

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	INSTRUMENTATION AND CONTROL SYSTEMS					
Course Code	AME019	AME019				
Program	B.Tech	B.Tech				
Semester	SEVEN	SEVEN				
Course Type	Core					
Regulation	IARE - R16	5				
		Theory		Prac	tical	
Course Structure	Lectures Tutorials Credits Laboratory Credits					
3 1 4 2 1					1	
Course Coordinator	Dr. GVR Seshagiri Rao, Associate Professor					

I. COURSE OVERVIEW:

The Present course concentrates on developing basic understanding about various instruments that are involved in measuring. This course enables the student to understand the working of various measuring instruments. The course focuses on all principles, working, advantages, disadvantages and applications of various measuring instruments. In this course; students also will gain a broad understanding of the control systems. Student can learn in detail about how to measure displacement, temperature, pressure, level, flow, acceleration, vibration, strain, humidity, force, torque and power and their appropriate application.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AME010	V	Machine Tools and Metrology

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Instrumentation and Control Systems	70 Marks	30 Marks	100

~	РРТ	X	Chalk & Talk	✓	Assignments	X	MOOCs
~	Open Ended Experiments	~	Seminars	X	Mini Project	~	Videos
X	Others						

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Table 1: The expected percentage of cognitive level of questions in SEE.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

Table 2: Assessment pattern for CIA

Component	Theory			Total Marks	
Type of Assessment	CIE Exam Quiz AAT		i otai wiai Ks		
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

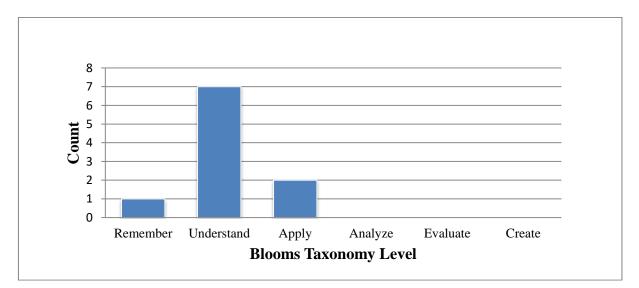
Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours / classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended experiment
20%	30%	30%	10%	10%

Table 3: Assessment	pattern for AAT
---------------------	-----------------

VI. COURSE OBJECTIVES:


The students will try to learn:				
Ι	The fundamental knowledge of measuring principles, configuration and functional			
	description of instruments with static, dynamic inputs and error control.			
II	The concepts and working of instrumentation devices for displacement, flow, dynamic			
	and other mechanical measurement applications.			
III	Instrumentation practices and automatic control system for monitoring industrial real			
	time processes within limits of parameter specifications.			

VII. COURSE OUTCOMES:

After suc	After successful completion of the course, students will be able to:				
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)			
CO 1	Recognize the importance of basic principles, configuration and functional description of measuring instruments.	Remember			
CO 2	Describe performance characteristics of an instrument when the device is exposed to measure dynamic inputs and error control.	Understand			
CO 3	Categorize the measuring instruments based on the principle of working with the physical parameters such as displacement, temperature and pressure.	Understand			

CO 4	Explain calibration of instruments for measurement of all types of	Understand
	mechanical parameters.	
CO 5	Demonstrate working principle of level measuring devices for	Understand
	ascertaining liquid level and choose appropriate device for controlling	
	fluid level in industrial applications.	
CO 6	Discuss the theory, phenomena and working principle of flow	Understand
	measuring instruments and calibration.	
CO 7	Make use of appropriate instrument for measuring Speed, Acceleration	Apply
	and Vibration by considering different aspects.	
CO 8	Demonstrate the concepts for measurement of Stress, Strain, Humidity	Understand
	and their application for finding stress, strain, and humidity.	
CO 9	Describe the principles of measurement of force, torque and power and	Understand
	their application in industries for finding force, torque and power.	
CO 10	Apply relevant control systems for speed, position and control processes	Apply
	in practical applications.	

