SUCATION SOLBERT

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	DYNAMICS OF MACHINERY
Course Code	:	AMEB17
Program	:	B. Tech
Semester	:	FIVE
Branch		Mechanical
Section	:	A & B
Academic Year	:	2020 – 2021
Course Faculty	:	Dr. K Viswanath Allamraju, Professor

COURSE OBJECTIVES:

I	The concepts of precision, static and dynamic forces of planer mechanisms by neglecting
	friction of aero planes, sea vessels, auto mobiles and various force members.
II	The knowledge of engineering mechanics for identifying the coefficient of friction and
	engine speed of the various contact bodies (Clutches and Brakes) and speed controlled
	devices, variations of torques and fluctuation of speeds of IC engines.
III	The magnitude and direction of balanced mass for unbalanced rotary and reciprocating
	engines with the fundamentals of applied physics.
IV	Mathematical modelling of various degree of freedom systems to interpret the various
	vibration parameters.
V	The affluence of real world engineering problems and examples towards gaining the
	experience for how dynamics of machinery is applied in engineering practice.

COURSE OUTCOMES:

At the	e end of the course students are able to:	
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)
CO 1	Discuss the Gyroscopes, effect of precession motion on the stability of moving vehicles such as motor car, motor cycle, aero-planes and ships.	Understand
CO 2	Determine the angle of heel to avoid upside down of a two wheeler vehicle while taking in left and right turns.	Evaluate
CO 3	Illustrate the static and dynamic force analysis of two and three force members by graphical super position method.	Understand
CO 4	Apply the laws of friction on clutches, brakes and dynamometers to reduce the power losses for the effective torque transmission.	Apply
CO 5	Justify the importance of torque and fluctuation of speeds for single and multicylindered engines to increase the mechanical efficiency.	Evaluate
CO 6	Estimate the height of a governor to regulate the speed of a prime mover at various load conditions.	Apply

CO 7	Determine the balanced mass for unbalanced rotary and reciprocating engines by analytical and graphical methods.	Evaluate
CO 8	Develop a mathematical modelling of free and forced vibration systems under damped and un-damped conditions to avoid the vibratory damages of aero-mechanical-civil structures and electrical and electronic components at various operated frequencies.	Apply
CO 9	Use the resonance phenomenon to predict the critical or whirling or whipping speeds of various structures under vibrations to avoid catastrophic failures.	Analyze
CO 10	Apply the principles of dynamics of machinery to a real world problems for obtaining optimum solutions.	Apply

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	Course Outcome
		MODULE -I		
1	What do you mean by dynamics?	Dynamics refers to the branch of mechanics that deals with the movement of objects and the forces that drive that movement. In physics, dynamics is the study of bodies in motion and changes in that motion, and that idea can be applied to other areas as well.	Remember	CO1
2	What is the difference between dynamics and mechanics?	Mechanics deals with all interactions between the body with forces, and the resultant motion of the body. It's aim is to predict the nature of motion and rest under the action of forces. Mechanics is broader area of study, comprising of Dynamics and statics.	Remember	CO1
3	What are examples of dynamics?	Dynamics is defined as the branch of mechanics that deals with the effect of outside forces on something. An example of dynamics is how the moon affects the ocean waves. An example of dynamics are the effect of individual relationships on a group of friends.	Remember	CO1
4	What is gyroscope used for?	Its design consists of a freely-rotating disk called a rotor, mounted onto a spinning axis in the center of a larger and more stable wheel.	Remember	CO2
5	What is the principle of gyroscope?	When the gyroscope is applied with external torques or rotations about the given axis, the orientation can be measured by a precession phenomenon. When an object rotating about an axis is applied with external torque along a direction perpendicular to the rotational axis, the precession occurs.	Remember	CO 2
6	What is gyroscope couple?	The turning moment which opposes any change of the inclination of the axis of rotation of agyroscope.	Remember	CO 2
7 7	What is gyroscopic acceleration?	Angular Acceleration is defined as the rate of change of angular velocity with respect to time. It is a Vector quantity. The direction of acceleration vector is not necessarily the same as the displacement and velocity vectors.	Remember	CO 2

