|                    |               | to brakes and clutches in order to observe the effect of                                                                                                                         |                         |
|                    |               | friction.                                                                                                                                                                        |                         |
| CO 4               | <b>PO 1</b>   | Apply the mathematical principles and engineering                                                                                                                                | 2                       |
|                    |               | <b>fundamentals</b> to get the solutions in friction engineering                                                                                                                 |                         |
| CO 5               | <b>PO 1</b>   | Display the fundamentals of angineering and science in                                                                                                                           | 2                       |
| 005                | rui           | identifying the coefficient of fluctuation of speed and torque                                                                                                                   | 2                       |
|                    |               | of various cylindered engines                                                                                                                                                    |                         |
| <b>CO 6</b>        | PO 2          | Formulate the <b>problem statement</b> and <b>model the system</b>                                                                                                               | 3                       |
|                    | _             | for getting the solution for governors to regulate the speed                                                                                                                     |                         |
|                    |               | of machines                                                                                                                                                                      |                         |
|                    | <b>PO 4</b>   | Understand the technical concepts of dead weight and                                                                                                                             | 2                       |
|                    |               | spring loaded governors and interpret the equilibrium                                                                                                                            |                         |
|                    |               | conditions for various applications.                                                                                                                                             |                         |
|                    | PSO 1         | Understand, analyze, design and supervise the height of                                                                                                                          | 2                       |
| CO 7               |               | governors under various loading conditions.                                                                                                                                      | 2                       |
| 07                 | PO 2          | Identify the unbalanced force of various engines from the                                                                                                                        | 2                       |
|                    |               | the solution                                                                                                                                                                     |                         |
| CO 8               | <b>PO</b> 1   | <b>Derive</b> the characteristic equation of motion of one, two                                                                                                                  | 2                       |
| 000                | 101           | and multi degree of freedom systems by using the                                                                                                                                 | 2                       |
|                    |               | engineering fundamentals.                                                                                                                                                        |                         |
|                    | <b>PO 2</b>   | Determine the natural frequencies of free and forced un-                                                                                                                         | 3                       |
|                    |               | damped and damped vibration systems for analyzing the                                                                                                                            |                         |
|                    |               | given engineering problems and generate the solution.                                                                                                                            |                         |
|                    | PSO 1         | Understand and analyse the vibration displacements of                                                                                                                            | 2                       |
|                    |               | free and forced, longitudinal, transverse systems for                                                                                                                            |                         |
|                    | <b>DO 1</b>   | observing the vibration isolation and transmissibility                                                                                                                           | -                       |
| CO 9               | POI           | Apply the knowledge of <b>mathematics and science</b> to                                                                                                                         | 2                       |
|                    | DSO 1         | Understand and analyze the aritigal speeds of machine                                                                                                                            | 2                       |
|                    | 1501          | components under eccentric and non eccentric loadings                                                                                                                            | <u>ک</u>                |
| CO 10              | <b>PO 2</b>   | <b>Collect the data</b> by <b>identifying</b> the natural frequencies and                                                                                                        | 3                       |
|                    |               | amplitudes of real world free and forced vibration systems                                                                                                                       |                         |
|                    |               | and generate the solutions.                                                                                                                                                      |                         |

| Course      |   | Program Outcomes / Number of Vital Features |    |    |   |   |   |   |    |    |    |    |   |   | Program Specific<br>Outcomes /<br>Number of Vital<br>Features |  |  |
|-------------|---|---------------------------------------------|----|----|---|---|---|---|----|----|----|----|---|---|---------------------------------------------------------------|--|--|
| Outcomes    | 1 | 2                                           | 3  | 4  | 5 | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 1 | 2 | 3                                                             |  |  |
|             | 3 | 10                                          | 10 | 11 | 1 | 5 | 3 | 3 | 12 | 5  | 12 | 12 | 2 | 2 | 1                                                             |  |  |
| CO 1        | 2 | 4                                           | -  | -  | - | - | - | - | -  | -  | -  | -  | - | - | -                                                             |  |  |
| CO 2        | - | 3                                           | -  | -  | - | - | - | - | -  | -  | -  | -  | - | - | -                                                             |  |  |
| CO 3        | - | 4                                           | I  | 2  | - | - | - | - | -  | -  | -  | -  | - | - | -                                                             |  |  |
| <b>CO 4</b> | 2 | -                                           | -  | -  | - | - | - | - | -  | -  | -  | -  | - | - | -                                                             |  |  |
| CO 5        | 2 | -                                           | -  | -  | - | - | - | - | -  | -  | -  | -  | - | - | -                                                             |  |  |
| <b>CO 6</b> | - | 3                                           | -  | 2  | - | - | - | - | -  | -  | -  | -  | 2 | - | -                                                             |  |  |
| CO 7        | - | 2                                           | -  | -  | - | - | - | - | -  | -  | -  | -  | - | - | -                                                             |  |  |
| <b>CO 8</b> | 2 | 3                                           | -  | -  | - | - | - | - | -  | -  | -  | -  | 2 | - | -                                                             |  |  |
| <b>CO 9</b> | 2 | -                                           | -  | -  | - | - | - | - | -  | -  | -  | -  | 2 | - | -                                                             |  |  |
| CO 10       | - | 3                                           | -  | -  | - | - | - | - | -  | -  | -  | -  | - | - | -                                                             |  |  |

# XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO, PO & PSO MAPPING

## XIII. PERCENTAGE FOR KEY COMPETENCIES FOR CO-(PO, PSO):

| Course      | Program Outcomes/ Number of Vital Features |      |      |      |      |      |      |      |      |      |      |      |       | Program Specific<br>Outcomes /<br>Number of Vital<br>Features |      |  |
|-------------|--------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|---------------------------------------------------------------|------|--|
| Outcomes    | 1                                          | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 1     | 2                                                             | 3    |  |
|             | 3                                          | 10   | 10   | 11   | 1    | 5    | 3    | 3    | 12   | 5    | 12   | 12   | 2     | 2                                                             | 1    |  |
| CO 1        | 66.7                                       | 40.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00                                                          | 0.00 |  |
| CO 2        | 0.00                                       | 30.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00                                                          | 0.00 |  |
| CO 3        | 0.00                                       | 40.0 | 0.00 | 18.2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00                                                          | 0.00 |  |
| <b>CO 4</b> | 66.7                                       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00                                                          | 0.00 |  |
| <b>CO 5</b> | 66.7                                       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00                                                          | 0.00 |  |
| CO 6        | 0.00                                       | 30.0 | 0.00 | 18.2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.0 | 0.00                                                          | 0.00 |  |
| CO 7        | 0.00                                       | 20.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00                                                          | 0.00 |  |
| <b>CO 8</b> | 66.7                                       | 30.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.0 | 0.00                                                          | 0.00 |  |
| CO 9        | 66.7                                       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.0 | 0.00                                                          | 0.00 |  |
| CO 10       | 0.00                                       | 30.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00                                                          | 0.00 |  |

### XIV. COURSE ARTICULATION MATRIX ( CO-PO/PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0} - \mathbf{0} \leq \mathbf{C} \leq 5\%$ - No correlation;

**2** – 40 % <**C**< 60% –Moderate

 $1-5 < \!\! C \!\! \le \! 40 \ \! \% \!\! -$  Low/ Slight;

| $3-60\% \leq$ | <b>C</b> <100% - | – Substantial /High |
|---------------|------------------|---------------------|

| Course   |     | Program Outcomes |   |     |   |   |   |   |   |    |    |    |     | Program<br>Specific<br>Outcomes |   |
|----------|-----|------------------|---|-----|---|---|---|---|---|----|----|----|-----|---------------------------------|---|
| outcomes | 1   | 2                | 3 | 4   | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2                               | 3 |
| CO 1     | 3   | 1                | - | -   | - | - | - | - | - | -  | -  | -  | -   | -                               | - |
| CO 2     | -   | 1                | - | -   | - | - | - | - | - | -  | -  | -  | -   | -                               | - |
| CO 3     | -   | 1                | - | 1   | - | - | - | - | - | -  | -  | -  | -   | -                               | - |
| CO 4     | 3   | -                | - | -   | - | - | - | - | - | -  | -  | -  | -   | -                               | - |
| CO 5     | 3   | -                | - | -   | - | - | - | - | - | -  | -  | -  | -   | -                               | - |
| CO 6     | -   | 1                | - | 1   | - | - | - | - | - | -  | -  | -  | 2   | -                               | - |
| CO 7     | -   | 1                | - | -   | - | - | - | - | - | -  | -  | -  | -   | -                               | - |
| CO 8     | 3   | 1                | - | -   | - | - | - | - | - | -  | -  | -  | 2   | -                               | - |
| CO 9     | 3   | -                | - | -   | - | - | - | - | - | -  | -  | -  | 2   | -                               | - |
| CO 10    | -   | 1                | - | -   | - | - | - | - | - | -  | -  | -  | -   | -                               | - |
| TOTAL    | 15  | 7                |   | 2   |   |   |   |   |   |    |    |    | 6   |                                 |   |
| AVERAGE  | 3.0 | 1.0              |   | 1.0 |   |   |   |   |   |    |    |    | 2.0 |                                 |   |