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes		Proficiency Assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	CIE/Quiz/AAT
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health	2	Seminar/ conferences / Research papers

	Program Outcomes	Strength	Proficiency Assessed by
	and safety, and the cultural, societal, and		
	Environmental considerations.		
PO 6	The engineer and society: Apply reasoning informed	2	Assignments /
	by the contextual knowledge to assess societal, health,		Discussion
	safety, legal and cultural issues and the consequent		
	responsibilities relevant to the Professional engineering		
	practice.		
PO 9	Individual and Teamwork: Function effectively as an	2	Class group / Multi-
	individual, and as a member or leader in diverse teams,		disciplinary group
	and in multidisciplinary settings		
PO 10	Communication: Communicate effectively on	2	Discussion on
	complex Engineering activities with the Engineering community and with society at large, such as, being		Innovations / Presentation
	able to comprehend and write effective reports and		rieschauon
	design documentation, make effective presentations,		
	and give and receive clear instructions.		
PO 12	Life-Long Learning: Recognize the need for and	1	Research paper
	having the preparation and ability to engage in		analysis / Short term
	independent and life-long learning in the broadest		courses
	context of technological change.		

3 = High; **2** = Medium; **1** = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO1	Formulate and evaluate engineering concepts of design,	2	Research papers /
	thermal and production to provide solutions for		Industry exposure
	technology aspects in digital manufacturing.		
PSO2	Focus on ideation and research towards product	2	Research papers /
	development using additive manufacturing, CNC		Group discussion /
	simulation and high-speed machining.		Short term courses
PSO3	Make use of computational and experimental tools for	3	Research papers /
	creating innovative career paths, to be an entrepreneur		Industry exposure
	and desire for higher studies in the field of		
	instrumentation and control.		

3 = High; **2** = Medium; **1** = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes					Pro	gram	Outco	omes					Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-

CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark
CO 7	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark
CO 8	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark
CO 9	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark
CO 10	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark

XI. JUSTIFICATIONS FOR CO – PO/PSO MAPPING – DIRECT

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Recognize (knowledge) the importance of basic principles,	2
001	101	configuration, appreciate (understanding) their importance and	2
		applicability (apply) in solving (complex) engineering problems	
		of measurement by applying the scientific principles of	
		mathematics and science.	
CO 2	PO 1	Demonstrate (understand) performance characteristics of an	2
		instrument when the device is exposed to measure dynamic	
		inputs and error control systems by applying the principles of	
		mathematics and engineering fundamentals	
CO 3	PO 1	Categorize (understand) the measuring instruments based on	3
		the principles of working with the physical parameters such as	
		displacement, temperature and pressure etc., in solving	
		(complex) fluid flow engineering problems by applying the	
		principles of mathematics, science and engineering	
		fundamentals.	
CO 4	PO 1	Explain (understand) calibration of instrument for measurement	3
		of all types of mechanical parameters by applying the	
		principles of mathematics, science and engineering	
		fundamentals.	
	PO 2	Understand the given problem statement and formulate	4
		(complex) engineering problems and choosing appropriate	
		measuring device for calibration considering mechanical	
		parameter and substantiate with interpretation of variation in	
		the results .	
CO 5	PO 1	Demonstrate (understand) working principle of level measuring	3
		device for ascertaining parameter such as liquid level, in	
		solving (complex) liquid level engineering problems by	
		applying the applying the principles of mathematics, science	
		and engineering fundamentals for controlling fluid level in	
		industrial applications.	
	PO 2	Understand the given problem statement and formulate	4
		(complex) fluid level engineering phenomena for deriving	
		related equations from the provided information and	
		substantiate with interpretation of variations in the results .	

