IARE TO LIBERTY

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	DYNAMIO	DYNAMICS OF MACHINERY					
Course Code	AMEB17	AMEB17					
Programme	B. Tech	B. Tech					
Semester	FIVE	FIVE					
Course Type	Core	Core					
Regulation	IARE - R1	8					
		Theory		Practical			
	Lectures	Tutorials	Credits	Laboratory	Credits		
Course Structure	2	1	3	-	-		
Chief Coordinator	Dr. K Visw	anath Allamraj	u, Professor				

COURSE OBJECTIVES:

I	The concepts of precision, static and dynamic forces of planer mechanisms by neglecting friction
	of aero planes, sea vessels, auto mobiles and various force members.
II	The knowledge of engineering mechanics for identifying the coefficient of friction and engine
	speed of the various contact bodies (Clutches and Brakes) and speed controlled devices, variations
	of torques and fluctuation of speeds of IC engines.
III	The magnitude and direction of balanced mass for unbalanced rotary and reciprocating engines
	with the fundamentals of applied physics.
IV	Mathematical modelling of various degree of freedom systems to interpret the various vibration
	parameters.
V	The affluence of real world engineering problems and examples towards gaining the experience
	for how dynamics of machinery is applied in engineering practice.

COURSE OUTCOMES:

At the end of the course the students should be able to:

Course Outcomes					
CO 1	Discuss the Gyroscopes, effect of precession motion on the stability of moving vehicles such as motor car, motor cycle, aero-planes and ships.	Understand			
CO 2	Determine the angle of heel to avoid upside down of a two wheeler vehicle while taking in left and right turns.	Evaluate			
CO 3	Illustrate the static and dynamic force analysis of two and three force members by graphical super position method.	Understand			
CO 4	Apply the laws of friction on clutches, brakes and dynamometers to reduce the power losses for the effective torque transmission.	Apply			

CO 5	Justify the importance of torque and fluctuation of speeds for single and multi	Evaluate
	cylindered engines to increase the mechanical efficiency.	
CO 6	Estimate the height of a governor to regulate the speed of a prime mover at	Apply
	various load conditions.	
CO 7	Determine the balanced mass for unbalanced rotary and reciprocating engines	Evaluate
	by analytical and graphical methods.	
CO 8	Develop a mathematical modelling of free and forced vibration systems	Apply
	under damped and un-damped conditions to avoid the vibratory damages of	
	aero-mechanical-civil structures and electrical and electronic components at	
	various operated frequencies.	
CO 9	Use the resonance phenomenon to predict the critical or whirling or whipping	Analyze
	speeds of various structures under vibrations to avoid catastrophic failures.	
CO 10	Apply the principles of dynamics of machinery to a real world problems for	Apply
	obtaining optimum solutions.	

MAPPING OF EACH CO WITH PO(s) & PSO(s):

Course	Program Outcomes								Program Specific Outcomes						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	4	-	-	-	-	-	-	-	-	-	-	-	-	1
CO 2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	-	4	-	2	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	-	3	-	2	-	-	-	-	-	-	-	-	2	-	-
CO 7	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	2	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 9	2	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 10	ı	3	-	-	-	-	-	ı	-	-	-	-	-	-	1

TUTORIAL QUESTION BANK

MODULE – I

PRECESSION, STATIC AND DYNAMIC FORCE ANALYSIS OF PLANAR MECHANISMS

PART - A (SHORT ANSWER QUESTIONS)

S. No	Question	Blooms Taxonomy Level	How does this Subsume the level below	Course Outcome
1	Explain static and dynamic force analysis of planar mechanisms.	Understand	This would require the learner to recall the free body diagram concepts and equilibrium equations, then describe the static and dynamic force analysis of a body which is subjected various forces.	CO 1
2	Explain the magnitude of gyroscopic couple in an automobile?	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of four and two wheelers as application	CO 1
3	Explain the gyroscopic effect in a rotating disc.	Understand	This would require the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of rotating disc when rotates about precessional axis.	CO 1
4	Explain precessional angular velocity of spin vector.	Understand	This would require the learner is to recall the fundamentals of angular momentum principles, then describe the precessional angular velocity of rotating disc when rotates about precessional axis.	CO 1
5	Demonstrate the expression for gyroscopic couple for a spinning disc.	Understand	This would require the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of rotating disc when rotates about precessional axis.	CO 1
6	Explain Dynamic force analysis of planar mechanisms.	Understand	•	CO 3
7	Explain static force analysis of planar mechanisms.	Understand	This would require the learner is to recall the fundamentals of equilibrium equations, then describe the static analysis of mechanisms	CO 3
8	Illustrate the plane of precession as applied to an aeroplane.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of air plane as application	CO 1

9	Explain the axis of precession as applied to four wheeler?	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of four and two wheelers as application	CO 1
10	Explain the plane of spinning of rotor of a ship.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of ship as application	CO 1
11	Explain the plane of reactive gyroscopic couple for motor cycle.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of two wheelers as application	CO 1
12	Explain the axis of spinning in the case of a ship.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of ship.	CO 1
13	Explain the plane of active gyroscopic couple for a two wheeler.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the plane of gyro couple of two wheelers as application	CO 1
14	Demonstrate the magnitude of Gyroscopic couple in motor cycle?	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple and its magnitude of two wheelers as application	CO 1
15	Explain the gyroscopic acceleration of a disc in rotation.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of disc.	CO 1
16	Demonstrate the expression for gyroscopic acceleration of a rotating disc.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the gyro couple of disc.	CO 1
17	Explain the angle of heel in the case of a two wheeler negotiating curve.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then explain the gyro couple of two wheeler.	CO 2
18	Explain the effect of gyroscopic couple on an automobile taking left turn.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then explain the gyro couple of two wheeler when taking left turn.	CO 2
19	Explain the effect of gyroscopic couple on a ship pitching upward.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then explain the gyro couple of ship	CO 1

20	With a neat sketch explain gyroscopic effect in a four wheeler.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then explain the gyro couple of four wheeler to maintain orientation or stabilize the vehicle.	CO 1
	PART - B (LO	NG ANSWEI	R QUESTIONS)	
1	Derive the equation for the magnitude of gyroscopic couple of disc.	Apply	This would require the learner to recall the concepts of angular momentum and its principles, then select them for deriving the gyroscopic couple equation.	CO 1
2	Explain applied torque and reaction Torque of a four wheeler.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then outline the gyro couple of four wheeler to maintain orientation or stabilize the vehicle.	CO 1
3	Build the gyroscopic effect on sea vessels with various free body diagrams.	Apply	This would require the learner to recall the concepts of angular momentum and its principles, then select them for constructing the gyroscopic torque equation of ship	CO 1
4	Explain the stability conditions of four wheelers with a free body diagram.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then outline the gyro couple of four wheeler to maintain orientation or stabilize the vehicle.	CO 1
5	Derive the relation for limiting speed of a two wheeler.	Apply	This would require the learner to recall the concepts of angular momentum and its principles, then select them for deriving the gyroscopic couple equation of a two wheeler.	CO 1
6	Explain the gyroscopic effects on the motion of an air craft while taking a turn.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then outline the gyro couple of aircraft to maintain orientation or stabilize the vehicle.	CO 1
7	Explain the plane of spinning, plane of precession and plane of gyroscopic couple with a free body diagrams.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then describe the three planes and three axes.	CO 1
8	Explain the effects on gyroscopic couple and centrifugal force make the rider.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles, then interpret the descriptions of gyro torque.	CO 1
9	Explain the axis of spinning, axis of precession and axis of gyroscopic couple.	Understand	The prerequisite for the learner is to recall the fundamentals of angular momentum principles,	CO 1