8	What is	Whenever an axis of rotation or spin axis	Remember	CO 2
O	reactive gyroscopic	changes its direction a gyroscopic couple	Kemember	CO 2
	couple?	will act about the third axis. A reactive		
	coupie.	gyroscopic couple will be experienced by		
		bearings through the shaft.		
9	What is	The phenomenon in which the axis of a	Remember	CO 2
7	gyroscopic torque?	spinning object (e.g., a gyroscope)	Remember	CO 2
	gyroscopic torque:	describes a cone in space when an external		
		torque is applied to it. The phenomenon is		
		commonly seen in a spinning toy top, but		
10	XX71	all rotating objects can undergo precession.	TT 1 . 1	CO 2
10	What is	Gyroscopic effect is ability (tendency) of	Understand	CO 2
	gyroscopic	the rotating body to maintain a steady		
	effect?	direction of its axis of rotation. The		
		gyroscopes are rotating with respect to the		
		axis of symmetry at high speed.		
11	What do you mean by	When the inertia forces are neglected in	Remember	CO 2
	static force analysis?	comparison to the externally applied load,		
		one may go for static force analysis. If the		
		body is under equilibrium condition, then		
		this equilibri is known as static equilibrium		
		and this condition is applicable in many		
		machines where the movement is relatively		
		slow.		
12	What is static	(Static = not moving). Dynamic force	Remember	CO1
	and dynamic force?	is the force a moving object puts on an		
		object when it hits it The problem		
		is that "support" relates to a static force.		
		"stopping" relates to a dynamic force.		
		Dynamic forces from a falling object		
		are vastly higher		
		than static forces from the same object.		
12	What is static	A static force refers to a constant force	Remember	CO 3
13	force?		Remember	CO 3
	Torce?	applied to a stationary object. A static force		
		is too weak to move an object because it is		
		being countered by equally strong		
		opposite forces The force is then a		
		kinetic force that is being resisted by kinetic		
		friction.		
14	What is an	A static force refers to a constant force	Remember	CO 3
	example of static	applied to a stationary object. A static forceis		
	force?	too weak to move an object because it is		
		being countered by equally strong opposite		
		forces. The most common example of a static		
		force is static friction on a stationary object.		
15	What is the	Dynamics is the study of forces on moving	Remember	CO 3
	difference between	bodies. Application of forces when they are		
	static and dynamic	in motion. Statics means study of all the		
	mechanics?	forces couples moments etc. for a stationary		
		object which is in the state of rest.		
		Whereas Dynamics deals with study of all		
		the forces when object is in motion.		
	<u></u>			
1	***	MODULE - II	D 1	COC
1	What is clutch	Centrifugal clutch, hydraulic torque	Remember	CO2
	and its types?	converter and fluid coupling includes in it.		
	İ	This type of clutch is always used with the		

