

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	MANUFACTURI	IANUFACTURING TECHNOLOGY				
Course Code	AMEB16					
Program	B. Tech	Tech				
Semester	FIVE	/E				
Course Type	Foundation	oundation				
Regulation	IARE - R18					
		Theory		Practi	cal	
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	3	2	
Course Coordinator	Dr. K. China Appa	rao, Associate I	Professor			

COURSE OBJECTIVES:

The stud	The student will try to learn:						
Ι	The fundamental concepts of the metal cutting principles to study the behavior of various						
	machining processes						
II	The importance of tool materials, cutting parameters, cutting fluids and tool wear						
	mechanisms for optimized machining						
III	The principles of linear and angular measuring instruments for accurate and precise						
	measurement of a given component						
IV	The mechanics of machining process and optimization of various significant parameters in						
	order to yield the optimum machining.						

COURSE OUTCOMES:

Upon the successful completion of this course, students will be able to:					
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)			
CO 1	Recognize the importance of geometry of cutting tools, coolants and tool materials for the analysis of material behavior during manufacturing processes	Remember			
CO 2	Illustrate mechanism of orthogonal and oblique cutting along with developed cutting forces	Understand			
CO 3	Explain the chip formation mechanism by measuring the cutting forces during the chip formation process	Understand			
CO 4	Explain the operational principles of different lathe machines and various reciprocating machines for quality machining	Understand			
CO 5	Select a machining operation, corresponding machine tool for a specific application in real time	Remember			
CO 6	Identify most significant process parameters in machine tool for optimal machining	Remember			
CO 7	Explain the working principles of Milling, drilling and surface grinding machines for manufacturing the components of their requirement	Understand			
CO 8	Estimate machining times for machining operations at specified levels of cutting parameters of machine tools	Apply			
CO 9	Apply the principles of limits, fits and tolerance while designing and manufacturing the components of their requirement	Apply			
CO10	Choose an appropriate measuring instrument for accurate inspection of the dimensional and geometric features of a given component	Apply			
CO11	Apply various methods for the measurements of screw threads, surface roughness parameters and the working of optical measuring instruments	Apply			
CO12	Analyze the results of various measuring systems and instruments for motion and dimensional measurements	Analyze			

MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes		Program Outcomes										Program Specific Outcomes			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	6	-	-	-	-	-	-	-	-	_	_	-	-	-

CO 3	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 6	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 7	3	4	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 8	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	2	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 10	3	-	3	-	-	-	-	-	-	-	-	-	2	-	-
CO 11	3	-	-	-	-	-	-	_	-	-	_	-	2	-	-
CO 12	-	3	3	-	-	-	-	-	-	-	-	-	2	-	-

TUTORIAL QUESTION BANK

	MODULE– I					
	BASIC MECHANISM OF METAL CUTTING					
	PART - A (SHOR	T ANSWER	QUESTIONS)			
S No	QUESTION	Blooms Taxonomy Level	How does this Subsume the level below	Course Outcomes		
1	Write a short note on heat zone in cutting	Remember		CO 1		
2	What is tool life and its effects on machinability.	Remember		CO 1		
3	Mention any two modern tool materials	Understand	The learner to recall the suitable tool materials which are used to prepare modern tools to machine advanced materials	CO 1		
4	What are the different types of cutting fluids in material removing process?	Remember		CO 1		
5	What is the difference between straight oils and synthetic fluids?	Remember		CO 1		
6	Explain different types of application modes of cutting fluids in machining.	Understand	The learner to know the types of application modes of cutting fluids in machining to find their use in maching	CO 1		
7	Illustrate the orthogonal cutting process and its advantages and limitations.	Understand	The learner to find the importance of orthogonal cutting process to apply for machining in different oprations	CO 2		
8	Explain about Oblique cutting and its use in metal cutting process.	Understand	The learner to know the specific importance of Oblique cutting	CO 2		

