INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICALENGINEERING

COURSE DESCRIPTOR

Course Title	MANUFA	MANUFACTURING TECHNOLOGY			
Course Code	AMEB16				
Programme	B.Tech				
Semester	FIFTH	FIFTH			
Course Type	Foundation				
Regulation	IARE - R18				
		Theory		Practic	al
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits
	3 1 4 3 2				
Chief Coordinator	Dr. K. Chir	na Apparao, As	ssociate Profe	essor	

I. COURSE OVERVIEW:

Manufacturing Technology is an instructional program that prepares individuals to shape metal parts on machines such as lathes, grinders, drill presses, milling machines and shapers. This program includes instruction in safety, making computations related to work dimensions testing feeds and speeds of machines using precision measuring instruments. Metrology is highly valuable for the students and practitioners, specifically from mechanical and allied engineering stream. This course is designed to impart the knowledge about the various machining processes like turning, shaping, planning, drilling, milling and grinding and to develop measurement procedures, conduct metrological experiments.

II. COURSEPRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
B. Tech	AMEB05	III	Manufacturing Processes	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Manufacturing Technology	70 Marks	30 Marks	100

~	РРТ	✓	Chalk & Talk	~	Assignments	X	MOOCs
~	Open Ended Experiments	>	Seminars	X	Mini Project	~	Videos
X	Others:						

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either", "or" choice will be drawn from each module. Each question carries 14 marks. **There could be a maximum of two subdivisions in a question.**

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
25%	Remember
34%	Understand
33%	Apply
8%	Analyse
0%	Evaluate
0%	Create

Table 1: The expected percentage of cognitive level of questions in SEE.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

Component		Theory		
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks
CIA Marks	20	05	05	30

Table 2: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which, four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

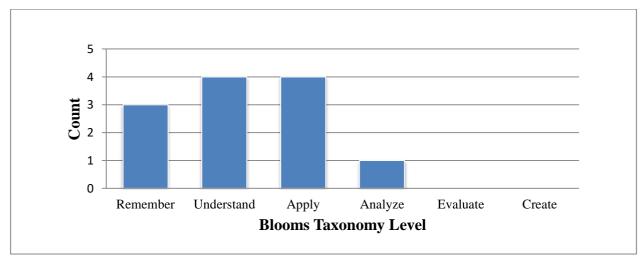
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
20%	30%	30%	10%	10%

Table 3:	Assessment	pattern	for	AAT
----------	------------	---------	-----	-----

VI. COURSE OBJECTIVES:


The stu	The student will try to learn:					
Ι	I The fundamental concepts of the metal cutting principles to study the behavior of various					
	machining processes					
II	The importance of tool materials, cutting parameters, cutting fluids and tool wear					
	mechanisms for optimized machining					
III	The principles of linear and angular measuring instruments for accurate measurement of a					
	given component					
IV	V The mechanics of machining process and optimization of various significant parameters in					
	order to yield the optimum machining.					

VII. COURSE OUTCOMES:

After	After successful completion of the course, students will be able to:				
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)			
CO 1	Recognize the importance of geometry of cutting tools, coolants and tool materials for the analysis of material behavior during manufacturing processes	Remember			

CO 2	Illustrate mechanism of orthogonal and oblique cutting along with developed cutting forces	Understand
CO 3	Explain the chip formation mechanism by measuring the cutting forces during the chip formation process	Understand
CO 4	Explain the operational principles of different lathe machines and various reciprocating machines for quality machining	Understand
CO 5	Select a machining operation, corresponding machine tool for a specific application in real time	Remember
CO 6	Identify most significant process parameters in machine tool for optimal machining	Remember
CO 7	Explain the working principles of Milling, drilling and surface grinding machines for manufacturing the components of their requirement	Understand
CO 8	Estimate machining times for machining operations at specified levels of cutting parameters of machine tools	Apply
CO 9	Apply the principles of limits, fits and tolerance while designing and manufacturing the components of their requirement	Apply
CO10	Choose an appropriate measuring instrument for accurate inspection of the dimensional and geometric features of a given component	Apply
CO11	Apply various methods for the measurements of screw threads, surface roughness parameters and the working of optical measuring instruments	Apply
CO12	Analyze the results of various measuring systems and instruments for motion and dimensional measurements	Analyze

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES AREASSESSED:

	Program Outcomes		Proficiency assessed by
PO 1	Engineering Knowledge: Capability to apply the knowledge of	3	CIE/Quiz/AAT
	mathematics, science and engineering in the field of mechanical engineering.		