			then outline the terms used for	
			gyro couple.	
10	Explain the gyroscopic effect on a ship	Understand	The prerequisite for the learner is	CO 1
	during pitching.		to recall the fundamentals of	
			angular momentum principles,	
			then outline the gyro couple of	
			ship during simple harmonic	
			motion in a rough sea.	
11	Explain the applied and constraint	Understand	The prerequisite for the learner is	CO 3
	forces in relation to application of		to recall the fundamentals of	
	mechanisms.		coplanar concurrent forces to	
			describe the various action forces	
			and reaction forces when the body	
			is subjected to external forces.	
12	Explain the conditions for a body to be	Understand	The prerequisite for the learner is	CO 3
	in equilibrium under the action of two		to recall the fundamentals of	
	forces.		coplanar concurrent forces to	
			describe the various action forces	
			and reaction forces when the body	
			is subjected to external forces.	
13	Explain the conditions for a body to be	Understand	The prerequisite for the learner is	CO 3
	in equilibrium under the action of two		to recall the fundamentals of	
	forces and a torque.		coplanar concurrent forces to	
			describe the various action forces	
			and reaction forces when the body	
			is subjected to external forces.	
14	Explain the free body diagrams useful	Understand	The prerequisite for the learner is	CO 3
	in estimating the various forces acting		to recall the fundamentals of	
	on different members of the		coplanar concurrent forces to	
	mechanism.		describe the various action forces	
			and reaction forces when the body	
			is subjected to external forces.	
15	Explain the principle of superposition	Understand	The prerequisite for the learner is	CO 3
	as applicable to a system of forces in a		to recall the fundamentals of	
	mechanism.		coplanar concurrent forces to	
			describe the principle of super	
			position when the body is	
			subjected to external forces.	
16	Explain the principle of virtual work	Understand	The prerequisite for the learner is	CO 3
	with a neat sketch.		to recall the fundamentals of work	
			energy equations to describe the	
			virtual work when the body is	
			subjected to external forces.	
17	Explain the conditions for a body to be	Understand	The prerequisite for the learner is	CO 3
	in equilibrium under the action of four		to recall the fundamentals of	
	forces.		coplanar concurrent forces to	
			describe the various action forces	
			and reaction forces when the body	
			is subjected to external forces.	
18	Explain static equilibrium for a planar	Understand	The prerequisite for the learner is	CO 3
	mechanism.		to recall the fundamentals	
			equilibrium equations to describe	
			the various action forces and	
			reaction forces when the body is	
			subjected to external forces of	
			various mechanisms.	
19	Explain dynamic equilibrium of a	Understand	The prerequisite for the learner is	CO 3
	planar mechanism.		to recall the fundamentals	

20	Explain the conditions for a body to be in equilibrium under the action of three forces.	Understand	equilibrium equations to describe the various action forces and reaction forces when the body is subjected to external forces of various mechanisms. The prerequisite for the learner is to recall the fundamentals equilibrium equations to describe the various action forces and reaction forces when the body is subjected to external forces of various mechanisms.	CO 3
		,	QUESTIONS)	T
1	The mass of turbine rotor of a ship is 8 tonnes and has a radius of gyration of 0.6 meters. It rotates at 1800 rpm clockwise when looking from the front. Determine the gyroscopic effect if i) The ship is travelling at 100 km/h and steers to the right in a curve of 70 meters radius. ii) The ship is pitching and the bow descends with maximum velocity. The complete oscillation takes 20seconds. The pitching is simple harmonic and the total angular movement between the extreme positions is 10 degrees. iii) The ship is rolling and at a certain instant has an angular velocity of 0.03 radians/second clockwise when looking from bow.	Apply	This would require the learner to recall the formula and its parameters, then assigning correct values for the parameters and solving and converting units.	CO 1
2	The mass of the motor cycle along with the rider is 180 kg. The height of the centre of gravity of total mass is 600mm above the ground when it moves straight. Each wheel has a diameter of 700mm and mass moment of inertia of 2 kgm The engine rotates at a speed of 5 times the road wheel and engine rotating parts have mass moment of inertia of 0.2 kgm. Estimate the angle of heel if it is travelling at 50 km/h and is taking a turn of 30 meters radius.		This would require the learner to recall the formula and its parameters, then assigning correct values for the parameters and solving and converting units.	CO 2
3	A racing car has a mass of 2500kg.It has a wheel base of 2m, track width of 1m and height of C.G 300mm above ground level and lies midway between the front and rear axles. The engine flywheel rotates at 3000 rpm clockwise when viewed from the front. The moment of inertia of the flywheel is 4kgm and the moment of inertia of each wheel is 3kgm Estimate the reactions between the wheels and the ground when the car takes a curve of 15m towards right at 30 km/hr, taking into consideration the gyroscopic and centrifugal effects. Each wheel radius	Apply	This would require the learner to recall the formula of gyroscopic effect and its parameters, then assigning correct values for the parameters and solving and converting units.	CO 2

	is 400mm. The ratio of engine speed to			
4	back axle speed is 3:1. An aero-plane makes a complete half circle of 50 m radius towards left in a time of 20 seconds when flying at 200kmph. The rotary engine and the propeller of the plane has a mass of 400kg and a radius of gyration of 0.3 m. The engine rotor rotates at 2400 rpm clockwise when seen from the rear. Estimate the gyroscopic couple on the air craft and state its effect on the aero-plane.	Apply	This would require the learner to recall the formula of gyroscopic effect and its parameters, then assigning correct values for the parameters and solving and converting units.	CO 1
5	A uniform disc having a mass of 8 kg and radius of gyration 150 mm is mounted on one end of a horizontal arm of length 200 mm. The other end rotates freely in a bearing. The disc is given a clockwise spin of 240 rpm. Determine the motion of the disc if its arm remains horizontal.	Apply	This would require the learner to recall the formula of gyroscopic effect and its parameters, then assigning correct values for the parameters and solving the asked paramters	CO 1
6	Determine the required input torque on the crank of a slider crank mechanism for static equilibrium when the applied piston load is 1500N. The length of the crank and connecting rod are 40 mm and 100 mm respectively and the crank has turned through 45° from the inner dead center.	Apply	This would require the learner to recall the formula of gyroscopic effect and its parameters, then assigning correct values for the parameters and solving the asked paramters	CO 3
7	In a four link mechanism ABCD, the link AB revolves with an angular velocity of 10 radians/second and angular acceleration of 20 radians/s ² at the instant when it makes an angle of 45° with AD the fixed link. The lengths of the links are AB=CD=800mm, BC=1000mm and AD=1500mm. The mass of the links is 4kg/m length. Determine the torque required to overcome the inertia forces, neglecting the gravitational effects. Assume the links to be of uniform cross-section.	Apply	This would require the learner to recall the formula of gyroscopic effect and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 3
8	In a four bar mechanism, the link 3 and 4 are subjected to forces of 100N at an angle of 60° and 50N at an angle of 45°. The dimensions of the links are O ₂ O ₄ = 800 mm = 800 mm, O ₂ B=500 mm, BC=450 mm, O ₄ C= 300mm, BD=200 mm and O ₄ E=150mm. Estimate the shaft torque on link2 for static equilibrium of the mechanism along with the constraint forces.	Apply	This would require the learner to recall the formula of gyroscopic effect and its parameters, then assigning correct values for the parameters and solving the asked paramters	CO 3
9	A vertical petrol engine 150 mm diameter and 200 mm stroke has a connecting rod 350 mm long. The mass of the piston is 1.6 kg and the engine speed is 1800 rpm. On the expansion stroke with crank angle 30 from top	Apply	This would require the learner to recall the formula of gyroscopic effect and its parameters, then assigning correct values for the parameters and solving the asked paramters	CO 3