#### **XV.** ASSESSMENT METHODOLOGIES –DIRECT

| CIE Exams               | PO 1,PO 2,<br>PO3,PSO1 | SEE Exams       | PO 1, PO 2,<br>PO 3,PSO 1 | Assignments  | PO 3 | Seminars      | PO 3,PSO 1 |
|-------------------------|------------------------|-----------------|---------------------------|--------------|------|---------------|------------|
| Laboratory<br>Practices | -                      | Student<br>Viva | -                         | Mini Project | -    | Certification | -          |
| Term Paper              | -                      |                 |                           |              |      |               |            |

#### **XVI. ASSESSMENT METHODOLOGIES-INDIRECT**

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

## XVII. SYLLABUS

| MODULE-I PRECESION, STATIC AND DYNAMIC FORCE ANALYSIS OF PLANAR<br>MECHANISMS                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precession: Gyroscopes, effect of processional motion on the stability of moving vehicles such as motor car, motor cycle, aero-planes and ships, static and dynamic force analysis of planar mechanisms: (Neglecting friction), Introduction to free body diagrams, conditions of equilibrium, two and three force members, inertia forces and D-Alembert's principle, planar rotation about a fixed centre. |
| MODULE-II CLUTCHES, BRAKES AND DYNAMOMETERS                                                                                                                                                                                                                                                                                                                                                                  |
| Clutches: Friction clutches, Single disc or plate clutch, multiple disc clutches, cone clutch and centrifugal clutch; Brakes and dynamometers: Simple block brakes, internal expanding brake, band brake of vehicle; Dynamometers absorption and transmission types, general description and method of operation.                                                                                            |
| MODULE-III TURNING MOMENT AND GOVERNORS                                                                                                                                                                                                                                                                                                                                                                      |
| Turning moment diagrams and flywheels: turning moment: Inertia torque, angular velocity and acceleration of connecting rod, crank effort and torque diagrams, fluctuation of energy; Design of flywheels.<br>Governors: Watt, Porter and Proell governors, spring loaded governors, Hartnell and Hartung with auxiliary springs, sensitiveness, isochronism and hunting                                      |
| MODULE-IV BALANCING OF ROTATORY AND RECIPROCATING MASSES                                                                                                                                                                                                                                                                                                                                                     |
| Balancing: Balancing of rotating masses, single and multiple-single and different planes-balancing of reciprocating masses, primary and secondary balancing-analytical and graphical methods; unbalanced forces and couples: Balancing of V-engines, multi cylinder, inline and radial engines for primary, secondary balancing and locomotive balancing.                                                    |
| MODULE-V MECHANICAL VIBRATIONS                                                                                                                                                                                                                                                                                                                                                                               |
| Vibrations: Free vibration of mass attached to a vertical spring, simple problems on forced damped vibration; Vibration isolation and transmissibility, whirling of shafts, critical speeds, torsional vibrations, two and three rotor systems.                                                                                                                                                              |
| Text Books:                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ol> <li>Thomas Bevan, "Theory of Machines", Pearson Education, 3<sup>rd</sup> Edition, 2009.</li> <li>S.S Ratan, "Theory of Machines", Tata McGraw-Hill, 4<sup>th</sup> Edition, 2014.</li> <li>R. L. Norton, "Kinematics and Dynamics of Machinery", McGraw-Hill, 1<sup>st</sup> Edition, 2009.</li> <li>P.L. Balleny, "Theory of Machines and Mechanisms", Khanna publishers, 2013.</li> </ol>            |
| Reference Books:                                                                                                                                                                                                                                                                                                                                                                                             |
| <ol> <li>J. S. Rao, R.V. Dukkipati, "Mechanism and Machine Theory", New Age Publication, 1<sup>st</sup> Edition, 2013.</li> <li>Uiker, Penock, Shigley, "Theory of Machines and Mechanisms", Oxford University Press, 4<sup>th</sup> Edition, 2013.</li> </ol>                                                                                                                                               |
| 3. R.S. Khurmi, Gupta, "Theory of Machines", S.Chand& Co, New Delhi, 14 <sup>th</sup> Edition, 2013.                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                              |

## XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Lecture<br>No | Topics to be covered                                    | Course<br>Outcomes | Reference |
|---------------|---------------------------------------------------------|--------------------|-----------|
| 1             | Introduction to Gyroscopes, angular motion, precession. | CO 1               | T2 17.2   |
| 2             | Determination of Gyroscopic couple, problems.           | CO 2               | T2 17.1   |