	1		
	PSO 3	Make use of computational and experimental tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies in the field of instrumentation.	
CO 6	PO 1	Explain (understand) the theory, phenomena and working of	3
		flow measuring instruments to solution of flow engineering	
		problem by applying the principles of mathematics , science	
		and engineering fundamentals to perform calibration for flow	
		measuring devices.	
	PO 2	Understand the given problem statement and formulate	4
		(complex) fluid flow engineering phenomena for deriving	
		related equations from the provided information and	
		substantiate with interpretation of variations in the results .	
	PSO 3	Make use of computational and experimental tools for	2
		creating innovative career paths, to be an entrepreneur and	-
		desire for higher studies.	
CO 7	PO 1	Ŭ	2
01	PUT	Make use of (knowledge, understand and apply) appropriate	3
		instrument for measuring Speed, Acceleration and Vibration	
		(complex) engineering problems by applying the principles of	
		mathematics, science and engineering fundamentals of	
		instrumentation related.	
	PO 2	Understand the given problem statement and formulate	4
		(complex) speed, acceleration and vibration related	
		engineering phenomena for deriving related equations from the	
		provided information and data in reaching substantiated	
		conclusions by the interpretation of variation in the results .	
	PSO 3	Make use of computational and experimental tools for	2
	1500	creating innovative career paths, to be an entrepreneur and	2
		desire for higher studies.	
CO 8	PO 1		3
	101	Demonstrate (understand) measurement of stress, strain,	3
		humidity and their application <i>in solving (complex)</i> Stress,	
		Strain and Humidity by applying the principles of	
		mathematics, science and engineering fundamentals of	
		instrumentation and control systems.	
	PO 2	Understand the given problem statement and formulate	4
		(complex) stress, strain, humidity related engineering	
		phenomena for deriving related equations from the provided	
		information and data in reaching substantiated conclusions by	
		the interpretation of variation in the results .	
	PSO 3	Make use of computational and experimental tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies in the field of instrumentation and	
		control.	
CO 9	PO 1	Explain (understand) the theories, phenomena and working	3
		principles (knowledge) for measurement of forces, torques,	
		power and its applicability (apply) in industry in solving	
		(complex) problems such as forces, torque and power by	
		applying the principles of mathematics , science and	
	DO 3	engineering fundamentals .	
	PO 2	Understand the given problem statement and formulate	4
		(complex) force, torque and power related engineering	
		phenomena for deriving related equations from the provided	

	PSO 3	information and data in reaching substantiated conclusions by the interpretation of results . Make use of computational and experimental tools for creating innovative career paths, to be an entrepreneur and desire for higher studies in the field of instrumentation and control.	2
CO 10	PO 1	Apply (knowledge, understand, apply) relevant control, system for speed, position and control processes in practical application understanding the knowledge in solving (<i>complex</i>) <i>engineering problems</i> related to control of various systems by applying the principles of mathematics, science and engineering fundamentals.	3
	PO 2	Understand the given problem statement and formulate the design (<i>complex</i>) <i>engineering problems</i> of control systems by applying the principles of mathematics , science and engineering fundamentals .	4
	PSO 3	Make use of computational and experimental tools for creating innovative career paths, to be an entrepreneur and desire for higher studies in the field of instrumentation and control.	2

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

		Progr	cam O	utcon	nes / N	No. of	Key (Comp	etenci	es Ma	atched	l	PSO / No. of key competencies			
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	12	1	2	2	
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 5	3	4	-	-	-	-	-	-	-	-	-	-	-	-	2	
CO 6	3	4	-	-	-	-	-	-	-	-	-	-	-	-	2	
CO 7	3	4	-	-	-	-	-	-	-	-	-	-	-	-	2	
CO 8	3	4	-	-	-	-	-	-	-	-	-	-	-	-	2	
CO 9	3	4	-	-	-	-	-	-	-	-	-	-	-	-	2	
CO 10	3	7	-	-	-	-	-	-	-	-	-	-	-	-	2	

Course				PSOs/ No. of key competencies											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	1	3	2
CO 1	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 2	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 3	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 4	100.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 5	100.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
CO 6	100.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
CO 7	100.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 8	100.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
CO 9	100.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
CO 10	100.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

XIV. COURSE ARTICULATION MATRIX (PO - PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the Low correlation, 2 being medium correlation and 3 being high correlation.

- $0 0 \le C \le 5\%$ —No correlation $1 - 5 < C \le 40\%$ — Low/ Slight
- **2** 40 % <**C**< 60% –Moderate
- $3-60\% \leq C < 100\% Substantial / High$

Course					Pro	gram	Outco	omes					Program Specific Outcomes			
Outcomes	Dutcomes 1 2 3 4 5 6 7 8 9								9	10	11	12	1	2	3	
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 5	3	1	-	-	-	-	-	-	-	-	-	-	-	-	3	

CO 6	3	1	-	-	-	-	-	-	-	-	-	-	-	-	3
CO 7	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	3	1	-	-	-	-	-	-	-	-	-	-	-	-	3
CO 9	3	1	-	-	-	-	-	-	-	-	-	-	-	-	3
CO 10	3	3	-	-	-	-	-	-	-	-	-	-	-	-	3
TOTAL	30	9													15
AVERAGE	3.0	1.3													3.0