PO 2	Problem Analysis: An ability to analyze complex engineering	1	CIE/Quiz/AAT
	problems to arrive at a relevant conclusion using knowledge of		
	mathematics, science and engineering.		
PO 3	Design/ development of solutions: Competence to design a	1	Discussion/AAT
	system, component or process to meet societal needs within		
	realistic constraints.		

3 = High; **2** = Medium; **1** = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 1	Formulate and evaluate engineering concepts of design,	1	Discussion /AAT
	thermal and production to provide solutions for technology aspects in digital manufacturing.		

3 = High; **2** = Medium; **1** = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes					Pro	gram	Outco	omes					S	rogra pecifi utcom	c
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4		-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5		-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 6	-		-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 7			-	-	-	-	-	-	-	-	-	-		-	-
CO 8			-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9		\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 10		-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 11		-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 12	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-

XI. JUSTIFICATIONS FOR CO – PO/PSO MAPPING – DIRECT

Course Outcomes	PO's/ PSO's	Justification for mapping, (students will be able to):	No. of Key competencies
CO 1	PO 1	Recognize (knowledge) the importance of geometry of cutting	3
001		tool, Tool life, coolants and tool materials to analyze <i>material</i>	C C
		behaviour during manufacturing processes by applying the	
		principles of mathematics, science and Manufacturing	
		fundamentals	
CO 2	PO 1	Illustrate the mechanisms of orthogonal and oblique cutting	3
		processes to know about the material deformation that takes	
		place while machining and about to analyse <i>cutting forces</i>	
		developed in various metal cutting operations by applying the	
		principles of manufacturing engineering fundamentals,	
		mathematics and scientific methodologies	
	PO 2	Understand the given problem statement and formulate	6
		various equations regarding metal cutting operation. Translate	
		the information into the illustration of force triangles from the	
		provided information to develop solutions based on the	
		orthogonal and oblique cutting, and validate the illustrated	
		force triangles in reaching substantiated conclusions by the	
<u> </u>	DO 1	interpretation of results.	
CO 3	PO 1	Explain (Understand) the chip formation mechanism by	2
		measuring the <i>cutting forces during the chip formation process</i>	
		in solving (complex) manufacturing problems by applying the	
	DO 2	principles of mathematics and engineering fundamentals .	3
	PO 2	Problem analysis based on principles of mathematics , Manufacturing engineering fundamentals and sciences is	3
		essential to evaluate the <i>chip formation mechanism</i> by	
		measuring the cutting forces during the chip formation process	
CO 4	PO 1	Apply the operational principles of different <i>lathe machines</i>	3
0.0.4	101	and various reciprocating machines for quality machining by	5
		applying the knowledge of mathematics , science and	
		engineering fundamentals	
CO 5	PO 1	Selection of operations which have to be carried out <i>using</i>	2
		machine tools for a specific applications, need the knowledge	_
		of science and engineering fundamentals	
	PSO 1	Analysing the metal cutting process in various machine tools	2
		to anable them to design, analyse and fabricate complex	
		designs.	
CO 6	PO 1	Student will able to identify most significant process	3
		parameters in machine tool for optimal machining by applying	
		the knowledge of mathematics, science and production	
		engineering fundamentals	
	PO 2	Problem analysis based on principles of mathematics,	3
		Manufacturing engineering fundamentals and sciences is	
		essential to analyse and identify most significant process	
		parameters in machine tool for optimal machining	
	PSO 1	Analysing the metal cutting process in various machine tools to	2
		anable them to design, analyse and fabricate complex designs .	
CO 7	PO 1	Explain (Understand) the working principles of Milling,	3
		<i>drilling and surface grinding machines</i> for solving (complex)	
		manufacturing problems by applying the principles of	
		mathematics, science and engineering fundamentals	
	PO 2	Understand the given problem statement and formulate the	4
		design (complex) engineering problems for working processes	