10	dead center, the gas pressure is 750 kN/m². Determine the net thrust on the piston. For the static equilibrium of a quick return mechanism of crank and slotted lever, determine the required input torque for a force of 5000N acting from left to right on the slider. The dimensions of various links are crank AB=120mm, fixed link AC =175 mm, connecting link DE=250mm and slotted link CD= 300 mm. The crank makes 60	Apply	This would require the learner to recall the formula of gyroscopic effect and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 3
	°with the vertical.	MODULE-I	T	
			DYNAMOMETERS	
	·		CR QUESTIONS)	
1	Explain the function of clutch which can be used in an automobile.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
2	Explain the function of brakes in a crane lifting loads.	Understand	This would require the learner to recall the principles of friction in order to describe the function of brakes	CO 4
3	Explain the different dynamometers based on absorption of friction.	Understand	This would require the learner to recall the principles of friction in order to describe the function of dynamo meter	CO 4
4	Describe with a neat sketch absorption type dynamometer.	Understand	This would require the learner to recall the principles of friction in order to describe the function of dynamo meter	CO 4
5	Explain the centrifugal clutch as applicable to a two wheeler.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
6	Explain the cone clutch as applied to a two wheeler.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
7	Describe a transmission type dynamometer.	Understand	This would require the learner to recall the principles of friction in order to describe the function of dynamo meter	CO 4
8	Describe an internal expanding brake with a neat sketch.	Understand	This would require the learner to recall the principles of friction in order to describe the function of brakes.	CO 4
9	Explain the expression for the friction torque for a flat collar bearing considering uniform wear.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
10	Explain the expression for the friction torque for a flat collar bearing considering uniform pressure.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4

		,		•
11	Explain the expression for the friction torque for a conical collar bearing considering uniform wear.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
12	Explain the expression for the friction torque for conical collar bearing considering uniform pressure.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
13	Describe the working of a single plate clutch and give its applications.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
14	Explain the working of a multi plate clutch with a neat sketch.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
15	Explain the expression for the friction torque for a centrifugal clutch.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
16	Explain the difference between brake and clutch?	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch.	CO 4
17	Describe briefly the various types of brakes.	Understand	This would require the learner to recall the principles of friction in order to describe the function of brakes	CO 4
18	Explain the relation for ratio of tensions in a band brake.	Understand	This would require the learner to recall the principles of friction in order to describe the function of brakes	CO 4
19	Explain the relation for friction torque in an internal expanding shoe brake.	Understand	This would require the learner to recall the principles of friction in order to describe the function of brakes	CO 4
20	Explain absorption type dynamometer with a neat sketch.	Understand	This would require the learner to recall the principles of friction in order to describe the function of dynamo meter	CO 4
	PART - B (LO	NG ANSWE	R QUESTIONS)	
1	Derive expression for the friction torque for a flat collar bearing considering uniform wear.	Apply	This would require the learner to recall the basics of friction and assign them to develop a mathematical modeling of bearing under various conditions	CO 4
2	Derive expression for the friction torque for a flat collar bearing considering uniform pressure.	Apply	This would require the learner to recall the basics of friction and assign them to develop a mathematical modeling of bearing under various conditions	CO 4
3	Derive expression for the friction torque for a conical collar bearing considering uniform wear.	Apply	This would require the learner to recall the basics of friction and assign them to develop a mathematical modeling of bearing under various conditions	CO 4

		1		,
4	Derive expression for the friction torque for a conical collar bearing considering uniform pressure.	Apply	This would require the learner to recall the basics of friction and assign them to develop a mathematical modeling of bearing	CO 4
			under various conditions	
5	Describe the working of a single plate clutch in an automobile.	Understand	recall the principles of friction in order to describe the function of	CO 4
			clutch	~~ .
6	Explain the working of a multi plate clutch with a neat sketch.	Understand	This would require the learner to recall the principles of friction in order to describe the function of clutch	CO 4
7	Derive expression for the friction torque for a centrifugal clutch.	Apply	This would require the learner to recall the basics of friction and assign them to develop a mathematical modeling of bearing under various conditions	CO 4
8	What is the difference between brake and clutch?	Understand		CO 4
9	Describe briefly the various types of brakes.	Understand		CO 4
10	What is self locking and self energized brake?	Understand	This would require the learner to recall the principles of friction in order to describe the function of brake	CO 4
11	Derive the relation for ratio of tensions in a band brake.	Apply	This would require the learner to recall the basics of friction and assign them to develop a mathematical modeling of bearing under various conditions	CO 4
12	Derive the relation for friction torque in an internal expanding shoe brake.	Apply	This would require the learner to recall the basics of friction and assign them to develop a mathematical modeling of bearing under various conditions	CO 4
13	Explain any one type of absorption dynamometer.	Understand	This would require the learner to recall the principles of friction in order to describe the function of dynamo meter.	CO 4
14	Explain any one type of transmission dynamometer	Understand		CO 4
15	Explain transmission type dynamometer with a neat sketch.	Understand		CO 4
16	Explain double band brake with a neat sketch.	Understand	This would require the learner to recall the principles of friction in order to describe the function of brake to reduce the speed.	CO 4
17	Explain shoe brake with a neat sketch. Derive the relation for ratio of tight side	Understand	This would require the learner to recall the principles of friction in	CO 4

	and slack side tensions.			
	and stack side tensions.		order to describe the function of	
			brake to reduce the speed	
18	Explain internal expanding band brake	Understand		CO 4
	with a neat sketch.		recall the principles of friction in	
			order to describe the function of	
			brake to reduce the speed	
19	Discuss the effectiveness of a band	Understand		CO 4
	brake under various conditions.		recall the principles of friction in	
			order to describe the function of	
			brake to reduce the speed	
20	What are various types of brakes?	Understand		CO 4
	Describe briefly.		recall the principles of friction in	
			order to describe the function of	
			brake to reduce the speed.	
	PART - C (CRITIC	CAL THINK	AING QUESTIONS)	
1	<u> </u>		· · · · · · · · · · · · · · · · · · ·	- CO 1
1	Determine the axial force required to	Apply	This would require the learner to	CO 4
	engage a cone clutch transmitting		recall the formula of coefficient of	
	20kW of power at 750 rpm. Average friction diameter of the cone is		friction and torque and its	
			parameters, then assigning correct	
	400mm and average pressure intensity 60 kN/m ² . Semi cone angle is 100 and		values for the parameters and	
	coefficient of friction is 0.25.Also		solving the asked parameters	
	Estimate the width of the friction			
	cone.			
2	A band brake acts on 3/4th of a	Apply	This would require the learner to	CO 4
2	circumference of a brake drum of 450	Apply	recall the formula of coefficient of	CO 4
	mm diameter which is keyed to a		friction and torque and its	
	shaft. The band brake provides a		parameters, then assigning correct	
	braking torque of 225 Nm. One end of		values for the parameters and	
	the lever is attached to a fulcrum pin		solving the asked parameters	
	of the lever and the other end is		gorving the using parameters	
	attached to a pin 100 mm from the			
	fulcrum. If the operating force is			
	applied at 500 mm from the fulcrum			
	and coefficient of friction is 0.25,			
	Estimate the operating force when the			
	drum rotates in Clock-wise direction			
	and anti- clockwise direction.			
3	In a vertical belt transmission	Apply	This would require the learner to	CO 4
	dynamometer, the diameter of the		recall the formula of coefficient of	
	driving pulley rotating at 1500 rpm is		friction and torque and its	
	80 mm. The centre distance of the		parameters, then assigning correct	
	intermediate pulley from the fulcrum		values for the parameters and	
	is also 80 mm each. The weighing pan		solving the asked parameters	
	on the lever is at a distance of 250			
	mm. Estimate the power transmitted			
	when a mass of 20kg is required on			
	the pan including its own mass.			
4	The following data refer to a rope	Apply	This would require the learner to	CO 4
	brake dynamometer in a laboratory		recall the formula of coefficient of	
	experiment. Diameter of the		friction and torque and its	
	flywheel=1m, Diameter of the		parameters, then assigning correct	
	rope=10 mm, Dead weight on the		values for the parameters and	
	brake=50 kg, Speed of the engine		solving the asked parameters	
	=180 rpm, Spring balance			
	reading=120 N, Estimate the power of			
	the engine.			