			process to apply for machining in	
9	Classify the cutting tools with respect to different material removal process and machining conditions.	Understand	The learner to recall the classification and specific application of cutting tools to able to choose cutting tool for machining as per their requirement	CO 1
10	Illustrate the various parts in single point cutting tool.	Understand	The learner to know the nomenclature of single point cutting tool to yield smooth machining by turning operation	CO 1
11	What are the assumptions made in drawing Merchant's circle?	Remember		CO 3
12	Explain briefly about chip thickness ratio.	Understand	The learner to recall the chip formation to formula the chip thickness ratio to know the thickness of chip at before and after cut and their relationships	CO 3
13	What is the importance of the rake angle?	Remember		CO 1
14	Explian are three important heat developing zones in machining	Understand	The learner to desrcribe the importance of heat developing zones in machining to overcome the built-up edges problem by applying suitable cutting fluinds.	CO 1
15	What are the objectives and functions of cutting fluids	Remember		CO 1
16	Classify various cutting tool materials.	Understand	The learner to recall the classification of various cutting tool materials to select high hardness and good performance in wear resistance cutting tools, so that they play an important role in machining	CO 1
17	Explain the nose radius?	Understand	The learner to know the importance of nose radius of single point cutting tools in order to increase the tool life and better surface finish on the work piece	CO 1
18	List the different factors that contribute to poor surface finish in cutting	Remember		CO 1
19	Summarize the four important characteristics of materials used for cutting tools	Remember		CO 1
20	Explain the advantage of high machinability	Understand	The learner to know the advantage of high machinability to enhance the productivity by choosing proper machine tools and cutting fluids	CO 1
	PART - B (LON	G ANSWER	QUESTIONS)	
1	Explain various cutting tool materials, also List the properties of cutting tool materials.	Understand	The learner to recall the various cutting tool materials for preparing advanced machine tools in order to yield the good productivity	CO 1
2	What is shear angle? Derive the shear angle	Apply	The learner to know about the shear angle formula and its parameters to	CO 2

	formula with neat sketch.		analyse the material shear in the form of chips by assigning correct values in the shear angle formula	
3	Explain cutting speed, feed and depth of cut, mention their units in machining process.	Understand	The learner to recall the significant process parameters like cutting speed, feed and depth of cut to get the quality machining by optimizing their levels	CO 1
4	Explain the geometry of a single point cutting tool with suitable sketches?	Understand	The learner to describe the geometry of a single point cutting tool to enhance quality machining by maintain the proper nomenclature of tool geometry	CO 1
5	Explain different zones of heat generation with a neat sketch and share of heat among the different zones.	Understand	The learner to recall the heat generation process in different zones in metalcutting for controlling the coefficient of friction to get good surface finish and Tool life	CO 1
6	In orthogonal cutting of mild steel component if the rake angle of the tool is 10° and shear angle is 30° . Find the chip thickness ratio?	Apply	The learner to know the shear angle formula and assigning the given values to know the chip thickness ratio for smooth machining	CO 2
7	Determine the cutting speed and machining time per cut when the work having 35mm diameter is rotated at 200 rpm. The feed given is 0.2mm/rev and length of cut is 60mm.	Apply	The learner to describe Material removal rate formula and assigning the given values to know optimized the cutting speed and machining time per cut	CO 1
8	(a) Examine the parameters that influence the life of tool and discuss(b) Illustrate the formulas involved in life of tool.	Apply	The learner to recall the influencing parameters of life of tool and tool life formula then explaining significant influence on tool life to maintain good tool life	CO 1
9	Explain briefly about formation of chip with built up edge and its disadvantages.	Understand	The learner to know the formation of built up edge and its disadvantages to overcome that problem by maintaining the rake angle and cutting fluids	CO 3
10	Explain different types of chips formed while machining and how they get effected in varying the machining conditions.	Analyze	The learner to recall the chip formation mechanism to understand the influencing parameters by varying the machining conditions to analyze the machining mechanism	CO 3
11	Briefly, differentiate between orthogonal cutting and oblique cutting?	Analyze	The learner to recall the difference between orthogonal cutting and oblique cutting to choose the suitable cutting operation as per the requirement	CO 1
12	Explain the role of work piece material in machinability in material removing process.	Understand	The learner to recall the different work piece materials to understand the role of work piece material in machinability to enhance good material removal rate	CO I
13	Draw merchant force diagram and also resolve the forces related to it, derive the	Understand	The learner to should understand the different forces acting in machining	CO 3