Course Outcomes	PO's/ PSO's	Justification for mapping, (students will be able to):	No. of Key competencies
Outcomes	150 \$	of machine tools from the provided information and data in	competencies
		reaching substantiated conclusions by the interpretation of	
		results.	
	PSO 1		2
	1001	for the development of modern tools to to design, and fabricate	-
		complex designs.	
CO 8	PO 2	Problem analysis based on principles of mathematics ,	3
000		Manufacturing engineering fundamentals and science in	C C
		various metal cutting operations to <i>estimate machining times for</i>	
		machining operations at specified levels of cutting parameters	
		of machine tools	
CO 9		Identify (knowledge) the principles of limits, fits and tolerance	2
007		while designing to get accurate and precision measurement of	_
		<i>the manufactured components</i> by using acquired knowledge in	
		mathematics and science (physics and engineering).	
	PO 2	Application of the <i>principles of limits, fits and tolerance</i> while	3
		designing can be used for identifying , formulating, and	_
		analysing complex problems.	
	PSO 1	Ability to apply the <i>principle of limits</i> , <i>fits and tolerance</i> while	2
		designing and manufacturing help them to design, analyse and	_
		fabricate complex designs .	
CO 10	PO 1	Ability to select, <i>calibrate and use appropriate measuring</i>	3
0010	101	<i>equipment</i> requires identification of measurend, selection of	C
		equipment by referring standard available equipment, and	
		analysing the results using reference values are carried out by	
		applying the knowledge of mathematics, science and	
		metrology engineering fundamentals	
	PO 3	A good knowledge in measuring equipment and an ability to	3
	100	calibrate, equip them to design solutions to complex	C C
		engineering Problems by measuring various parameters	
		which are affecting them.	
	PSO 1	Ability to select, use and analyse the results obtained from	2
	1001	measuring instruments help them to design, analyse and	-
		fabricate complex designs .	
CO 11	PO 1	Ability to select and use various methods for the measurements	3
0011	101	of screw threads, surface roughness parameters and the	C
		working of optical measuring instruments for proper analysis of	
		results to reach actual conclusion requires some research based	
		knowledge of mathematics, science and metrology	
		engineering fundamentals	
	PSO 1	Ability to select, use and analyse the results obtained from	2
	1001	measuring instruments help them to design, analyse and	-
		fabricate complex designs .	
CO 12	PO 2	Accurate and precision measurement requires usage of	3
		acquired knowledge in mathematics, physics and	U
		engineering.	
	PO 3	A good knowledge in measuring equipment and an ability to	3
	100	calibrate, equip them to design solutions to complex engg.	
		Problems by measuring <i>various parameters</i> affecting them.	
	PSO 1	Analyze the results of various <i>measuring systems and</i>	2
	1 30 1	<i>instruments</i> for motion and dimensional measurements and can	-
		infer the results to give better conclusions. help them to design,	

Course	Program Outcomes / No. of Key Competencies Matched Course													PSO No. of mpete	key
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	4	2	1
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	3	-	-	I	-	-	-	-	I	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 6	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 7	3	4	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 8	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	2	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 10	3	-	3	-	-	-	-	-	-	-	-	-	2	-	-
CO 11	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 12	I	3	3	-	-	-	-	-	-	-	-	-	2	-	-

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO/PSO):

Course	Course Program Outcomes / No. of key competencies													PSOs/ No. of key competencies			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2		
CO 1	100	00.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 2	100	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 3	66.7	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 4	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 5	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0		
CO 6	100	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0		
CO 7	100	40.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0		
CO 8	00.0	20.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00.0	0.0	0.0		

CO 9	66.7	30.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0
CO 10	100	00.0	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0
CO 11	100	00.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0
CO 12	00.0	30.0	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0

XIV. COURSE ARTICULATION MATRIX (CO-PO/PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0} - \mathbf{0} \le \mathbf{C} \le 5\%$ –No correlation;

2-40 % <**C**<60% –Moderate.