5	A conical pivot supports a load of $20kN$, cone angle is 120^0 and intensity of pressure normal to the cone is $0.3N/mm^2$. The outer diameter is twice the inner diameter. Estimate the outer and inner radii of bearing surface if the shaft rotates at 200 rpm and μ = 0.1 . Estimate the power absorbed in friction assuming uniform wear.	Apply	This would require the learner to recall the formula of coefficient of friction and torque and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 4
6	A bicycle and rider, travelling at 12 kmph on a level road have a mass of 105 kg. A brake is applied to the rear wheel which is 800 mm in diameter. The pressure on the brake is 80 N and the coefficient of friction is 0.06. Estimate the distance covered by the bicycle and number of turns of its wheel before coming to rest.	Apply	This would require the learner to recall the formula of coefficient of friction and torque and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 4
7	A simple band brake is applied to a drum of 560 mm diameter which rotates at 240 rpm. The angle of contact of the band is 270 degree. One end of the band is fastened to a fixed pin and the other end to the brake lever, 140 mm from the fixed pin. The brake lever is 800 mm long and is spaced perpendicular to the diameter that bisects the angle of contact. Assuming the coefficient of friction is 0.3, determine the necessary pull at the end of the lever to stop the drum if 40 kW of power is being absorbed. Also Estimate the width of the band if its thickness is 3 mm and the maximum tensile stress is 40 N/mm ² .	Apply	This would require the learner to recall the formula of coefficient of friction and torque and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 4
8	A band and block brake has 14 blocks. Each block subtends an angle of 14 degree at the center of the rotating drum. The diameter of the drum is 750 mm and the thickness of the blocks is 65 mm. The two ends of the band are fixed to the pins on the lever at distances of 50 mm and 210 mm from the fulcrum on the opposite sides. Determine the least force required to be applied at the lever at a distance of 600 mm from the fulcrum if the power absorbed by the blocks is 180 kW at 175 rpm. Coefficient of friction between the blocks and the drum is 0.35.	Apply	This would require the learner to recall the formula of coefficient of friction and torque and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 4
9	A simple band brake is applied to a drum of 500 mm diameter which rotates at 200 rpm. The angle of contact of the band is 260 degree. One end of the band is fastened to a fixed pin and the other end to the brake lever, 130 mm from the fixed pin. The	Apply	This would require the learner to recall the formula of coefficient of friction and torque and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 4

10	brake lever is 700 mm long and is spaced perpendicular to the diameter that bisects the angle of contact. Assuming the coefficient of friction is 0.3, determine the necessary pull at the end of the lever to stop the drum if 30 kW of power is being absorbed. Also Estimate the width of the band if its thickness is 4 mm and the maximum tensile stress is 40 N/mm². A band and block brake has 14 blocks. Each block subtends an angle of 14 degree at the center of the rotating drum. The diameter of the drum is 700 mm and the thickness of the blocks is 60 mm. The two ends of the band are fixed to the pins on the lever at distances of 50 mm and 210 mm from the fulcrum on the opposite sides. Determine the least force required to be applied at the lever at a distance of 600 mm from the fulcrum if the power absorbed by the blocks is 180 kW at 175 rpm. Coefficient of friction between the blocks and the drum is	Apply	This would require the learner to recall the formula of coefficient of friction and torque and its parameters, then assigning correct values for the parameters and solving the asked parameters.	CO 4
	0.35.			
		MODULE	E-III	
	TURNING MO	OMENT ANI	O GOVERNORS	
	PART - A (SHO	RT ANSWE	R QUESTIONS)	
1	Explain the turning moment diagram with a neat sketch of an engine.	Understand	This would require the learner to recall the concepts of torque and then describe the relation between torque and angle of rotation	CO 5
2	Explain a spring loaded governor and give its application.	Understand	This would require the learner to recall the concepts of working of governor and then describe the spring loaded governors with applications.	CO 6
3	Explain the various types of governors used for regulating speed?	Understand	This would require the learner to recall the concepts of torque and then describe the various types for regulating speed.	CO 6
4	Explain the fluctuation of energy for a multi-cylinder engine.	Understand	This would require the learner to recall the angular velocities and kinetic energy then describe the fluctuation of energy of various cylinder engines	CO 6
5	Explain the coefficient of fluctuation of speed for an engine.	Understand	This would require the learner to recall the angular velocities and kinetic energy then describe the coefficient of fluctuation of energy of various cylinder engines	CO 5
6	Explain the function of a fly wheel in a rock crusher.	Understand	This would require the learner to recall the angular velocities and kinetic energy then describe the	CO 5

kinetic energy then describe the

			function of flywheel of rock	
		** .	crusher.	
7	Explain the function of a governor.	Understand	This would require the learner to recall the basics of engineering mechanics then describe the	CO 6
-		** 1	function of governor.	
8	Explain the equilibrium speed of a Porter governor?	Understand	This would require the learner to recall the basics of engineering mechanics then describe the equilibrium speed of a porter governor.	CO 6
9	Explain governor differ from that of flywheel.	Understand	This would require the learner to recall the function of governor and flywheel then describe the difference between them.	CO 5
10	Explain the function of flywheel in a punching press.	Understand	This would require the learner to recall the principle of working of flywheel then describe the function in punching press.	CO 5
11	Explain the function of a Watt governor.	Understand	This would require the learner to recall the equilibrium equations then describe the function of watt governor.	CO 6
12	Explain the isochronism of a Porter governor.	Understand	This would require the learner to recall the equilibrium equations then describe the function of watt governor.	CO 6
13	Explain the effort and power of a Proell governor.	Understand	This would require the learner to recall the equilibrium equations then describe the function of proell governor.	CO 6
14	Explain a Hartnell governor with a neat sketch.	Understand	This would require the learner to recall the equilibrium equations then describe the function of Hartnell governor.	CO 6
15	Describe Hartung governor with a neat sketch?	Understand	This would require the learner to recall the equilibrium equations then describe the function of Hartung governor.	CO 6
16	Explain the function of a Porter governor?	Understand	This would require the learner to recall the equilibrium equations then describe the function of Porter governor.	CO 6
17	Explain Proell governor with a neat sketch.	Understand	This would require the learner to recall the equilibrium equations then describe the function of Proell governor.	CO 6
18	Explain the equation for calculating the equilibrium speed of a Porter governor	Understand	This would require the learner to recall the equilibrium equations then describe the function of Porter governor.	CO 6
19	Explain the term hunting in the case of governors.	Understand	This would require the learner to recall the equilibrium equations then describe the hunting of governor.	CO 6
20	Explain the terms stability and insensitiveness in governors.	Understand	This would require the learner to recall the equilibrium equations	CO 6

			then describe the stability and	
			insensitiveness of governor.	
	PART - B (LO)	NG ANSWEI	R QUESTIONS)	
1	Explain the D'Alembert's principle	Understand		CO 6
1	with the concepts of mechanics.	Understand	This would require the learner to recall the basics of engineering mechanics and then describe the D Aleberts principle.	CO 6
2	Explain the necessary of torque in the case of four wheelers?	Understand	This would require the learner to recall the basics of engineering mechanics and then describe the torque for four wheels	CO 6
3	Derive a relation for the turning moment at the crankshaft in terms of the piston effort and the angle turned by the crank.	Apply	This would require the learner to recall the basics of engineering mechanics and then derive the mathematical relation of torque and angle turned by the crank shaft.	CO 6
4	Explain the terms coefficient of fluctuation of energy and coefficient of fluctuation of speed.	Understand	This would require the learner to recall the basics of engineering mechanics and then describe function of fluctuation of speed.	CO 5
5	Explain the function of a flywheel in a punching press?	Understand	This would require the learner to recall the basics of engineering mechanics and then describe function of flywheel in a punching press.	CO 5
6	Derive the relation for the coefficient of fluctuation of speed in terms of maximum fluctuation of energy and the kinetic energy of the flywheel at mean speed.		This would require the learner to recall and the basics of engineering mechanics and then derive the mathematical relations between the fluctuation of speed.	CO 5
7			This would require the learner to recall the inertia of various parts for explaining the effect of inertia in a engine.	CO 6
8	Explain the dynamically equivalent system?	Understand	This would require the learner to recall the concepts of equilibrium equations for describing the dynamically equivalent systems.	CO 5
9	Derive an expression for the angular acceleration of the connecting rod of a reciprocating engine.	Apply	This would require the learner to recall the concepts of kinematics for deriving the mathematical relation of angular acceleration of connecting rod of reciprocating engine.	CO 6
10	Explain the equivalent offset inertia force of various governors.	Understand	This would require the learner to recall the concepts of equilibrium equations for describing the equivalent offset inertia of various governors.	CO 5
11	Explain the difference between the functions of a governor and flywheel.	Understand	This would require the learner to recall the concepts of equilibrium equations for describing the difference between the governor and flywheel	CO 6
12	Explain centrifugal governors and the differ from inertia governors with other governors.	Understand	This would require the learner to recall the concepts of equilibrium	CO 6