XV. ASSESSMENT METHODOLOGY - DIRECT

CIE Exams	PO 1,PO 2	SEE Exams	PO 1, PO 2 PO 4	Assignments	PO 1,PO 2 PO 5	Seminars	PO 9, PO 10, PO 12
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4	5 Minutes Video	PO 5	Tech talk	PO 10	Open Ended Experiments	PO 12

XVI. ASSESSMENT METHODOLOGY - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

UNIT-1	PRINCIPLES OF MEASUREMENT				
functional descr	Definition – Basic principles of measurement – Measurement systems, generalized configuration and functional descriptions of measuring instruments – examples. Dynamic performance characteristics – sources of error, Classification and elimination of error.				
UNIT-II	MEASUREMENT OF DISPLACEMENT, TEMPERATURE, PRESSURE				
displacement – transducers, Cal Measurement o Expansion, Ele Indicators. Measurement o Bourdon pressu	Measurement of Displacement: Theory and construction of various transducers to measure displacement – Piezo electric, Inductive, capacitance, resistance, ionization and Photo electric transducers, Calibration procedures. Measurement of Temperature: Classification – Ranges – Various Principles of measurement Expansion, Electrical Resistance – Thermistor – Thermocouple – Pyrometers – Temperature Indicators. Measurement of Pressure: Units – classification – different principles used. Manometers, Piston, Bourdon pressure gauges, Bellows – Diaphragm gauges. Low pressure measurement – Thermal conductivity gauges – ionization pressure gauges, McLeod pressure gauge.				
UNIT-III	MEASUREMENT OF LEVEL, FLOW, SPEED, ACCELERATION AND VIBRATION				
Measurement of Level: Direct method – Indirect methods capacitive, ultrasonic, magnetic, cryogenic fuel level indicators – Bubbler level indicators. Flow Measurement: Rotameter, magnetic, Ultrasonic, Turbine flow meter, Hot – wire anemometer, Laser Doppler Anemometer (LDA).					

Measurement of Speed: Mechanical Tachometers – Electrical tachometers – Stroboscope, Noncontact type of tachometer. Measurement of Acceleration and Vibration: Different simple instruments – Principles of Seismic instruments – Vibrometer and accelerometer using this principle.

UNIT-IV MEASUREMENT OF STRESS–STRAIN, HUMIDITY, FORCE, TORQUE AND POWER

Stress Strain Measurements: Various types of stress and strain measurements – electrical strain gauge gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains usage for measuring torque, Strain gauge Rosettes.

Measurement of Humidity: Moisture content of gases, sling psychrometer, Absorption psychrometer, Dew point meter.

Measurement of Force, Torque and Power: Elastic force meters, load cells, Torsion meters, Dynamometers.

UNIT-V ELEMENTS OF CONTROL SYSTEMS

Elements of Control Systems: Introduction, Importance – Classification – Open and closed systems Servomechanisms–Examples with block diagrams–Temperature, speed & position control systems.

Textbooks:

- 1. K Padma Raju, Y J Reddy, "Instrumentation and Control Systems", McGraw Hill Education1st Edition, 2016.
- 2. S W. Bolton, "Instrumentation and Control Systems", Newness Publisher, 1st Edition, 2004.
- 3. K Singh, "Industrial Instrumentation and Control", McGraw Hill Education, 3rd Edition, 2015.

Reference Books:

- Schmidt, L.V., "Introduction to Aircraft Flight Dynamics", AIAA Education Series, 1st Edition, 1998, ISBN A-56347-226-0.G.
- 2. McCormick, B.W., "Aerodynamics, Aeronautics, and Flight Mechanics", Wiley India, 2nd Edition, 1995, ISBN 97.

XVIII. COURSE PLAN

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Outcomes	Text (T) book / Reference (R) book
1	Introduction, definition, fundamental measuring process.	CO 1	T1: 1.1-1.16
2	Basic principles of measurement, classification, measurement systems.	CO 1	T1: 1.1-1.16
3-4	generalized configuration and functional descriptions of measuring instruments – examples	CO 1	T2:26.7 R2:21.51
5	Static performance characteristics.	CO 2	T1: 1.16
6-7	Dynamic performance characteristics	CO 2	T1: 1.16
8	Sources of error, Classification of errors.	CO 2	T1: 1.16
9	Classification of errors, elimination of error and calibration.	CO 2	T1: 1.16
10	Zero order, 1st order 2nd order systems.	CO 2	T1: 1.121.16
11-12	Classification of transducers, Theory and construction of LVDT, Resistance, Inductive transducer for measurement of displacement.	CO 3	T1: 14.114.2