	different forces in machining.		and resolve the forces (Fc, Ft, Ff) by merchant force diagram to derive the formulas to determine them	
14	What are the angles related to single point cutting tool? Explain the significance of each angle?	Analyze	The learner to recall the different angles and their ralationships related to single point cutting tool to analyze their significance in machining	CO 1
15	State the advantages and limitations of ceramics as tool materials.	Understand	The learner to recall advantages and limitations of ceramics as tool materials for preparing advanced tool as per the requirements	CO 1
16	What are the different types of cemented carbide tools available and explain their composition and properties?	Remember		CO 1
17	Derive the equation for finding shear force and normal to shear force using merchants circle diagram.	Apply	The learner to recall the different influencing machining parameters and Formulate the equation for finding shear force and normal to shear force using merchants circle diagram to know the shear force values	CO 3
18	Explain the role of work piece material and tool material on machinability in a metal removing process.	Understand	The learner to recall the characteristics of work piece material and tool materials to understand the role of work piece and tool material in machinability to enhance good material removal rate	CO 1
19	Derive the equation for finding friction force and normal to friction force in a metal cutting process using merchants circle diagram.	Apply	The learner to Formulate the equation for finding friction force and normal to friction force using merchants circle diagram to analyse power loses	CO 3
20	Explain the different tool materials with their compositions and related properties and limitations of the materials.	Understand	The learner to understand the various cutting tool materials to improve the MRR in order to yield the good productivity	CO 1
	PART - C (PROBLEM SOLVING	AND CRITI	CAL THINKING QUESTIONS)	
1	The useful tool life of HSS tool machinery mild steel at 18m/min is 3 hrs. calculate the tool life when the tool operates at 24m/min.	Apply	The learner to recall the tool life formula and its parameters to understand the tool life of HSS tool materials at given levels parameters	CO 1
2	In a turning operation it was observed that the tool life was 100 minutes and 50 minutes at cutting speeds of 25m/min and 100/min respectively. Find out tool life at 200m/min under the same cutting conditions?	Apply	The learner to recall the tool life formula and its parameters to understand the tool life of HSS tool materials at given levels parameters	CO 1,CO 3
3	In an orthogonal cutting operation on a work piece of width 2.5mm, the uncut chip thickness was 0.25mm and 25 degree. It was observed that the chip thickness was 1.25mm.The cutting force was measured to be	Apply	The learner to recall the shear angle formula and their influencing parameters to understans the relationship between different angles in cutting mechanism at different values of process parameters for better	CO 1, CO 3

	900N and the thrust force was found		machining	1
	to be 810 N		indenning	
	(a) Find the sheer angle			
	(a) I find the shear angle.			
	(b) If the coefficient of friction between the			
	chip and the tool, was 0.5, what is the			
	machining constant Cm			
4	Determine the cutting speed and machining	Understand	The learner to recall the influencing	CO 1,CO 3
	time per cut when the work having 50mm		parameters on machining to	
	diameter is rotated at 1000rpm. The feed given		machining time per at different values	
	is 0.8mm/rev and length of cut is 50mm.		of process parameters for better	
			machining	
5	The useful tool life of a HSS tool machining	Apply	The learner to recall the tool life	CO 1,CO 3
	MS at 28 m/min is hours, calculate the tool		formula and its parameters to	
	life when the tool operates at 14 m/min		understand the tool life of HSS tool	
			materials at given levels parameters	
6	The Taylor's tool life equation for machining	Apply	The learner to recall the tool life	CO 1,CO 3
	C-40 steel with a 18-4-1 HSS cutting tool at a		formula and its parameters to	
	feed of 0.8 m/min and a depth of cut 4mm.		understand the tool life of HSS tool materials at given levels parameters	
	The following V and T observation have been		materials at given levels parameters	
	noted. Calculate n, C and also recommended			
	the cutting speed for a desire tool life of			
	60min V (m/min) 35, 25 and T (min) 80,30.			
7	Calculate the power required during cutting of	Apply	The learner to find the cutting	CO1,CO 2
	a low carbon steel bar 40mm diameter of		parameters to know the consumed	
	cutting force is force is 150 kg at 200rpm.		power at different values of process	
0		TT. da nata n d	parameters for better machining	
8	Give your understanding of the basic metal-	Understand	The learner to recall the important	01,002
	cutting process, what are the important		cutting tool to Understand basic	
	physical and chemical Properties of a cutting		metal-cutting process for better	
	tool.		machining	
9	Calculate the power required during cutting of	Apply	The learner to recall the cutting	CO1,CO 3
	a low carbon steel bar 80mm diameter of		parameters to know the consumed	
	cutting force is force is 250 kg at 1000rpm		power at different values of process	
10	W7har is it and allowed a last a last a last a second	I In denote a d	parameters for better machining	CO 1 CO 2
10	why is it not always advisable to increase	Understand	cutting speed on machining to	CO 1,CO 3
	cutting speed in order to increase production		understand the production rate with	
	rate?		respect to cutting speed for better	
			machining	
	M			
	MAC	HINE TOOL	S -I	
	PART _ A (SHOR	T ANSWER	OUESTIONS)	
1	Explain the working principle of engine lathe	Inderstand	The learner to describe the basic ports	CO 4
1	in metal removing process.	Understand	and their functions of engine lathe	
			then explaining the working principle	