		1		
			equations for describing the	
13	Describe the function of a Watt	Understand	difference between the governors. This would require recalling of	CO 6
13	governor with mathematical modeling.	Officerstand	governors and explain the	CO 0
	governor with mathematical moderning.		mathematical modeling of height of	
			governors.	
14	Explain Porter governor differ from	Understand	This would require the learner to	CO 6
1.	Watt governor?	Chacistana	recall the concepts of equilibrium	
			equations for describing the	
			difference between the governors.	
15	Explain the effect of friction in a Porter	Understand	This would require recalling of	CO 6
	governor And also the function of a		governors and explain the	
	Porter governor with a mathematical		mathematical modeling of height of	
	modeling.		governors.	
16	Describe the function of a Proell	Understand	This would require recalling of	CO 6
	governor with a neat sketch.		governors and explain the	
			mathematical modeling of height of	
			governors.	
17	Describe the Governor and flywheel in	Understand	This would require recalling of	CO 6
	relation to applications.		governors and explain the	
			mathematical modeling of height of	
10		** 1	governors.	GO (
18	Describe the function of a Hartnell	Understand	This would require recalling of	CO 6
	governor with a line diagram.		governors and explain the	
			mathematical modeling of height of	
10	Explain the function of a Hentung	Undonstand	governors. This would require recalling of	CO 6
19	Explain the function of a Hartung	Understand	This would require recalling of	CO 6
	governor with a neat sketch.		governors and explain the function of governor.	
20	Derive the expressions for the effort and	Apply	This would require recalling of	CO 6
20	power of a Porter governor.	Арргу	governors and explain the	CO 0
	power of a rotter governor.		mathematical modeling of the	
			effort and power of a governor.	
	PART.	C (ANALYT	TICAL QUESTIONS)	
				GO 7
1	A machine shaft running at 200 rpm	Apply	This would require the learner to	CO 5
	requires a torque increasing uniformly		recall the formulae of power and	
	from 1200 Nm to 3600 Nm during 180 ⁰		fluctuation of speed and its	
	of rotation. It is steady at 3600 Nm for		parameters, then assigning correct	
	subsequent one revolution and decreases uniformly to its original		values for the parameters and solving the asked parameters	
	value of 1200 Nm in subsequent one		sorving the asked parameters	
	revolution and is again steady at 1200			
	Nm for the next two revolutions. This			
	completes the cycle. The motor has a			
	constant torque which has a rotor of			
	mass 450 kg and 250mm radius of			
	gyration. In addition, if it has a			
	flywheel of mass 2000kg and 600 mm			
	radius of gyration fitted to the shaft.			
	Determine the power required to drive			
	the motor and percentage fluctuation			
	in speed.			
2	The effective turning moment exerted	Apply	This would require the learner to	CO 5
	by a two stroke engine at crank shaft is		recall the formulae of power and	
	$T = 8000 + 1000\sin 2\theta - 2000\cos 2\theta$		fluctuation of speed and its	
	where θ is the inclination of the crank		parameters, then assigning correct	
	to inner dead center. The mass of the			

	flywheel is 500kg and radius of		values for the parameters and	
	gyration is 750 mm. The engine speed		solving the asked parameters	
	is 300 rpm. Determine the power			
	developed, the total percentage			
	fluctuation of speed and maximum			
	angular retardation.	A 1	701. 11	CO. 7
3	The turning moment diagram for a	Apply	This would require the learner to	CO 5
	multi cylinder engine has been drawn to a scale of 1mm to 500 Nm of torque		recall the formulae of power and fluctuation of speed and its	
	and 1mm to 60 of crank displacement		parameters, then assigning correct	
	The intercepted areas between the		values for the parameters and	
	output torque curve and the mean		solving the asked parameters	
	resistance line taken in order from		sorving the usited parameters	
	one end of the engine are -30, +410,			
	-280+320, -330, +250, -360, +280,			
	-260 mm2 when the engine runs at 800			
	rpm. The engine has a stroke of			
	300mm and the fluctuation of speed is			
	not to exceed 2% of mean speed.			
	Determine suitable diameter and cross			
	section of the flywheel rim for a			
	limiting value of safe centrifugal			
	stress of 7 Mega Pascal. The material density is 720kg/m ³ . Width of the rim			
	is 5 times the thickness.			
4	The turning moment diagram for a	Apply	This would require the learner to	CO 5
7	multi cylinder engine has been drawn	, thhi	recall the formulae of power and	
	to a scale of 1cm= 5000Nm torque and		fluctuation of speed and its	
	1cm= 600 respectively. The intercepted		parameters, then assigning correct	
	areas between output torque curve and		values for the parameters and	
	mean resistance taken in order from		solving the asked parameters	
	one end are -0.3, +4.1, -2.8, +3.2, -			
	3.3, +2.5, -3.6, +2.8, -2.6 square cm			
	when the engine is running at 800rpm.			
	The engine has a stroke of 300 mm and			
	the fluctuation of speed is not to exceed 2% of mean speed. Determine a			
	suitable diameter of cross section of			
	the flywheel rim for limiting value of			
	the shaft centrifugal stress of 280 X			
	103 N/m ² . The material density may			
	be assumed as 7.2 g/cm ³ . Assume the			
	thickness of the rim to be ¼ th of the			
	width.			G0 -
5	A single cylinder single acting four	Apply	This would require the learner to	CO 5
	stroke gas engine develop 20kW at 300		recall the formulae of power and	
	rpm. The work done by the gases during the expansion stroke is three		fluctuation of speed and its parameters, then assigning correct	
	times the work done on the gases		values for the parameters and	
	during the compression stroke, the		solving the asked parameters	
	work done during the suction and		Parameters	
	exhaust strokes is negligible. If the			
	total fluctuation of speed is not to			
	exceed ± 2 percent of the mean speed			
	and the turning moment diagram			
	during compression and expansion is			
	assumed to be triangular in shape,			
	Estimate the moment of inertia of the			
	flywheel.			

	Γ			
6	Each arm of a porter governor is 300 mm long and is pivoted on the axis of rotation. Each ball has a mass of 6 kg and the sleeve weighs 18kg. The radius of rotation of the ball is 200 mm when the governor begins to lift and 250 mm when the speed is maximum. Determine the maximum and minimum speeds and the range of speed of the governor.	Apply	This would require the learner to recall the formulae of governors such as height, maximum and minimum speeds and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 6
7	The weight of each ball of a Proell governor is 90N. The central load is 1500N and the arms are 250mm long. The arms are open and pivoted at a distance of 50 mm from the axis of rotation. The extension of the lower arms to which each ball is attached is 125 mm long and the radius of rotation of the balls is 250mm. When the arms are inclined at 40° to the axis of rotation, Estimate i) the equilibrium speed for the above configuration and the coefficient of insensitiveness if friction is equivalent to a force of 20N at the sleeve.	Apply	This would require the learner to recall the formulae of governors such as height, maximum and minimum speeds and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 6
8	A Hartnell governor having a central sleeve spring and two right angle bell crank levers moves between 290 rpm and 310 rpm for a sleeve lift of 15 mm. The sleeve arms and the ball arms are 80 mm and 120 mm respectively. The levers are pivoted at 120 mm from the governor axis and the mass of each ball is 2.5 kg. Determine the loads on the spring at the lowest and highest equilibrium speeds and the stiffness of the spring.	Apply	This would require the learner to recall the formulae of governors such as height, maximum and minimum speeds and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 6
9	Estimate the minimum speed of a Porter governor, which has equal arms each 200mm long and are pivoted on the axis of rotation. The mass of each ball is 5 kg and the minimum radius of rotation for the ball is 100mm.	Apply	This would require the learner to recall the formulae of governors such as height, maximum and minimum speeds and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 6
10	In a spring controlled governor of the Hartung type, the length of the ball and sleeve arms are 80mm and 120mm respectively. The total travel of the sleeve is 25 mm. In the mid position, each spring is compressed by 50mm and the radius of rotation of the mass center is 140mm. Each ball has a mass of 4 kg and the spring has a stiffness of 10kN/m. The equivalent mass at the sleeve is 16kg. Neglecting the moment due to the revolving masses, when the arms are inclined, determine the ratio of range of speed to the mean speed of	Apply	This would require the learner to recall the formulae of governors such as height, maximum and minimum speeds and its parameters, then assigning correct values for the parameters and solving the asked parameters.	CO 6