	T		<u> </u>	
		automatic transmission box. These are all		
		types of clutches used in automobile		
		industries to transmit power.		
2	What is the	Function of transmitting the torque from	Remember	CO2
	purpose of	the engine to the drive train. Smoothly		
	clutch?	deliver the power from the engine to enable		
		smooth vehicle movement. Perform quietly		
		and to reduce drive-related		
		vibration.		
3	What causes the	Clutch Failure: Common Causes and	Remember	CO2
	clutch to	Replacement Advice The friction that		
	break?	is created between the clutch disc, pressure		
		plate and flywheel when the clutch		
		engages generates heat and wear, and the		
		more the driver "rides" the clutch pedal or		
		lets it slip excessively, the hotter the clutch		
		disc gets and the faster it wears.		
4	How do	Most cars use friction clutch operated either	Remember	CO 4
	clutches work?	by fluid (hydraulic) or, more commonly, by		
		a cable. When a car is moving under power,		
		the clutch is engaged. A pressure plate		
		bolted to the flywheel exerts constant force		
		, by means of a diaphragm spring, on the		
		driven plate.		
5	Does the	You can slow the car down almost to a stop	Remember	CO 4
	clutch stop the car?	with engine alone, with no brakes, although		
		it will be slow. The other reason is the same		
		racing car drivers always keep the car in		
		proper gear. When you brake, you press the		
		clutch, and go into neutral.		
6	How long does a	It's a difficult question to answer really, as it	Remember	CO 4
	clutch last?	all depends on your driving style. Most		
		clutches are designed to last approximately		
		60,000 miles before they need to be		
		replaced. Some may need replacing at		
		30,000 and some others can keep going well		
		over 100,000 miles.		
7	Do you have	There is no need to press clutch every	Remember	CO2
	to press the clutch	time you press the brake pedal. You only		
	when going into	press clutch when you switch gears, put the		
	neutral?	car into neutral speed or come to a stop.		
		Whenever you break it is recommended to		
		avoid braking in neutral speed.		
8	What is brake	Deceleration: The main function of the	Remember	CO2
	function?	brake system is to decelerate or decrease the		
		speed of a vehicle. By stepping on the brake		
		pedal, the brake pads compress against the		
		rotor attached to the wheel, which then		
		forces the vehicle to slow down due to		
		friction.		
9	What is types	There are basically two types of brakes	Remember	CO 2
	of brake?	Drum Brake and Disc Brake. they vary in		
		their construction. Disc Brakes:- Disc		
		brakes consist of a brake rotor which is		
		attached directly to the wheel The		
		_		
- 1 -				

		friction between the mode and the notes		
		friction between the pads and the rotor causes the vehicle to slow and stop.		
10	How do breaks work?	As the pedal moves down, it pushes a class 2 lever (a kind of simple machine), increasing your pushing force. The lever pushes a piston (blue) into a narrow cylinder filled with hydraulic brake fluid (red) When the brake pad touches the brake disc, friction between the two generates	Remember	CO 2
		heat (red COud).		
11	Why do brakes stop working when hot?	This is the most common and main cause of brake fade. his heat buildup causes the friction surfaces of the brake pads and rotor to stop working correctly.	Remember	CO 4
12	Is brake fade permanent?	Loss of stopping power, or fade, can be cause friction fade, mechanical fade, or fluid fade. Disc brakes are much more resistant to brake fade because the heat can be vented away from the rotor and pads more easily, and have come to be a standard feature in front brakes for most vehicles.	Understand	CO 4
13	What is a dynamometer and how does it work?	A dynamometer, or "dyno" for short, is a device for measuring force, moment of force (torque), or power. For example, the power produced by an engine, motor or other rotating prime mover can be calculated by simultaneously measuring torque and rotational speed (rpm).	Understand	CO 4
14	Dynamometer	A dynamometer is a device used for measuring the torque and brake power required to operate a driven machine.	Remember	CO 4
15	Why dynamometer is used?	A dynamometer or "dyno" for short, is a device for measuring force, torque, or power. For example, the power produced by an engine, motor or other rotating prime mover can be calculated by simultaneously measuring torque and rotational speed (RPM).	Remember	CO4
		MODULE - III		
1	What are the uses of turning moment diagram?	Turning Moment (Or Crank Effort) Diagram (TMD) Turning moment diagram is a graphical representation of turning moment or torque (along Y-axis) versus crank angle (X-axis) for various positions of crank. Uses of TMD 1. The area under the TMD gives the work done per cycle.	Remember	CO 5
2	What is the difference between flywheel and governor?	Flywheel stores rotational energy when the mechanical energy supplied is more than that's required for operation, whereas a governor regulates the fuel supply according to the varying load conditions. While hypothetically both serve the same	Remember	CO 5