			of engine lathe in metal removing	
2	Discuss about the head stock of engine lathe used in turning and facing operations.	Understand	The learner to know the basic functions of head stock of engine lathe then explaining the importance of head stock in turning and facing operations.	CO 4
3	Explain about the carriage in a central lathe used in metal removing process.	Understand	The learner to recall the basic parts and their functions of the carriage in a central lathe then explaining the importance of carriage in metal removing process	CO 4
4	What are the different parts of a central lathe explain about them briefly?	Remember		CO 4
5	Explain the meaning of "swing of the lathe"	Understand	The learner to recall the basic parts and their functions of the swing of the lathe then explaining the importance of swing plate in turning operation.	CO 4
6	What are the different types of operations done on a central lathe?	Remember		CO 4
7	Discuss the difference between feed rod and lead screw .	Analyze	The learner to know the functions of feed rod and lead screw to Understand the importance of feed rod and lead screw to perform different opetation, mainly in tread cutting operation	CO 4
8	Differentiate between shaping and planning operation in metal cutting process?	Analyze	The learner to know functions of shaping and planning operation then explaining the difference between shaping and planning operation in metal cutting process to choose and perform the different operation as per their requirement	CO 6
9	Explain why the slotting machine is called as vertical shaper.	Understand	The learner to desrribe the functions of slotting machine and vertical shaper machine then explaining the similarity of both machines to produce keys and grooves	CO 5
10	Illustrate the methods of taper turning on lathe.	Apply	The learner to know the concept of taper turning operation then explaining the methods of taper turning on lathe to operate turning operation smoothly as per their requirement	CO 4
11	Calculate the angle at which the compound rest will be swivelled when cutting a taper on a piece of work having the following dimensions. OD = 60 mm; Length of the tapered portion 80 mm and smallest diameter -20mm	Apply	The learner to recall the turnig operation steps to understand the taper angle to perform taper turning operation on lathe for different sizes of work pieces	CO 4,CO 5
12	what are the specifications of a central lathe.	Kemember		05