	the governor. Also Estimate the speed in mid position.			
		MODULE –I	V	
	BALANCING OF ROTATO	ORY AND R	ECIPROCATING MASSES	
	PART - A (SHO	RT ANSWE	R OUESTIONS)	
1	Explain balancing of a single rotating	Understand	This would require recalling of	CO 7
•	mass?	o nacrotana	the fundamentals of mechanics and then describe the balancing.	
2	What is static balancing of a rotating mass?	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing.	CO 7
3	What is dynamic balancing in the case of rotation in a single plane?	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing.	CO 7
4	Explain balancing of rotating masses in different planes.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing.	CO 7
5	What is balancing of reciprocating masses?	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing.	CO 7
6	Explain locomotive balancing with a neat sketch.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing.	CO 7
7	Explain the tractive force in locomotive balancing.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing and tractive force of locomotives.	CO 7
8	Explain the effect of swaying couple in locomotives.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing and swaying couple of locomotives.	CO 7
9	Explain the hammer blow in the case of locomotives.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing and hammer blow of locomotives.	CO 7
10	Explain about multi cylinder engine?	Understand	This would require recalling of the fundamentals of functioning of single stroke engine and then describe the working principle of multi cylinder engine.	CO 7
11	Explain balancing of a V engine.	Understand	This would require recalling of the fundamentals of functioning of single stroke engine and then describe the working principle of v engine.	CO 7
12	Explain the primary balancing of reciprocating masses.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing.	CO 7
13	Explain the secondary balancing of rotating masses.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing.	CO 7
14	Explain about unbalanced forces balancing	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing.	CO 7

		1		
15	Explain unbalanced couples in the case	Understand	This would require recalling of	CO 7
	of radial engines.		the fundamentals of mechanics	
			and then describe the balancing of	
1.0		TT 1 4 1	radial engines	CO 7
16	Explain balancing of radial engine.	Understand	This would require recalling of	CO 7
			the fundamentals of mechanics	
			and then describe the balancing of	
17	D 1 : 1 : 1 : 1	TT 1 . 1	radial engines	00.7
17	Explain about in-line engines.	Understand	This would require recalling of	CO 7
			the fundamentals of mechanics	
			and then describe the balancing of	
10	Empleia de constitione fonctotio	TT., 1.,	radial engines.	CO 7
18	Explain the conditions for static	Understand	This would require recalling of the fundamentals of mechanics	CO /
	balancing.			
			and then describe the conditions	
10	Fundain the conditions for demands	I In denotes a	for static balancing.	CO 7
19	Explain the conditions for dynamic	Understand	This would require recalling of	CO 7
	balancing.		the fundamentals of mechanics	
			and then describe the balancing	
20	Fundain about assumed to connections	I In denotes a	dynamic balancing conditions.	CO 7
20	Explain about coupled locomotives.	Understand	This would require recalling of the fundamentals of mechanics	CO /
			and then describe the coupled	
			locomotives.	
	PART - B (LO	NG ANSWE	R QUESTIONS)	
1	Explain the static and dynamic	Understand	This would require recalling of the	CO 7
	unbalance in machinery.		fundamentals of mechanics and then	
			describe the balancing.	
2	Explain the necessity of balancing in	Understand	This would require recalling of the	CO 7
	rotors of high speed engines		fundamentals of mechanics and then	
			describe the balancing.	
3	Explain the balancing of rotating masses	Understand	This would require recalling of the	CO 7
	with a neat sketch.		fundamentals of mechanics and then	
			describe the balancing of rotating	
			masses.	
4	Explain the balancing of reciprocating	Understand	This would require recalling of the	CO 7
	masses with a neat sketch.		fundamentals of mechanics and then	
			describe the balancing of	
			reciprocating masses.	
5	Derive the expression for variation in	Apply	This would require recalling of the	CO 7
	tractive force in locomotive balancing.		fundamentals of mechanics and then	
			express the mathematical relation	
			for tractive force	
6	Derive the expression for swaying couple	Apply	This would require recalling of the	CO 7
	in locomotive balancing.		fundamentals of mechanics and then	
			express the mathematical relation	
	D : 1 : 1 : 1	A 1	for swaying couple.	
7	Derive the expression for hammer blow i	Apply	This would require recalling of the	CO 7
	locomotive balancing.		fundamentals of mechanics and then	
			express the mathematical relation	
		** 1	for hammer blow.	
8	Describe the primary balancing in	Understand	This would require recalling of the	CO 7
	reciprocating engines.		fundamentals of mechanics and then	
			describe the balancing of rotating	
		** 1	masses	~~ -
9	Describe the secondary balancing in	Understand	This would require recalling of the fundamentals of mechanics and then	CO 7
	reciprocating engine.			

			describe the balancing of rotating	
			masses	
10	Derive the unbalanced forces and couples in case of two cylinder engines.	Apply	This would require recalling of the fundamentals of mechanics and balancing and then express the mathematical relation for unbalanced forces of various cylindered engines.	CO 7
11	Derive the magnitudes of unbalanced forces in V-engines	Apply	This would require recalling of the fundamentals of mechanics and balancing and then express the mathematical relation for unbalanced forces of various cylindered engines.	CO 7
12	Derive the magnitudes of unbalanced forces in radial engines	Apply	This would require recalling of the fundamentals of mechanics and balancing and then express the mathematical relation for unbalanced forces of various cylindered engines.	CO 7
13	Determine the magnitudes of unbalanced forces in in-line engines.	Apply	This would require recalling of the fundamentals of mechanics and balancing and then express the mathematical relation for unbalanced forces of various cylindered engines.	CO 7
14	Derive the magnitudes of unbalanced forces in multi-cylinder engines.	Apply	This would require recalling of the fundamentals of mechanics and balancing and then express the mathematical relation for unbalanced forces of various cylindered engines.	CO 7
15	Explain the method of direct and reverse cranks to observe the unbalance in radial engines.		This would require recalling of the fundamentals of balancing then describe the balancing of rotating masses	CO 7
16	Explain the effect of hammer blow reduced in coupled Locomotives.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing of hammer blow effect.	CO 7
17	Explain the method of balancing different masses revolving in the same plane.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing of rotating masses	CO 7
18	Explain different masses rotating in different planes balanced.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing of rotating masses	CO 7
19	Explain how a single revolving mass is balanced by two masses revolving in different planes.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing of rotating masses	CO 7
20	Explain the conditions for balancing several masses revolving in the same plane.	Understand	This would require recalling of the fundamentals of mechanics and then describe the balancing of rotating masses	CO 7