		purpose, that is speed control, they do it		
		very differently.		
3	What is mean resisting torque?	The resisting torque is the maximum torque above which the flywheel starts to rotate. Generally fly wheel has ver large mass, so a greater amount of torque is required to rotate the flywheel.	Remember	CO 5
4	What is fluctuation of energy?	Fluctuation of energy, co-efficient of fluctuation of energy, co-efficient of fluctuation speed,maximum fluctuati on of energy. Answer: Fluctuations of energy: The variations of energy above and below the mean resisting torque line are called fluctuations of energy.	Remember	CO 5
5	Where is flywheel used?	For dynamic balancing of the engine and to store energy. A flywheel is a rotating mechanical device that is used to storerotational energy. Flywheels have an inertia called the moment of inertia and thus resist changes in rotational speed.	Remember	CO 5
6	How does a flywheel Work?	A flywheel is a mechanical device specifically designed to efficiently store rotational energy. Flywheels resist changes in rotational speed by their moment of inertia For example, flywheels are used in reciprocating engines because the active torque from the individual pistons is intermittent. Energy storage systems.	Remember	CO 5
7	What is meant By turning moment?	Moment. The turning effect of a force is known as the moment. It is the product of the force multiplied by the perpendicular distance from the line of action of the force to the pivot or point where the object will turn.	Remember	CO 5
8	Why flywheel is used in punching machine?	A flywheel is the heavy rotating mass which is placed between the power source and the driven machine to act as a reservoir of energy. It is used to store the energy when the demand of energy of energy is less and deliver it when the demand of energy is high.	Remember	CO 5
9	How energy is stored in flywheel?	In batteries, initially energy is stored by other electrical energy sources or energy is stored from a result of some chemical reaction. Flywheel energy storage can be compared to the battery in the same way. The flywheel energy storage system uses electrical energy and stores it in the form of kinetic energy.	Remember	CO 5
10 6 L P a	What is Governor and its type?	Governor is a device used to maintain the speed of an engine within specified limits when the engine works in varying of different loads. Based on the source of controlling force, the governors can be classified into two types. Governor types are centrifugal governors and inertia governors.	Remember	CO 6

- 11		X 1	D 1	GO (
11	How does	Like many functions on modern, fuel-	Remember	CO 6
	speed governor work?	injected cars, speed limiters operate		
	WOIK!	through electronic sensors and the engine computer. Once you reach a pre-		
		determined top speed, the computer steps		
		in and restricts the flow of air and fuel to		
		the engine and even the sparks that cause		
		combustion.		
12	What is the	The functions of a governor is to regulate	Remember	CO 5
	main function of	the mean speed of an engine, when there		
	governor?	are variations in the load. When the load on		
		an engine increases, its speed decreases,		
		therefore it becomes necessary to increases		
		the supply of working fluid.		
13	What is the	A centrifugal governor is a specific type of	Remember	CO 6
	Purpose of governor?	governor with a feedback system that		
		controls the speed of an engine by		
		regulating the flow of fuel or working		
		fluid, so as to maintain a near- constant		
		speed. It uses the principle of proportional		
1 /	What is the	control.	D 1	CO 7
14	What is the difference between	Flywheel stores rotational energy when the mechanical energy supplied is more than	Remember	CO 5
	flywheel and	that's required for operation, whereas a		
	governor?	governor regulates the fuel supply		
	governor:	according to the varying load conditions.		
		While hypothetically both serve the same		
		purpose, that is speed control, they do it		
		very differently.		
15	Where is flywheel	For dynamic balancing of the engine and to	Remember	CO 5
	used?	store energy. A flywheel is a rotating		
		mechanical device that is used to store		
		rotational energy. Flywheels have an inertia		
		called the moment of inertia and thus resist		
		changes in rotational speed.		
		MODULE - IV		
1	Why do we do	A rotating system of mass is in dynamic	Remember	CO 7
	Balancing of rotating	balance when the rotation does not produce		
	masses?	any resultant centrifugal force or couple		
		If a system is initially unbalanced, to avoid		
		the stress upon the bearings caused by the		
		centrifugal couple, counterbalancing		
	What is state	weights must be added.	D 1	CO 7
2	What is static	Static Balancing A rotating mass is	Remember	CO 7
	Balancing of rotating masses?	said to be statically balanced if the		
	masses!	rotating mass can rest, without turning, at any angular position in its bearings. This		
		condition is attained when the sum of the		
		centrifugal forces on the rotating mass due		
		to unbalanced masses is zero in any radial		
		direction.		
3	How the different	When several masses rotate in different	Remember	CO 7
	masses rotating in	planes, the centrifugal forces, in addition to		
	different planes are	being out of balance, also form couples. A		
	balanced?	system of rotating masses is in dynamic		
		balance when there does not exist any		