13	Explain the offsetting the tail stock method in taper turning process on a lathe.	Understand	The learner to know the advantages of tail stock then explaining the offsetting process of tail stock to perform turning operation	CO 4
14	Discuss the different taper turning methods used on a central lathe machine.	Analyze	The learner to describe different taper turning methods used on a central lathe machine to perform taper turning operation as per their requirement	CO 4
15	Define cutting speed feed and depth of cut in shaping process.	Remember		CO 6
16	Discuss the working principle of a slotting machine used in metal removing process.	Analyze	The learner to know basic working principle of slotting machine in metal removing process and perform the slotting operation to form the desired shape then analyze machining performance	CO 4
17	Briefly explain whitworth quick return mechanism used in a slotting machine.	Understand	The learner to desrcibe the concept of whitworth quick return mechanism then explaining that method to provide forward reciprocating motion is slower rate than the return stroke	CO 4
18	Discuss about the principle parts of a planer machine.	Understand	The learner to know basic working principle and their parts of planner machine in metal removing process to form the desired shape	CO 5
19	Explain the principle of quick return mechanism used in a planning machine.	Understand	The learner to recall the concept of whitworth quick return mechanism then explaining that method to provide forward reciprocating motion is planning machine	CO 4
20	Classify the different types of automatic semi- automatic and non-automatic lathes.	Analyze	The learner to Understand Classification of the different types of automatic semi-automatic and non- automatic lathes to use them as per their requirement then analyze the results	CO 5
	PART - B (LO	ONG ANSWI	ER QUESTIONS)	
1	Explain with the help of a diagram the working of a quick return mechanism of a planer table.	Understand	The learner to recall concept of quick return mechanism then explaining the working of a quick return mechanism of a planer table	CO 4
2	List the various work holding devices in planer indicating indicating special features if any?	Analyze	The learner to Understand various work holding devices in planer indicating and apply them to maintain proper rigidity of work piece and tool	CO 5
3	Discuss the in brief the main parts of a planer machine using in metal removing process.	Analyze	The learner to recall the main parts of planer machine then applying them in machining to Analyze their in metal removing process to perform smooth machining	CO 4

4	Explain the different types of operations can	understand	The learner to recall the planer	CO 5
	be performed efficiently by a planer. List and		operations then explaining various	
	explain		operations to perform efficiently by	
	explain.		a planer	
5	Describe with a diagram of whit worth quick	understand	The learner to demonstrate the	CO 4
	return mechanism used in a slotting machine?		concept of worth quick return	
			mechanism used in a slotting machine	
			then explaining that mechanism in	
			slotting machine	
6	Discuss the main parts of a slotting machine	understand	The learner to describe the main	CO 4
	and describe them briefly.		parts and their functions of a slotting	
			machine to perform machining	
		XX 1 . 1	operation properly	
1	Explain the various slotting tools used and	Understand	The learner to recall various slotting	CO 6
	slotting operations performed in a slotting		tools used and slotting operations then	
	machine.		explaining the performance in a	
0	Evaluate with the halp of a past skatch the	Anolyza	The learner to understand functions	CO 4
0	Evaluate with the help of a heat sketch the	Anaryze	of main parts of a shaping machina to	CO 4
	working of the main parts of a shaping		on main parts of a shaping machine to	
	machine.		operation	
9	Sketch and describe the working of automatic	understand	The learner to describe the concept of	CO 5
_	table feed mechanism for the shaper	understand	working of automatic table feed	005
	table feed mechanism for the shaper.		mechanism for the shaper then	
			explaining the performance of that	
			mechanism in automatic machining	
10	Differentiate between a hydraulic and	Analyze	The learner to understand the	CO 5
	mechanical shaping machine.		difference between hydraulic and	
			mechanical shaping machine then	
			apply to perform smooth machining	
			operation based on size of work	
11	Explain with a neat sketch the quick return	understand	The learner to recall the concept of	CO 5
	mechanism used in a shaping machine.		quick return mechanism used in a	
			shaping machine then explaining that	
			mechanism to provide reciprocating	
			motion of tool to perform grooving	
10	Evaluin with a next shotsh the graph and	I in denote a d	The learner to recell the concert of	CO 5
12	Explain with a near sketch the crank and	Understand	rine learner to recall the concept of	05
	slotted lever mechanism used in a shaping		used in a shaping machine then	
	machine.		explaining that mechanism to provide	
			reciprocating motion of tool to	
			perform grooving opertion	
13	Classify the different types of shapers	Analvze	The learner to understand	CO 4
	according to the cutting stroke mechanisms		Classifications of the different types	
	ato		of shapers according to the cutting	
	cic.		stroke, mechanisms then apply them	
			to provide effective machining process	
14	Describe the working of a conving lathe with a	Analyze	The learner to understand working	CO 4
1	Describe the working of a copying fathe with a	j	8	
	neat sketch.	<u>j</u> = -	of a copying lathe then apply to	
	neat sketch.		of a copying lathe then apply to perform specified operations as per	