	PART - C (AN	ALYTICAI	L QUESTIONS)	
1	The cranks of a three cylinder locomotive are set at 120°. The stroke is 120 mm, the length of the connecting rod is 240 mm, the mass of the reciprocating parts per cylinder is 1 Kg and the speed of the crank shaft is 2400 rpm. Determine the magnitude of primary and secondary balancing.	Apply	This would require the learner to recall the formulae of balancing and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 7
2	A rigid rotor has its unbalance in one plane and can be considered to consist of three masses $m1 = 5$ kg at an angle of 30^0 from mass m_1 in anti clockwise direction, $m2 = 3$ kg at an angle of 165^0 counter clockwise from $m1$ and $m3 = 8$ kg at angle 85^0 clockwise from m_1 . The radii $r1 = 200$ mm, $r2 = 80$ mm and $r3 = 140$ mm. Determine the balancing mass required at a radius of 100 mm. Specify the location of this mass with respect to $m1$.	Apply	This would require the learner to recall the formulae of balancing and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 7
3	An air compressor has four vertical cylinders 1,2,3 and 4 inline and the driving cranks at 90° intervals reach their uppermost positions in this order. The cranks are of 150 mm radius, the connecting rods 500 mm long and the cylinder centre lines 400 mm apart. The mass of the reciprocating parts of each cylinder is 22.5 kg and the speed of rotation is400 rpm. Show that there are no out of balance primary and secondary forces. Determine the corresponding couples indicating their positions for maximum values. The central plane of the machine may be taken as reference plane.	Apply	This would require the learner to recall the formulae of balancing and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 7
4	The pistons of 60° twin V-Engine have strokes of 120 mm. The connecting rods driving a common crank and are of length 200 mm. The mass of the reciprocating parts per cylinder is 1.5 kg and the speed of the crankshaft is 2500 rpm. Determine the magnitude of primary and secondary unbalanced forces.	Apply	This would require the learner to recall the formulae of balancing and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 7
5	A single cylinder horizontal engine runs at 120 rpm. The length of stroke is 400mm. The mass of the revolving parts assumed concentrated at the crank pin, is 100kg and mass of reciprocating parts is 150kg. Determine the magnitude of the balancing mass required to be placed opposite to the crank at a radius of 150mm which is equivalent to all the revolving masses and 2/3 of the reciprocating masses. If	Apply	This would require the learner to recall the formulae of balancing and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 7

	the crank turns 30° from the inner dead			
	center, Estimate the magnitude of the			
	unbalanced force due to the			
	balancing mass.			
6	An inside cylinder locomotive has its cylinder center lines 0.7 m apart and has a stroke of 0.6 m. The rotating	Apply	This would require the learner to recall the formulae of balancing and its parameters, then assigning	CO 7
	masses per cylinder are equivalent to 150kg at the crank pin and the reciprocating masses per cylinder are 180kg. The wheel center lines are 1.5m apart. The cranks are at right angles. The whole of rotating parts and 2/3 of		correct values for the parameters and solving the asked parameters	
	reciprocating masses are to be balanced by masses placed at a radius of 0.6m. Estimate the magnitude and direction of the balancing masses.			
7	Four masses P, Q, R and S are	Apply	This would require the learner to	CO 7
	completely balanced. Masses R and S		recall the formulae of balancing	
	make angles of 90° and 210°		and its parameters, then assigning	
	respectively with Q in the same sense.		correct values for the parameters	
	The planes containing Q and R are 300		and solving the asked parameters	
	mm apart. Masses P, Q, R and S are			
	supposed to be concentrated at radii of			
	360mm, 480mm, 240mm and 300mm			
	respectively. The masses Q, R and S are 15kg, 25kg and 20kg respectively.			
	Determine The mass P and its angular			
	position, The planes in which the			
	masses P and S are placed.			
8	The three cylinders of an air	Apply	This would require the learner to	CO 7
	compressor have their axes 120° to one	търгу	recall the formulae of balancing	20 /
	another and their connecting rods are		and its parameters, then assigning	
	coupled to a single crank. The stroke is		correct values for the parameters	
	100mm and the length of each		and solving the asked parameters	
	connecting rod is 150mm. The mass of			
	the reciprocating parts per cylinder is			
	1.5 kg. Estimate the maximum primary			
	and secondary forces acting on the			
	frame of the compressor when running			
	at 3000 rpm.			
9	A V- twin engine has the cylinder axes	Apply	This would require the learner to	CO 7
	at right angles and the connecting rods		recall the formulae of balancing	
	operate a common crank. The		and its parameters, then assigning	
	reciprocating masses per cylinder		correct values for the parameters	
	are 11.5 kg and the crank radius is		and solving the asked parameters	
	75mm. The length of connecting rod is			
	0.3m Show that the engine may be			
	balanced for primary forces. If the			
	engine speed is 500rpm, what is the			
10	maximum secondary unbalanced force? The three cylinders of an air	Annly	This would require the learner to	CO 7
10	compressor have their axes120° to one	Apply	recall the formulae of balancing	CO /
	another and their connecting rods are		and its parameters, then assigning	
	coupled to a single crank. The stroke is		correct values for the parameters	
	150mm and the length of each		and solving the asked parameters	
	connecting rod is 160mm. The mass of		and asked parameters	
	the reciprocating parts per cylinder is 3			
L			İ.	ı

	kg. Estimate the maximum primary and			
	secondary forces acting on the frame of the compressor when running at 2000 rpm.			
		MODULE-	V	
	MECHA	NICAL VIB	RATIONS	
	PART - A (SHO	RT ANSWI	ER QUESTIONS)	
1	Explain longitudinal vibration?	Understand	This would require the recalling of the fundamentals of SHM and describe the longitudinal vibrations	CO 8
2	Explain the causes of vibration?	Understand	This would require the recalling of the fundamentals of SHM and describe the causes of vibrations.	CO 8
3	Explain the effects of vibration?	Understand	This would require the recalling of the fundamentals of SHM and describe the effects of vibrations.	CO 8
4	Explain the free vibration of mass attached to a spring.	Understand	This would require the recalling of the fundamentals of mathematics and describe the free vibrations.	CO 8
5	Explain the forced vibration of a spring mass system.	Understand	This would require the recalling of the fundamentals of mathematics and describe the forced vibrations.	CO 8
6	Explain the damped vibration in spring mass damper system.	Understand	This would require the recalling of the fundamentals of mathematics and describe the damped vibrations.	CO 8
7	Explain the longitudinal vibration of mass attached to a vertical spring.	Understand	This would require the recalling of the fundamentals of mathematics and describe the longitudinal vibrations.	CO 8
8	Explain the transverse vibration of mass attached to a vertical spring.	Understand	This would require the recalling of the fundamentals of mathematics and describe the transverse vibrations.	CO 8
9	Explain the torsional vibration of a single rotor system.	Understand	This would require the recalling of the fundamentals of mathematics and describe the torsional vibrations.	CO 8
10	Explain the critical Speed of shaft supported horizontally.	Understand	This would require the recalling of the fundamentals of vibrations and describe the critical speed.	CO 8
11	Explain the term under damping of a vibrating system.	Understand	This would require the recalling of the fundamentals of mathematics and describe the damping of a vibrating system.	CO 8
12	What is meant by the term critical damping?	Understand	This would require the recalling of the fundamentals of mathematics and describe critical damping.	CO 8
13	Explain the term over damping of vibrating system.	Understand	This would require the recalling of the fundamentals of mathematics and describe the over damping of vibrating system.	CO 8

14	What is meant by transmissibility?	Understand	This would require the recalling of the fundamentals of mathematics and describe the transmissibility.	CO 8
15	Explain the Damping Factor of a vibrating system.	Understand	This would require the recalling of the fundamentals of mathematics and describe the Damping Factor.	CO 8
16	Explain logarithmic decrement.	Understand	This would require the recalling of the fundamentals of mathematics and describe the logarithmic decrement.	CO 8
17	What is a torsionally equivalent shaft?	Understand	This would require the recalling of the fundamentals of mathematics and describe torsionally equivalent shaft.	CO 8
18	What is meant by magnification factor?	Understand	This would require the recalling of the fundamentals of mathematics and describe the magnification factor.	CO 8
19	Explain Dunkerley's method of vibrating system.	Understand	This would require the recalling of the fundamentals of mathematics and describe the Dunkerley's method of vibrating system.	CO 8
20	What is Raleigh's method as applied to a spring mass system?	Understand	This would require the recalling of the fundamentals of mathematics and describe Raleigh's method.	CO 8
	PART - B (LO	NG ANSWE	R QUESTIONS)	
1	Explain the causes of vibrations and mention their effect?	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe the causes of vibrations.	CO 8
2	Explain the effects of vibrations in simple vibrating system.	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe the effects of vibrations.	CO 8
3	Explain the free and forced vibrations of a vibrating system.	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe free and forced vibrations of a vibrating system.	CO 8
4	Explain the damped vibrations of vibrating system.	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe the damped vibrations of vibrating system.	CO 8
5	Describe with neat sketch the longitudinal free vibrations.	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe the longitudinal free vibrations.	CO 8
6	Describe with neat sketch the transverse free vibrations.	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe the transverse free vibrations.	CO 8
7	Derive an expression for the natural frequency of free longitudinal vibrations	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to	CO 8