Lecture No	Topics to be covered	Course Outcomes	Text (T) book / Reference (R) book
13	Theory and construction of capacitance transducer for measurement of displacement.	CO 3	T1: 14.1 14.2
14	Theory and construction of Piezo electric and photo electric transducer transducers for measurement of displacement.	CO 3	T1: 14.1-14.2
15	Theory and construction of Ionization and Photo electric transducer for measurement of displacement.	CO 3	T1: 14.1-14.2
16	Hall effect Transducer, LDR	CO 3	T1: 14.1-14.2
17	Measurement of Temperature: Classification – Ranges	CO 3	T1: 20.1-20.3
18	Various principles of measurement – Expansion, Electrical Resistance	CO 3	T1: 20.1-20.3
19	Resistance Temperature Detector (RTD)	CO 3	T1: 20.1-20.3
20	Thermistor for temperature measurement.	CO 3	T1: 20.1-20.3
21	Thermocouple for temperature measurement	CO 3	T1: 20.1-20.3
22	Pyrometers – Temperature Indicators	CO 3	T1: 20.120.3
23	Measurement of Pressure: Units – classification – different principles used	CO 4	T1: 18.1-18.3
24	Piston gauge, Manometers,	CO 4	T1: 18.118.3
25-26	Bourdon pressure gauges, Bellows – Diaphragm gauges. Low pressure measurement	CO 4	T1: 18.1-18.3
27	Thermal conductivity gauges	CO 4	T1: 18.118.3
28	Ionization pressure gauges, Mcleod pressure gauge	CO 4	T1: 18.118.3
29	Measurement of Level: Direct method – Indirect methods	CO 5	T1: 24.124.2
30	Capacitive, ultrasonic level measurement	CO 5	T1: 24.1-24.2
31	Magnetic, cryogenic fuel level indicators	CO 5	T1: 24.1-24.2
32	Bubbler level indicators	CO 5	T1: 24.1-24.2
33	Flow Measurement: Rotameter, magnetic flow meter	CO 6	T1: 21.121.2
34	Ultrasonic, Turbine flow meter	CO 6	T1: 21.1-21.2
35	Hot – wire anemometer, Laser Doppler Anemometer (LDA)	CO 6	T1: 21.1-21.2
36	Measurement of Speed: Mechanical Tachometers	CO 7	T1: 15.1 15.3
37	Electrical tachometers	CO 7	T1: 153
38	Noncontact type of tachometer, Stroboscope	CO 7	T1: 15.1 15.3
39	Measurement of Acceleration and Vibration: Different simple instruments	CO 7	T1: 16.1-16.2

Lecture No	Topics to be covered	Course Outcomes	Text (T) book / Reference (R) book
40	Principles of Seismic instruments	CO 7	T1: 16.1-16.2
41-42	Vibrometer and accelerometer using this principle	CO 7	T1: 16.116.2
43-44	Stress Strain Measurements: Various types of stress and strain measurements	CO 9	T1: 9.1- 9.5
45	Electrical strain gauge	CO 8	T1: 9.1- 9.5
46	Gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains	CO 8	T1: 9.1- 9.5
47	Usage for measuring torque, Strain gauge Rosettes	CO 8	T1: 9.1- 9.5
48	Measurement of Humidity: Moisture content of gases, sling psychrometer	CO 8	T1: 10.1-10.6
49	Absorption psychrometer, Dew point meter	CO 8	T1: 10.1-10.6
50	Measurement of Force, and Elastic force meters	CO 9	T1: 10.1-10.6
51	Measurement of Torque	CO 9	T1: 11.1-11.5
52	load cells, Torsion meters	CO 9	T1: 11.1-11.5
53-54	Measurement of Power, Dynamometers	CO 9	T1: 11.1-11.5
55	Elements of Control Systems: Introduction, Importance, Classification	CO 10	T1: 11.1-11.5
56	Open and Closed systems	CO 10	T1: 28.1-16
57-58	Servomechanisms–Examples with block diagrams	CO 10	T1: 28.1-28.16
59	Temperature control systems, Speed control system	CO 10	T1: 28.1-28.16
60	Position control systems	CO 10	T1: 28.1-28.16

Prepared By: Dr. GVR Seshagiri Rao, Associate Professor

HOD, ME