15	Explain the working of a capstan lathe with a neat sketch?	understand	The learner to recall the concept of a capstan lathe then explaining the working of a capstan lathe	CO 4
16	Draw a neat sketch of a turret lathe and label all parts and explain its working.	understand	The learner to recall all parts of turret lathe then explaining the working of a turret lathe	CO 4
17	Define taper. Name the different methods of taper turning done on a center lathe drawing simple sketches.	Remember		CO 5
18	List out the major parts of a center lathe and describe them briefly.	Understand	The learner to recall the uses of major parts of a center lathe then explaining their uses to perform smooth machining	CO 4
19	Discuss the function of a tail stock, head stock and tool post with neat sketch.	Analyze	The learner to understand the function of a tail stock, head stock and tool post to perform smooth turning opration to analyze the machining process operation	CO 4
20	What are the different types of lathes? Describe the centre lathe with a neat sketch.	Analyze	The learner to understand the classifications of different lathes to choose the machine tool as per the requirement to analyse the machining process operation of different lathes	CO 4
	PART – C (PROBLEM S	SOLVING A	ND CRITICAL THINKING)	
1	Determine the machining time to turn the dimensions given in figure. The material is brass, the cutting speed with HSS tool being 80 m/min and feed is 0.8 mm rev.	Apply	The learner to recall the significant parameters then assigning given values for those parameters to estimate machining time by turning process at given specifications to know material removal rate in maching	CO 4,CO 8
2	Estimate the machine time to turn a MS bar of 30mm diameter down to25mm for a length of 100mm in a single cut. Assume cutting as 30 m/min and feed as 0.4 mm/rev.	Apply	The learner to find the relevent parameters then assigning given values for those parameters to estimate machining time by turning process at given specifications to know material removal rate in maching	CO 4,CO 8
3	Determine the machining time to turn the dimensions. The material is mild steel, the cutting speed with HSS tool being 100 m/min and feed is 0.9 mm rev.	Analyze	The learner find the relevent parameters then assigning given values for those parameters to estimate machining time by turning process at given specifications to know material removal rate in maching	CO 4,CO 8
4	Estimate the machine time to turn a MS bar of 40mm diameter down to35mm for a length of 150mm in a single cut. Assume cutting as 20 m/min and feed as 0.5 mm/rev.	Apply	The learner to find the relevent parameters then assigning given values for those parameters to estimate machining time by turning process at given specifications to know material removal rate in maching	CO 4, CO 8

5	A CI flange of 300mm OD has a bore of 100	Apply	The learner to recall the significant	CO 4, CO 8
	mm. This is to be faced on a lathe. Calculate		parameters then assigning given	
	the machining time to face the part given the		values for those parameters to	
	for 10.9 mm/mer and east in a most of 90		estimate machining time by turning	
	reed 0.8 mm/rev and cutting speed of 80		process at given specifications to	
	m/min		know material removal rate in	
			maching	
6	Explain the salient features of an automatic	Understand	The learner to recall the concept of	CO 4
	lathes.		automatic lathe then explaining the	
			salient features of an automatic lathes	
			to perform power machining for	
			complicated shapes	
7	A CI flange of 200mm OD has a bore of 80	Apply	The learner to find the significant	CO 4,CO 8
	mm. This is to be faced on a lathe. Calculate		then assigning given values for those	
	the machining time to face the part given the		parameters to estimate machining	
	for 10.0 mm/mer and eastling area 1 of 70		time by turning process at given	
	reed 0.9 mm/rev and cutting speed of 70		specifications to know material	
	m/min		removal rate in maching	
8	Estimate the machine time to turn a MS bar of	Apply	The learner to recall the significant	CO4,
	50mm diameter down to 65mm for a length of		then assigning given values for those	CO 8
	250mm in a single cut. Assume cutting as 20		parameters to estimate machining	
	250 min in a single cut. Assume cutting as 20		time by turning process at given	
	m/min and feed as 0.3 mm/rev.		specifications to know material	
			removal rate in maching	
9	Determine the machining time to turn the	Apply	The learner to find the significant	CO 4,CO 8
	dimensions. The material is mild steel, the		then then assigning given values for	
	cutting speed with HSS tool being 200 m/min		those parameters to estimate	
	euting speed with fiss tool being 200 m/min		machining time by turning process at	
	and feed is 0/mm rev.		given specifications to know material	
			removal rate in maching	
10	Determine the machining time to turn the	Apply	The learner to find the significant	CO 4,CO 8
	dimensions given in figure. The material is		then then assigning given values for	
	brass the cutting speed with HSS tool being		those parameters to estimate	
	00 m/min and faced is 0.5 mm ray		machining time by turning process at	
	90 m/min and feed is 0.5 mm rev.		given specifications to know material	
			removal rate in maching	
	Μ	ODULE – III		
	MACH	IINE TOOLS	S –II	
	PART - A (SHOR	T ANSWER	QUESTIONS)	
1	XX7L	Derry 1		CO 7
1	what is meant by up milling and down	Kemember		
	milling?			
2	What are the different types of milling	Remember		CO 7
	machines used in metal removing process.			
3	List out the different operations performed on	Understand	The learner to know the concept of	CO 7
-	a milling machine		milling machine then explaining the	_ ~ .
			different operations performed on a	
			milling machine	
4	Explain with a neat sketch the process of up	Understand	The learner to describe the concept of	CO 7
	milling	Shacibund	up milling process and explain the up	
	iiiiiiiig.			
				1