			develop the mathematical relation of natural frequency of free longitudinal vibrations.	
8	Derive an expression for the natural frequency of free transverse vibrations	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to develop the mathematical relation of natural frequency of free transverse vibrations.	CO 8
9	Derive an expression for the natural frequency of free transverse vibrations for a simply supported shaft carrying uniformly distributed mass of m kg per meter length.	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to develop the mathematical relation of natural frequency of free transverse vibrations.	CO 8
10	Derive an expression for the natural frequency of free transverse vibrations for a beam fixed at both ends and carrying uniformly distributed mass of m kg per meter length.	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to develop the mathematical relation of natural frequency of free transverse vibrations.	CO 8
11	Establish an expression for the natural frequency of free transverse vibration for a simply supported beam carrying a number of point loads by energy method.	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to develop the mathematical relation of natural frequency of free transverse vibrations.	CO 8
12	Establish an expression for the natural frequency of free transverse vibration for a simply supported beam carrying a number of point loads by Dunkerley's method	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to develop the mathematical relation of natural frequency of free transverse vibrations.	CO 8
13	Explain the term whirling speed or critical speed of shaft.	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe critical speed of the shaft.	CO 8
14	Prove that the whirling speed of a rotating shaft is the same as the frequency of natural transverse vibration.	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to develop the mathematical relation of natural frequency of free transverse vibrations.	CO 8
15	Explain the terms under damping, critical damping and over damping.	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe damping, critical damping and over damping.	CO 8
16	Explain the term logarithmic decrement as applied to damped vibrations.	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe logarithmic decrement as applied to damped vibrations.	CO 8
17	Explain the transmissibility in the case of a vibrating system?	Understand	This would require the learner to recall the concepts of vibrations and its principles, then describe transmissibility in the case of a vibrating system.	CO 8

10	E (11:1 : 6 d	A 1	701: 11 : (1 1	CO 0
18	Establish an expression for the amplitude of forced vibrations.	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to develop the mathematical relation of the amplitude of forced vibrations.	CO 8
19	Derive the differential equation for the motion of an oscillating system subjected to viscous damping without aperiodic excitation force.	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to develop the mathematical relation of viscous damping without aperiodic excitation force.	CO 8
20	Derive the equation for natural frequency of free torsional vibration of three rotor system.	Apply	This would require the learner to recall the concepts of vibrations and its principles, then apply to develop the mathematical relation of natural frequency of free torsional vibration of three rotor system	CO 8
	PART - C (AN	IALYTICAI	L QUESTIONS)	
1	A shaft 50 mm diameter and 3 m long is simply supported at its ends and carries three loads of 1000 N, 1500N and 750N at 1m, 2m and 2.5m from the left support. Modulus of elasticity is 200 GN/m2. Estimate the frequency of transverse vibrations.	Apply	This would require the learner to recall the formulae of vibrations such as natural frequency, time period etc and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 8
2	A cantilever shaft of 50 mm diameter and 300 mm long has a disc of mass 100 kg at its free end. The Young's modulus of the shaft material is 200 GN/m ² . Determine the frequency of longitudinal and transverse vibrations of the shaft.	Apply	This would require the learner to recall the formulae of vibrations such as natural frequency, time period etc and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 8
3	A vibrating system consists of a mass of 50 kg, a spring of stiffness 30kN/m and a damper. The damping provided is only 20% of the critical value. Determine the damping factor, critical damping coefficient and logarithmic decrement.	Apply	This would require the learner to recall the formulae of vibrations such as natural frequency, time period etc and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 8
4	Estimate the whirling speed of a shaft 20 mm diameter and 0.6 m long, carrying a mass of 1 kg at its mid point. Density of the shaft material is 40 Mg/m3 and E = 200 GN/m2. Assume freely supported shaft.	Apply	This would require the learner to recall the formulae of vibrations such as natural frequency, time period etc and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 9
5	A 1.5 m long shaft AB has flywheels at its ends A and B. The mass of the flywheel at the end A is 600kg and its radius of gyration is 400mm. The corresponding values for the flywheel at the end B are300kg and 300 mm. The diameter of the shaft for the first 400mm starting from the end A is 50mm, 60 mm diameter for the next portion of 500 mm length and the	Apply	This would require the learner to recall the formulae of vibrations such as natural frequency, time period etc and its parameters, then assigning correct values for the parameters and solving the asked parameters	CO 8

	remaining portion of 600mm length is			
	unknown. Determine the diameter of			
	the shaft for the portion B so that the			
	node of the torsional vibration of the			
	system will be at the center of 500 mm			
	long segment. Also determine the frequency of vibration.			
6	A stepped shaft of 0.05 m in diameter	Apply	This would require the learner to	CO 8
	for the first 0.6 m length, 0.08 m	1 1991)	recall the formulae of vibrations	000
	diameter for the next 1.8 m and 0.03 m		such as natural frequency, time	
	diameter for the remaining 0.25 m		period etc and its parameters, then	
	length. While the 0.05 m diameter end		assigning correct values for the	
	is fixed, the 0.03 m diameter end of the		parameters and solving the asked	
	shaft carries a rotor of mass moment of		parameters	
	inertia 14.7 kg-m2. If the modulus of			
	elasticity of the shaft material is 0.83 x 1011 N/m2, Estimate the			
	natural frequency of torsional			
	oscillations, neglecting the inertia			
	effect of the shaft.			
7	A shaft 100 mm diameter and 1000	Apply	This would require the learner to	CO 8
	mm long is fixed at one end and the		recall the formulae of vibrations	
	other end carries a flywheel of mass 90		such as natural frequency, time	
	kg. The radius of gyration of the		period etc and its parameters, then	
	flywheel is 500mm. Estimate the frequency of torsional vibration, if the		assigning correct values for the parameters and solving the asked	
	modulus of rigidity for the shaft		parameters and solving the asked parameters	
	material is 80GN/m ² .		Political	
8	A single cylinder engine of total mass	Apply	This would require the learner to	CO 8
	200kg is to be mounted on an elastic		recall the formulae of vibrations	
	support which permits vibratory		such as natural frequency, time	
	movement in vertical direction only. The mass of the piston is 3.5 kg and		period etc and its parameters, then assigning correct values for the	
	has a vertical simple harmonic motion		parameters and solving the asked	
	with a stroke of 150mm. It is desired		parameters and sorving the asked parameters	
	that the maximum vibratory force			
	transmitted through the elastic			
	support to the foundation shall be			
	600N when the engine speed is 800			
	rpm. Estimate the necessary stiffness			
	of the elastic support and the amplitude of vibration at 800 rpm.			
9	An instrument vibrates with a natural	Apply	This would require the learner to	CO 8
_	frequency of 1 Hz. when there is no	- - PP*J	recall the formulae of vibrations	200
	damping. When the damping is		such as natural frequency, time	
	provided, the frequency of damped		period etc and its parameters, then	
	vibration was observed to be 0.9 Hz.		assigning correct values for the	
	Estimate the damping factor and		parameters and solving the asked	
10	logarithmic decrement. A body of mass 20kg is suspended	Apply	parameters This would require the learner to	CO 8
10	from a spring which deflects 15mm	Appry	recall the formulae of vibrations	CO 6
	under this load. Estimate the frequency		such as natural frequency, time	
	of free vibrations and verify that a		period etc and its parameters, then	
	viscous damping force of 1000N at a		assigning correct values for the	
	1			

speed of 1 m/s is just sufficient to	parameters and solving the asked	
make the motion aperiodic.	parameters	

Prepared by: Dr. K Viswanath Allamraju, Professor

HOD, ME