 $1 - 5 < C \le 40\%$ – Low/ Slight;

 $3 - 60\% \le C < 100\%$ – Substantial /High

Course Outcomes												S	Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 6	3	1	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 7	3	1	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 8	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	3	1	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 10	3	-	1	-	-	-	-	-	-	-	-	-	1	-	-
CO 11	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 12	-	1	1	-	-	-	-	-	-	-	-	-	1	-	-
TOTAL	30	8	2	-	-	-	-	-	-	-	-	-	7	-	-
AVERAGE	3.0	1.0	1.0	-	_	-	-	_	-	_	-	-	1.0	-	-

XV. ASSESSMENT METHODOLOGY – DIRECT

CIE Exams	PO 1, PO 2,	SEE Exam	PO 1, PO 2,	Assignments	PO 1,PO 3	Seminars	PO 3,PSO 1
	PO 3, PSO 1		PO 3, PSO 1				
Laboratory	-	Student	-	Mini Project	-	Certification	-
Practices		Viva					

Term	PO 1,PO2			
Paper				

XVI. ASSESSMENT METHODOLOGY - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

MODULE - I	BASIC MECHANISM OF METAL CUTTING			
Elementary treatment of metal cutting theory, element of cutting process, geometry of single point tool				
and angles chip formation and types of chips, built up edge and its effects, chip breakers: Mechanics of				
orthogonal cutting, Merchant'sforcediagram, cutting forces, cutting speeds, feed, depth of cut,tool life,				
coolants, machinability, tool materials.				
MODULE - II	MACHINE TOOL - I			
Engine lathe, Principle, specification, types, work and tool holding devices, Automatic lathes,				
classification: Single spindle and multi-spindle automatic lathes and its tool layouts; Shaping, slotting				
and planning machines, Principles of working, specification, operations performed, Kinematic scheme.				
MODULE - III	MACHINE TOOL - II			
Milling machine classifications specifications working principles of milling machines. Geometry of				

Milling machine, classifications, specifications, working principles of milling machines; Geometry of milling cutters, methods of indexing, kinematic scheme of milling machines. Drilling and boring machines, principles of working, specifications, types, operations performed, twist drill; Kinematics scheme of the drilling and boring machines.

MODULE - IV GEOMETRICAL DIMENSIONING AND TOLERANCES

Systems of Limits and Fits: Introduction, normal size, tolerance limits, deviations, allowance, fits and their types, unilateral and bilateral tolerance system, hole and shaft basis systems, Interchangeability and selective assembly; Linear Measurement: Slip gauges, dial indicator, micrometers; Measurement of angles and tapers: Bevel protractor, angle slip gauges, spirit levels, sine bar.

MODULE - V MEASURING INSTRUMENTS

Optical measuring instruments: Tool maker's microscope and its uses, collimators, optical projector, interferometer; Screw thread measurement: Element of measurement, errors in screw threads, measurement of effective diameter, angle of thread and thread pitch, profile thread gauges; Surface roughness measurement: Numerical assessment of surface finish: CLA, R.M.S Values, Rz values, methods of measurement of surface finish: profilograph, talysurf - ISI symbol for indication of surface finish.

Text Books:

- 1. Dr. R. Kesavan, Dr. R. Kesavan, "Machine Tools" Laxmi publications, 2nd Edition, 2016.
- 2. N. K Mehta, "Metal Cutting and Design of Cutting Tools, Jigs & Fixtures", McGraw-Hill Education, 1st Edition, 2014.
- 3. T. L. Chaudhary, "Metal Cutting and Mechanical Tool Engineering", Khanna Publishers, 5th Edition, 2013.
- 4. R. K. Jain, Engineering Metrology, Khanna Publishers, 1st Edition, 2013.