			milling process to perform machining process effectively	
5	Discuss with a neat sketch the process of climb or down milling.	Analyze	The learner to desrcribe the process of climb or down milling to perform machining operation then analyzing the machining process in climb or down milling	CO 7
6	Describe universal milling machine and its advantages.	Analyze	The learner to desrcribe the process of of universal milling to perform machining operation then analyzing the machining process in universal milling machine	CO 7
7	Explain with a neat sketch the process of gang milling.	Understand	The learner to recall concept of gang milling then explain the the process of gang milling to perform machining process effectively	CO 7
8	List out the types of milling cutters used in milling operation.	Remember		CO 5
9	List out the different materials used in manufacturing milling cutters.	Remember		CO 5
10	Discuss the different cutter angles used in milling operation	Analyze	The learner to demonstrate the different cutter angles used in milling operation then applying the uses of them in machining process	CO 5
		CIE – II		
11	what the various methods of indexing in milling operation.	Remember		CO 7
11 12	what the various methods of indexing in milling operation. Differentiate between compound indexing and differential indexing.	Remember Analyse	The learner to Understand Difference between compound indexing and differential indexing then apply for evenly dividing the circumference of a circular work piece into equally spaced divisions	CO 7 CO 7
11 12 13	 what the various methods of indexing in milling operation. Differentiate between compound indexing and differential indexing. Explain the peripheral milling with a neat sketch in milling operation. 	Remember Analyse Understand	The learner to Understand Difference between compound indexing and differential indexing then apply for evenly dividing the circumference of a circular work piece into equally spaced divisions The learner to recall the concept of peripheral milling in milling operation then explaing the proper position of the milling cutter at the top of the workpiece	CO 7 CO 7 CO 7
11 12 13 14	 what the various methods of indexing in milling operation. Differentiate between compound indexing and differential indexing. Explain the peripheral milling with a neat sketch in milling operation. Describe the face milling operation with a neat sketch 	Remember Analyse Understand Analyze	The learner to Understand Difference between compound indexing and differential indexing then apply for evenly dividing the circumference of a circular work piece into equally spaced divisions The learner to recall the concept of peripheral milling in milling operation then explaing the proper position of the milling cutter at the top of the workpiece The learner to describe the face milling operation then apply the process of cutting a flat surface perpendicular to the axes of the milling cutter	CO 7 CO 7 CO 7
11 12 13 14 15	 what the various methods of indexing in milling operation. Differentiate between compound indexing and differential indexing. Explain the peripheral milling with a neat sketch in milling operation. Describe the face milling operation with a neat sketch List out the different drill bit materials. Name the material which is used mostly. 	Remember Analyse Understand Analyze Remember	The learner to Understand Difference between compound indexing and differential indexing then apply for evenly dividing the circumference of a circular work piece into equally spaced divisions The learner to recall the concept of peripheral milling in milling operation then explaing the proper position of the milling cutter at the top of the workpiece The learner to describe the face milling operation then apply the process of cutting a flat surface perpendicular to the axes of the milling cutter	CO 7 CO 7 CO 7 CO 7
11 12 13 14 14 15 16	what the various methods of indexing in milling operation. Differentiate between compound indexing and differential indexing. Explain the peripheral milling with a neat sketch in milling operation. Describe the face milling operation with a neat sketch List out the different drill bit materials. Name the material which is used mostly. Classify the drill bits according to their geometry	Remember Analyse Understand Analyze Remember Understand	The learner to Understand Difference between compound indexing and differential indexing then apply for evenly dividing the circumference of a circular work piece into equally spaced divisions The learner to recall the concept of peripheral milling in milling operation then explaing the proper position of the milling cutter at the top of the workpiece The learner to describe the face milling operation then apply the process of cutting a flat surface perpendicular to the axes of the milling cutter The learner to recall the classifications of drill bits then explaining the importance of their geometry	CO 7 CO 7 CO 7 CO 7 CO 7 CO 5