		resultant centrifugal force as well as resultant couple.		
4	Why is balancing necessary?	Balancing of rotating parts is necessary for every engine, only in high speed engines it becomes very important. The force exerted by the rotating parts is proportional to the square of the rotational speed, omega If the rotating parts are not balanced, then the vibrations caused by the parts will be too much.	Remember	CO 7
5	Why Balancing of dynamic forces are necessary?	The balancing of rotating bodies is important avoid vibration. Dynamic and Static Balancing in Heavy Industrial machinery such as generators and motors can cause catastrophic failure, as well as noise and discomfort. To help with balancing, it involves simply moving the centre of gravity to the centre of rotation.	Remember	CO 7
6	What is rotating mass?	Rotating unbalance is the uneven distribution of mass around an axis of rotation. Arotating mass, or rotor, is said to be out of balance when its center of mass (inertia axis) is out of alignment with the center of rotation (geometric axis).	Remember	CO 7
7	What are the two types of wheel balancing?	There are two types of wheel balancing, static and dynamic.	Remember	CO 7
8	Which balancing exercise is best for improving dynamic balance?	Balance is especially important for older adults hoping to reduce the risk of falls and injuries. Core stability is essential to both static and dynamic balance. Unfortunately, many traditional core-training exercises, such as crunches and leg raises, do little to improve stability.	Remember	CO 7
9	What is Reference plane in balancing?	When several masses revolve in different planes, they may be transferred to are ference plane and this reference plane is a plane passing through a point on the axis of rotation and perpendicular to it. the couples about the reference plane must balance i.e., the resultant couple must be zero.	Remember	CO 7
10	Why is a shaft dynamically balanced at one rotational speed also balanced at any other speed?	A shaft dynamically balanced at one rotational speed is also balanced at any other speed because the tangential velocity is constant. This means that only the acceleration due to changes of direction will affect the dynamical balance. It also shows that a shaft statically balance may also be dynamic ally balance.	Remember	CO 7
11	Is balancing an engine necessary?		Remember	CO 7

