

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	MANUFACTURING PROCESS						
Course Code	AMEB05	AMEB05					
Programme	B.Tech	B.Tech					
Semester	THREE						
Course Type	Core						
Regulation	IARE - R18						
		Theory		Practic	al		
	Lectures	Tutorials	Credits	Laboratory	Credits		
Course Structure	3 0 4 2 1						
Course Faculty	Dr. Ch San	deep, Associate	e Professor				

I. COURSE OVERVIEW:

The primary objective of this course is to introduce the concept of manufacturing technology with the help of various processes widely employed in industries. The course consists of casting, welding, sheet metal forming, extrusion and forging processes with the related details of equipment and applications. Introduces the different manufacturing processes and breakeven analysis. Engineering materials, laying emphasis on ferrous and non-ferrous materials along with the heat treatment of metals. Discusses the special casting processes and metal-forming processes respectively.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AMEB01	II	Workshop Manufacturing Practices Laboratory	1.5

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Manufacturing Process	70 Marks	30 Marks	100	

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	Open Ended Experimen	nts					

IV. DELIVERY / INSTRUCTIONALMETHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either", or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Table 1: The expected percentage of cognitive level of questions in SEE

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

Table 2: Assessment pattern for CIA

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz	AAT	
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

Table 3: Assessment pattern for AAT						
5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment		
20%	30%	30%	10%	10%		

VI. COURSE OBJECTIVES:

The students will try to learn:						
Ι	The Importance of manufacturing sciences in the day-to-day life, and study the basic manufacturing processes and tools used.					
II	The knowledge in thermal, metallurgical aspects during casting and welding for defect free manufacturing components.					
III	Design features that make each of these manufacturing process both harder, easier, assess design and manufacturing features on real products					

VII. COURSE OUTCOMES:

At the end of the course students are able to:					
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)			
CO1	Outline the steps involved in making a casting the desired pattern for automotive industry components cylinder heads, engine blocks etc.	Remember			
CO2	Design the gating and riser system needed for casting requirements to achieve defect/error free components	Apply			
CO3	Categorize various defects and shortcomings during gas welding operation such as TIG, MIG and Spot welding etc. for real time applications.	Understand			
CO4	Illustrate the properties and bonding techniques of plastics and various plastic molding techniques.	Understand			

CO5	Apply the appropriate metal forming techniques, for producing	Apply
	components like hexagonal bolt, nut etc.,	
CO6	Explain the working principle of hot and cold extrusion processes	Apply
	and their application in industries for making of pipes and tubes.	
CO7	Analyze the manufacturing defects as well as material	Apply
	characterization and its application.	
CO8	Classify the various forging techniques based on functionality, cost	Understand
	and time in development of critical products.	
CO9	Evaluate the appropriate manufacturing process parameters, for	Apply
	effective optimization of prototype / products.	

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PO 1	Engineering knowledge : Apply the knowledge of	3	CIE/Quiz/AAT
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	3	CIE/Quiz/AAT
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles		
	of mathematics, natural sciences, and engineering		
	sciences.		
PO 3	Design/development of solutions: Design solutions for	2	Seminar/
	complex engineering problems and design system		conferences/
	components or processes that meet the specified needs		Research papers
	with appropriate consideration for the public health and		
	safety, and the cultural, societal, and environmental		
	considerations.		
PO 4	Conduct investigations of complex problems: Use	2	Discussion on
	research-based knowledge and research methods		Innovations/
	including design of experiments, analysis and		Presentation
	interpretation of data, and synthesis of the information to		
	provide valid conclusions.		

3 = High; 2 = Medium; 1 = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 1	Formulate and evaluate engineering concepts of	2	Research papers/
	design, thermal and production to provide solutions		Industry exposure
	for technology aspects in digital manufacturing.		
PSO 2	Focus on ideation and research towards product	2	Research papers/
	development using additive manufacturing, CNC		Group discussion/
	simulation and high speed machining.		Short term courses
PSO 3	Make use of computational and experimental tools for	2	Research papers /
	creating innovative career paths, to be an		Industry exposure
	entrepreneur and desire for higher studies.		

3 = High; **2** = Medium; **1** = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course		Program Outcomes													Program Specific Outcomes	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark															
CO 2		\checkmark														
CO 3				\checkmark												
CO 4			\checkmark													
CO 5		\checkmark	\checkmark												\checkmark	
CO 6		\checkmark	\checkmark												\checkmark	
CO 7		\checkmark	\checkmark												\checkmark	
CO 8		\checkmark														
CO 9	\checkmark	\checkmark														

XI. JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING –DIRECT:

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Recall (knowledge) the basic steps involved in design and	2
		manufacturing and identify the importance of system by	
		(apply), implementing (complex) various techniques using	
		Scientific Principles of Methodology using mathematics	
		and engineering fundamentals.	
CO 2	PO 1	Identify (knowledge) in suitable methods involved in	2
		design, casting to achieve error free components using in	
		solving (complex) engineering problems by applying the	
		principles of mathematics and engineering fundamentals.	
	PO 2	Understand the given problem statement and apply data	3
		validation techniques to solve (complex) specific	
		engineering problems related to design.	