Reference Books:

- 1. B.L. Juneja, G.S. Sekhon, Nitin Seth "Fundamentals of Metal Cutting and Machine Tools ", New Age Publishers, 2nd Edition,2014.
- 2. Geofrey, "Fundamentals of metal machining and machine tools", Tata McGraw Hill Education, 1st Edition,2013.
- 3. R. S. Sirohi, H. C. Radha Krishna, "Mechanical Measurements", New Age Publishers, 3rd Edition, 2011.
- 4. M Mahajan "A Textbook of Metrology ", Dhanpatrai and Co, 2nd Edition, 2013

XVIII.COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Outcomes	Text (T) book / Reference (R) book
1-4	Elementary treatment of the metal cutting theory, element of cutting process	CO 1	T1:1.7 R1:3.7
5-7	Geometry of single point tool and angles chip formation and types of chips, built up edge and its effects, chip breakers	CO 3	T1:1.8 R1:3.12
8-10	Mechanics of orthogonal cutting, Merchant's force diagram.	CO 2	T1:3.1 R1:3.13
11-14	Cutting speeds, feed, depth of cut, tool life, coolants, Machinability, tool materials.	CO 3	T1:3.3 R1:3.14
15-16	Engine lathe, Principle, specification, types, work and tool holding devices	CO 4	T1:2.1 R1:4.2
17-20	Automatic lathes, classification Single spindle and multi- spindle automatic lathes and its tool layouts	CO 5	T1:4.1 R1:4.4
21-23	Shaping, slotting and planning machines, Principles of working, specification, operations performed, Kinematic scheme.	CO 4	T1:5.1 R1:5.2
24-26	Milling machine, classifications, specifications, working principles of milling machines	CO 7	T1:6.1 R1:7.2
27-28	Geometry of milling cutters	CO 6	T1:6.6 R:7.4
29-30	Methods of indexing, kinematic scheme of milling machines, Drilling and boring machines, principles of working, specifications	CO 7	T1:6.11 R1:8.5
31-32	Types, operations performed, twist drill; Kinematics scheme of the drilling and boring machines.	CO 8	T1:7.1 R1:6.5
33-34	Systems of Limits and Fits: Introduction, normal size, tolerance limits, deviations, allowance, fits and their types	CO 9	T1:8.1 R3:3.2
35	Unilateral and bilateral tolerance system, hole and shaft basis systems, Interchangeability and selective assembly	CO 9	T1:9.1 R3:3.4
36-37	Linear Measurement: Slip gauges, dial indicator, micrometers; Measurement of angles and tapers	CO 10	T1:9.5 R3:4.4
38	Bevel protractor, angle slip gauges, spirit levels, sine bar.	CO 9	T1:10.1 R3:5.3
39	Optical measuring instruments	CO 10	T1:10.4 R3:7.2
40-41	Tool maker's microscope and its uses	CO 9	T1:10.8 R3:7.6

42	Collimators, optical projector, interferometer	CO 10	T1:10.9
42	Commators, optical projector, interferometer	0.010	
			R3:7.7
43-44	Screw thread measurement: Element of measurement	CO 11	T1:10.10
			R3:7.8
45-47	Errors in screw threads, measurement of effective diameter	CO 11	T1:15.1
			R3:7.9
48-49	Angle of thread and thread pitch	CO 11	T1:13.5
			R3:9.2
50-52	Profile thread gauges; Surface roughness measurement	CO 12	T1:13.7
			R3:9.4
53-55	CLA, R.M.S Values, Rz values	CO 12	T1:13.8
56-57	Profilograph, Talysurf	CO 12	T1:13.6
			R3:10.3
58-59	Methods of measurement of surface finish	CO 11	T1:13.9
			R3:12.3
59-60	ISI symbol for indication of surface finish.	CO 12	T1:14.8
			R3:12.6

Prepared by: Dr. K. Ch Apparao, Associate Professor

HOD, ME