		D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Balancing helps an engine run smoother with		
		less vibration which creates less havoc on		
		main bearings and helps things last longer.		
12	What are the causes	As machine speed increases, the effects of	Remember	CO 7
	and Effect of	imbalance become greater. Imbalance can		
	vibration?	severely reduce bearing life as well as		
		cause undue machine vibration.		
		Misalignment: Vibration can result when		
		machine shafts are out of line.		
13	How do you	To calculate torque, start multiplying the	Remember	CO 7
	calculate torque to	mass of the object exerting force by the		
	rotate a mass?	acceleration due to gravity, which is 9.81.		
		When the force is COckwise, its torque is		
		negative, and when it's moving		
		counterCOckwise, it's positive.		
14	How do you	center of mass formula to find the	Remember	CO 7
17	find the center of	exact location of the center of mass	Kememoer	007
	mass?	between a system of objects, you add all		
	111455;	the masses times their positions and		
		divide by the total mass, the position		
		can be measured relative to any point you		
		call X equals zero and the number you get		
		out of that.	1 _	
15	How are mass and	Rotational inertia plays a similar role in	Remember	CO 7
	rotational inertia	rotational mechanics to mass in linear		
	related?	mechanics. Indeed, the rotational inertia of		
		an object depends on its mass. It also		
		depends on the distribution of that mass		
		relative to the axis of rotation.		
		relative to the axis of rotation. MODULE - V		
1	Period of	MODULE - V	Remember	CO 8
1	Period of oscillation.	MODULE - V The time taken to complete one cycle of	Remember	CO 8
1	Period of oscillation.	MODULE - V The time taken to complete one cycle of motion is known as the period of oscillation	Remember	CO 8
1		MODULE - V The time taken to complete one cycle of motion is known as the period of oscillation τ =2 π / ω . Time period and is denoted by τ	Remember	CO 8
1		MODULE - V The time taken to complete one cycle of motion is known as the period of oscillation τ =2 π / ω . Time period and is denoted by τ Rotate through an angle of 2 π The circular	Remember	CO 8
	oscillation.	MODULE - V The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of 2 π The circular frequency ω		
1 2	oscillation. Frequency of	MODULE - V The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of 2 π The circular frequency ω The number of cycles per unit time is called	Remember	CO 8
2	oscillation. Frequency of oscillation.	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of 2 π The circular frequency ω The number of cycles per unit time is called the frequency of oscillation	Remember	CO 8
	oscillation. Frequency of	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions		
2	oscillation. Frequency of oscillation.	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1=A1 \sin \omega t x2=A2 \sin(\omega t)$	Remember	CO 8
2	oscillation. Frequency of oscillation.	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1 = A1 \sin \omega t \ x2 = A2 \sin(\omega t + \phi)$ The two harmonic motions given by	Remember	CO 8
2 3	oscillation. Frequency of oscillation. synchronous	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1=A1~\sin \omega t~x2=A2~\sin(\omega t+\phi)$ The two harmonic motions given by above Eqs. are called synchronous	Remember Remember	CO 8
2	oscillation. Frequency of oscillation.	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1=A1~\sin \omega t~x2=A2~\sin(\omega t+\phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself	Remember	CO 8
2 3	oscillation. Frequency of oscillation. synchronous	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1=A1~\sin \omega t~x2=A2~\sin(\omega t+\phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple	Remember Remember	CO 8
2	oscillation. Frequency of oscillation. synchronous	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1=A1~\sin \omega t~x2=A2~\sin(\omega t+\phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable	Remember Remember	CO 8
2	oscillation. Frequency of oscillation. synchronous	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1 = A1 \sin \omega t \ x2 = A2 \sin(\omega t + \phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion	Remember Remember	CO 8
2	oscillation. Frequency of oscillation. synchronous	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1=A1~\sin \omega t~x2=A2~\sin(\omega t+\phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable	Remember Remember	CO 8
2	oscillation. Frequency of oscillation. synchronous	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1 = A1 \sin \omega t \ x2 = A2 \sin(\omega t + \phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion	Remember Remember	CO 8
2	oscillation. Frequency of oscillation. synchronous	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1=A1~\sin \omega t \ x2=A2~\sin(\omega t+\phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion during an earthquake. If the motion is	Remember Remember	CO 8
2 3	oscillation. Frequency of oscillation. synchronous	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1 = A1 \sin \omega t \ x2 = A2 \sin(\omega t + \phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion during an earthquake. If the motion is repeated after equal intervals of time, it is called periodic motion.	Remember Remember	CO 8
3	oscillation. Frequency of oscillation. synchronous Periodic motion.	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1 = A1 \sin \omega t \ x2 = A2 \sin(\omega t + \phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion during an earthquake. If the motion is repeated after equal intervals of time, it is called periodic motion. The simplest type of periodic motion is	Remember Remember	CO 8 CO 8
3	oscillation. Frequency of oscillation. synchronous Periodic motion. Harmonic motion	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1 = A1 \sin \omega t \ x2 = A2 \sin(\omega t + \phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion during an earthquake. If the motion is repeated after equal intervals of time, it is called periodic motion. The simplest type of periodic motion is harmonic motion.	Remember Remember Remember	CO 8 CO 8
3 4	Frequency of oscillation. synchronous Periodic motion. Harmonic motion Distributed or	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1=A1~\sin \omega t~x2=A2~\sin(\omega t+\phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion during an earthquake. If the motion is repeated after equal intervals of time, it is called periodic motion. The simplest type of periodic motion is harmonic motion. Systems where mass, damping, and	Remember Remember	CO 8 CO 8
3 4	oscillation. Frequency of oscillation. synchronous Periodic motion. Harmonic motion	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1 = A1 \sin \omega t \ x2 = A2 \sin(\omega t + \phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion during an earthquake. If the motion is repeated after equal intervals of time, it is called periodic motion. The simplest type of periodic motion is harmonic motion. Systems where mass, damping, and elasticity were assumed to be present only at	Remember Remember Remember	CO 8 CO 8
3 4	Frequency of oscillation. synchronous Periodic motion. Harmonic motion Distributed or	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1 = A1 \sin \omega t \ x2 = A2 \sin(\omega t + \phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion during an earthquake. If the motion is repeated after equal intervals of time, it is called periodic motion. The simplest type of periodic motion is harmonic motion. Systems where mass, damping, and elasticity were assumed to be present only at certain discrete points in the system. In	Remember Remember Remember	CO 8 CO 8
2 3 4	Frequency of oscillation. synchronous Periodic motion. Harmonic motion Distributed or	The time taken to complete one cycle of motion is known as the period of oscillation $\tau=2~\pi/~\omega$. Time period and is denoted by τ Rotate through an angle of $2~\pi$ The circular frequency ω The number of cycles per unit time is called the frequency of oscillation Consider two vibratory motions denoted by $x1 = A1 \sin \omega t \ x2 = A2 \sin(\omega t + \phi)$ The two harmonic motions given by above Eqs. are called synchronous Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion during an earthquake. If the motion is repeated after equal intervals of time, it is called periodic motion. The simplest type of periodic motion is harmonic motion. Systems where mass, damping, and elasticity were assumed to be present only at	Remember Remember Remember	CO 8 CO 8