| Lecture<br>No | Topics to be covered                                                   | Course<br>Outcomes | Reference     |
|---------------|------------------------------------------------------------------------|--------------------|---------------|
| 3             | Effect of gyroscopic couple on stability of moving car.                | CO 2               | T2 17.8       |
| 4             | Effect of gyroscopic couple on stability of moving motorcycle.         | CO 2               | T2 17.6       |
| 5             | Effect of gyroscopic couple on stability of aero-plane.                | CO 1               | T2 17.3       |
| 6             | Effect of gyroscopic couple on stability of moving ship.               | CO 2               | T2 17.4       |
| 7             | Static and dynamic force analysis of planar mechanisms.                | CO 3               | T2 12.1       |
| 8             | Free body diagrams, problems.                                          | CO3                | T2 12.6       |
| 9             | Friction circle, Boundary friction.                                    | CO 3               | T2 8.2        |
| 10            | Introduction to Clutches, types.                                       | CO 4               | T2 8.9        |
| 11            | Introduction to Brakes, classification.                                | CO 4               | T2 15.1       |
| 12            | Introduction to dynamometers, types.                                   | CO 4               | T2 15.8       |
| 13            | Methods of operation of dynamometers power, Performance test.          | CO 4               | T2 15.9       |
| 14            | Calculation of brake torque, problems.                                 | CO 5               | T2<br>15.13   |
| 15            | Turning moment diagrams explanation.                                   | CO 5               | T2<br>13.12   |
| 16            | Inertia torque calculation for connecting rod.                         | CO 5               | T2<br>13.11   |
| 17            | Problems on inertia torque calculation for connecting rod.             | CO 5               | T2 13.7       |
| 18            | Fluctuation of energy.                                                 | CO 5               | T2<br>13.13   |
| 19            | Flywheel and its function.                                             | CO 5               | R3<br>16.12   |
| 20            | Flywheel design                                                        | CO 5               | R3<br>16.18   |
| 21            | Problems on flywheel                                                   | CO 5               | R3<br>16.21   |
| 22            | Introduction to governors and their classification                     | CO 6               | T2:16.1       |
| 23            | Watt governor and Porter governor                                      | CO 6               | T2<br>16.3,4  |
| 24            | Proell governor, Hartnell and Hartung governors                        | CO 6               | T2:16.5,<br>6 |
| 25            | Problems on governors                                                  | CO 6               | T2:16.1<br>4  |
| 26            | sensitiveness, isochronisms and hunting, effort and power of governors | CO 6               | R318.12       |
| 27            | Balancing of rotating masses                                           | CO 7               | T2:21.2       |
| 28            | Problems on balancing of rotating masses.                              | CO 7               | T2:21.1       |
| 29            | Primary balancing of reciprocating masses.                             | CO 7               | T2:22.1       |
| 30            | Secondary balancing of reciprocating masses.                           | CO 7               | T2:22.2       |
| 31            | Higher balancing of reciprocating masses.                              | CO 7               | R3<br>22.10   |

| Lecture<br>No | Topics to be covered                                                     | Course<br>Outcomes | Reference   |
|---------------|--------------------------------------------------------------------------|--------------------|-------------|
| 32            | Locomotive balancing.                                                    | CO 7               | R322.4      |
| 33            | Graphical method of calculating forces and couples.                      | CO 7               | R3 22.3     |
| 34            | Balancing of Multi cylinder and V- Engines.                              | CO 7               | R3<br>22.13 |
| 35            | Balancing of radial engines.                                             | CO 7               | R3<br>22.12 |
| 36            | Introduction to vibrations and their classification.                     | CO 8               | T2.18.1     |
| 37            | Free vibrations of mass attached to vertical springs.                    | CO 8               | T2 18.6     |
| 38            | Transverse vibrations-Problems.                                          | CO 8               | R3 23.9     |
| 39            | Frequency of transverse vibration for concentrated and distributed loads | CO 8               | R3<br>23.11 |
| 40            | Dunkerley's method for calculating frequency.                            | CO 8               | R3 23.4     |
| 41            | Raleigh's method for frequency calculations.                             | CO 8               | R3 23.5     |
| 42            | Critical speeds, Whirling of shafts, problems.                           | CO 8               | R3<br>23.12 |
| 43            | Torsional vibrations- one rotor system.                                  | CO 8               | R3 24.4     |
| 44            | Torsional vibrations- two rotor system.                                  | CO 8               | R3 24.5     |
| 45            | Torsional vibrations- three rotor system.                                | CO 8               | R3 24.6     |
| 46            | Problems on torsional vibrations.                                        | CO 8               | R3 24.4     |
| 47            | Whirliing speed of shaft                                                 | CO 9               | R3<br>23.18 |
| 48            | Applying whirling speed in solving problems                              | CO 9               | R3<br>23.18 |
| 49            | Whirling speed of shaft of beams                                         | CO 9               | R323.23     |
| 50            | Applications of vibration transmissibility to real world problems        | CO 10              | R3<br>23.14 |

**Prepared by:** Dr. K Viswanath Allamraju, Professor

HOD, ME