CO 3	PO 4	Investigate prototype models based on constraint including	2
		Environmental sustainability, Health and safety risks	
		assessment issues and define specific problem	
CO 4	PO 3	Identify the various properties of Bonding techniques using	3
		analytical and mathematical process.	
CO 5	PO 2	Make use of the metal forming techniques used in Design ,	4
		Model Creation and Validation of component Parts by	
		Problem Analysis.	
	PO 3	Understand the given problem statement related to their	2
		working principle and based upon type of manufacturing	
		process.	
	PSO 3	Build practical experience in building the real time products,	2
		using industry standard tools and collaboration	
		technique in the field of Manufacturing System.	
CO 6	PO 1	Apply the basic mathematical principles used in	2
		formulation of engineering problems	
	PO 2	Understand the working principle used in Hot & Cold	2
		Working Process by Natural Science and Engineering	
	DCO A	Sciences.	
	PSO 3	Identify the principle involved in Hot & Cold Extrusion	2
		process by Qualitative & Quantitative methods to their	
007	DO 1	engineering problems.	
07	POI	Develop (knowledge, understand and apply) the basic tools	2
		methometics and angineering fundamentals	
	DO 2	Identify the menufacturing defects as well as meterial	2
	FU 2	characterization of model & validating the data results	2
	DO 2	Understand the user needs of user defined problems, use	5
	103	creativity in building prototype applying the methods of	5
		model analyses for innovative solutions evaluate the	
		autcomes to achieve engineering objectives	
	PSO 3	Build practical experience in designing Prototype model	2
	1505	using industry standard tools and collaboration	4
		technique in the field of Manufacturing	
CO 8	PO 1	Explain (understand) the process parameter using (complex)	2
000	101	the functions of engineering problems by applying the	-
		principles of mathematics and engineering fundamentals.	
	PO 2	Categorise the concept of Forging Techniques based upon	4
	101	the information and data collection in <i>engineering problems</i> .	-
CO 9	PO 1	Make use of the process parameters used in Manufacturing	2
		for solving the errors in real time <i>engineering problems</i> by	
		applying the principles of mathematics and engineering	
		fundamentals.	
	PO 2	Develop a prototype model for real time scenario using	4
		industry standard tools and collaboration techniques.	

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

Course		Prog	ram C	outcor	nes / I	No. of	Key (Comp	etenci	es Ma	Program Outcomes / No. of Key Competencies Matched											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3							
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2							

CO 1	2									
CO 2	2	3								
CO 3				2						
CO 4			3							
CO 5		4	2							2
CO 6	2	2								2
CO 7	2	2								2
CO 8	2	4								
CO 9	2	4								

XIII. PERCENTAGE FOR KEY COMPETENCIES FOR CO-(PO, PSO):

]	Progra	m Out	tcomes	s /No. (of key	compe	tencie	S		PSO / No. of key competencies		
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2
CO 1	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 2	66.7	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 3	0.0	0.0	0.0	18.18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 4	0.0	0.0	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 5	0.0	40.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
CO 6	66.7	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
CO 7	66.7	20.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
CO 8	66.7	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 9	66.7	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

XIV. COURSE ARTICULATION MATRIX (CO-PO/PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\mathbf{0} \mathbf{0} \le \mathbf{C} \le 5\%$ -No correlation;
- $1 5 < C \le 40\%$ -Low/Slight;

2 - 40 % < C < 60% –Moderate. $3 - 60\% \le C < 100\%$ – Substantial /High

Course					Pro	gram	Outco	omes					Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	-	1	-	-	-	-	-	-	-	-	-	-	-	-	3
CO 6	3	1	-	-	-	-	-	-	-	-	-	-	-	-	3
CO 7	3	1	2	-	-	-	-	-	-	-	-	-	-	-	3
CO 8	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	18	6	2	1											9
AVERAGE	3.0	1.0	2.0	1.0											3.0

XV. ASSESSMENT METHODOLOGY – DIRECT

CIE Exams	PO 1,PO 2	SEE Exams	PO 1,PO 2 PO 4	Assignments	PO 1,PO 2, PO 5	Seminars	PO 9, PO 10, PO 12
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4	5 Minutes Video	PO 5	Tech talk	PO 10	Open Ended Experiments	PO 12

XVI. ASSESSMENT METHODOLOGY -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

MODULE-I	CASTING							
Casting: Steps involved in making a casting, its applications, patterns and types of patterns, pattern allowances and their construction, types of casting processes, solidification of casting.								
MODULE-II	WELDING							
Welding: Welding welding Process, welding, MIG weld beam welding, lase causes and remedie	types, Oxy-fuel gas welding, cutting, standard time and cost calculations, arc forge welding, resistance welding, thermit welding. Inert gas welding, TIG ding, friction welding, induction pressure welding, explosive welding, electron r welding, soldering and brazing. Heat affected zone in welding, welding defects, s, destructive and non-destructive testing of welds.							