7	System of infinite degrees of freedom	A continuous system is also called a system of infinite degrees of freedom.	Remember	CO 8
8	Wave equation	The Equation $c^2 \frac{\partial^2 w}{\partial x^2} = \frac{\partial^2 w}{\partial t^2}$ is also known as the wave equation.	Remember	CO 8
9	Frequency or characteristic equation	Equation $\frac{\sin \frac{\omega l}{c} = 0}{\text{is called the}}$ frequency or characteristic equation.	Remember	CO 8
10	Eigenvalues	Equation is called the frequency or characteristic equation and is satisfied by severalvalues of ωThe values of ωare called the eigenvalues (or natural frequencies orcharacteristic values) of the problem.	Remember	CO 8
11	Fundamental mode	The mode corresponding to $n = 1$ is called the fundamental mode.	Remember	CO 8
12	Fundamental frequency.	The mode corresponding to $n = 1$ is called the fundamental mode, and ω_1 is called the fundamental frequency.	Remember	CO 8
13	Why do we Use Fourier transform? What is it used for?	Almost every imaginable signal can be broken down into a combination of simple waves This break down, and how much of each wave is needed, is the Fourier Transform. Fourier transforms (FT) take a signal and express it in terms of the frequencies of the waves that make up that signal.	Remember	CO 8
14	What is time domain analysis?	Time domain is the analysis of mathematical functions, physical signals or timeseries of economic or environmental data, with respect to time. In the time domain, the signal or function's value is known for all real numbers, for the case of continuous time, or at various separate instants in the case of discrete time.	Remember	CO 8
15	What is vibration analysis?	Vibration Analysis refers to the processmeasuring the vibration levels and frequencies of industrial machinery, and using that information to determine the "health" of the machine, and its components. This vibration can be measured, using a device called an accelerometer.	Remember	CO 8
16	Resonance	Whenever the natural frequency of vibration of a machine or structure coincides with the frequency of the external excitation, there occurs a phenomenon known as resonance	Remember	CO 8
17	vibration	Any motion that repeats itself after an interval of time is called vibration or oscillation	Remember	CO 8
18	generalized coordinates	The coordinates necessary to describe the motion of a system constitute a set of generalized coordinates. These are usually denoted as and may represent Cartesian and/or non-Cartesian coordinates	Remember	CO 8
19	Resonance	Whenever the natural frequency of vibration of a machine or structure	Remember	CO 8

		coincides with the frequency of the external excitation, there occurs a phenomenon known as resonance.		
20	Natural	If a system, after an initial disturbance, is	Remember	CO 8
	frequency.	left to vibrate on its own, the frequency with		
		which it oscillates without external forces is		
		known as its natural frequency.		

Signature of the Faculty

Signature of HOD