Module-III METAL FORMING

Forming: Hot working, cold working, strain hardening, recovery, re-crystallization and grain growth, comparison of properties of cold and hot worked parts, rolling fundamentals, theory of rolling, types of rolling mills and products; Forces in rolling and power requirements, stamping, forming and other cold.

Working processes: Blanking and piercing, bending and forming, drawing and its types, wire drawing and tube drawing; coining; hot and cold spinning, types of presses and press tools, forces and power requirements for the above operations.

MODULE-IV

IV EXTRUSION AND RAPID PROTOTYPING

Extrusion of Metals: Basic extrusion process and its characteristics, hot extrusion and cold extrusion, forward extrusion and backward extrusion, impact extrusion, extruding equipment, tube extrusion and Pipe making, hydrostatic extrusion, forces in extrusion; Additive manufacturing: Rapid prototyping and rapid tooling.

MODULE-V FORGING

Forging processes: Forging operations and principles, tools, forging methods, Smith forging, drop forging, roll forging, forging hammers: Rotary forging, forging defects, cold forging, swaging, forces in forging operations.

Text Books:

1. Kalpakjian and Schmid, Manufacturing processes for engineering materials -Pearson India, 5th Edition 2014.

Reference Books:

- 1. Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems John Wiley & Sons Inc., 4th Edition, 2008.
- 2. Degarmo, Black &Kohser, Materials and Processes in Manufacturing (9th Edition) John Wiley & Sons Inc., 7th Edition, 2012.

XVIII. COURSEPLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Outcomes	Reference
1	Introduction to manufacturing processes.	CO 1	T2:2.3
2	Review on casting and pattern	CO 1	R1:2.6
3	Discuss the casting processes and their types	CO 2	T1:2.6
4	Describe the solidification of casting	CO 2	T2:2.7 R1:2.18
5	Describe the welding techniques	CO 3	T2:2.22
6	Discuss the effect of TIG and MIG welding	CO 3	T2:2.25
7	Discuss the effect of Heat affected zone in welding	CO 3	T2:2.26 R1:2.55
8	Discuss the welding defects	CO 3	T2:2.16 R1:2.61
9	Discuss the causes and remedies	CO 4	T2:2.30 R1:2.58
10	Introduction to destructive and non-destructive testing of welds.	CO 4	T2:3.6 R1:4.29

Lecture No	Topics to be covered	Course Outcomes	Reference
11	Classifying and Demonstration of metal forming	CO 5	T2:3.14 R1:4.31
12	Discuss the hot and cold working.	CO 5	T2:3.14 R1:4.33
13	Discuss the strain hardening recovery & recrystallization	CO 5	R1:4.36
14	Comparison of properties of cold and hot worked parts	CO 5	T2:3.18 R1:4.64
15	Introduction to rolling	CO 6	T2:3.22
16	Demonstration of working of rolling operations	CO 6	T2:3.28 R1:4.67
17	Classifying rolling types.	CO 6	T2:4.2
18	Demonstration of rolling theory	CO 6	T2:4.3 R1:4.71
19	Introduction to mills and products and stamping	CO 7	T1:4.8 R2:4.68
20-21	Demonstration of forces in rolling and their calculations	CO 7	T2:4.15 R1:5.74
22	Discuss stamping forming and other cold operations.	CO 7	T1:4.12 R2:5.75
23-24	Explanation of blanking and piercing operations	CO 7	T1:4.8 R1:5.72
25	Introduction to drawing and its types.	CO 7	T1:5.8 R1:5.73
26-27	Discuss the wire and tube drawing techniques	CO 7	T1:5.14 R1:6.78
28	Explain extrusion of metals	CO 7	T2:5.19 R1:6.81
29-30	Discuss the characteristics of extrusion types	CO 7	T1:6.4 R2:6.8
31	Describe the importance of impact and extruding equipment.	CO 8	T2:7.7 R1:7.74
32-33	Describe hydrostatic extrusion, forces in extrusion	CO 8	T1:7.12 R2:8.75
34	Introduction to Additive manufacturing	CO 8	T1:7.8 R1:8.72
35	Draw & Describe Forging operations and principles	CO 8	T1:8.8 R1:8.73
36	Discuss the tools, forging methods.	CO 9	T1:9.14 R1:10.78
37-38	Describe the Smith forging, drop forging	CO 9	T2:9.19 R1:10.814
39-40	Describe the importance of roll forging, forging hammers.	CO 9	T1:10.4 R2:11.68
41-43	Discuss the rotary forging, forging defects	CO 9	T2:10.7 R1:12.74
44-45	Describe the cold forging, swaging, forces in forging operations.	CO 9	T1:11.12 R2:12.75