	performed on a drilling machine.			
18	What is a spade drill? When it is used? Sketch a neat diagram of a spade drill.	Remember		CO 7
19	Discuss the difference between boring and drilling operations in making a hole.	Analyze	The learner to Understand difference between boring and drilling operations and explaining their importance to make different sizes of holes	CO 7
20	Classify the types of boring machines used in metal removing process.	Understand	The learner to find the types of boring machines used in metal removing process explaining their importance to make different sizes of holes	CO 6
	PART – B (LON	G ANSWER	QUESTIONS)	
1	Describe in brief the various types of operations that can be performed on a horizontal boring machine.	Analyze	The learner to Understand the various of operations of horizontal boring machine and explaining them to enlarge the holes in required size	CO 7
2	Explain with a neat sketch the nomenclature of a milling cutter and label the required units.	Understand	The learner to recall concept of milling cutter then explaining the nomenclature of a milling cutter to use them proper metal cutting process	CO 7
3	What is indexing? Discuss any two types of indexing methods used in milling.	Analyze	The learner to describe the various methods of indexing in milling operation and apply them to know their use in machining process	CO 7
4	Describe the various features of plain milling machine and vertical milling machine.	Analyze	The learner to discuss the features of plain milling machine and vertical milling machine and apply them effectively to set the right orientation of the spindle	CO 7
5	With a neat sketch explain the column and knee type milling.	Understand	The learner to recall the column and knee type milling and explaining the column and knee type milling	CO 7
6	Explain the applications and differences with neat sketches reference to milling operation such as straddle milling and gang milling.	Analyze	The learner to describe the applications and differences of straddle milling and gang milling then analyze the effective machining process in both milling machines	CO 7
7	Draw a neat sketch of a plain milling machine indicating the principal parts and give brief description.	Understand	The learner to know the nomenclature of plain milling machine and descrbing how the machining process will be performed	CO 7
8	Name the common methods of indexing and explain direct and simple indexing in detail.	Understand	The learner to recall common methods of indexing then explaining direct and simple indexing will be performed	CO 6
9	What is the purpose of differential indexing? Explain with a neat sketch and where it is performed.	Analyze	The learner to understand various purposes of differential indexing and analyze the function of differential indexing in milling	CO 6
10	Sketch and contrast the two milling methods of machining flat surfaces.	Analyze	The learner to recall different methods of flat surface machining and	CO 7

			contrasting the two milling methods	
			of machining flat surfaces and analyse maching of different methods	
		CIE - II		
11	Draw a sketch of a simple twist drill with	Understand	The learner to recall varies elements	CO 5
	tapered shank and show its various elements.		of twist drill and illustrate simple twist drill with tapered shank	
12	Describe with a neat sketch the nomenclature of a twist drill.	Analyze	The learner to find the different parts of twist drill then analyze the	CO 5
			effective utilization of twist drill in cutting holes	
13	Explain counter boring and counter sinking	Understand	The learner to know boring operations	CO 7
	operations with a neat sketch.		and Explaining counter boring and counter sinking operations	
14	Name various work holding devices of drilling machine. Describe one with neat sketch.	Understand	The learner to find work holding devices of drilling machine and	CO 7
1.7		A 1	explaining any one of them	007
15	Sketch and describe in brief of a radial drilling	Analyze	drilling machine and describing the	07
			process of radial drilling machine	
16	Give a brief description of portable drilling machine.	Remember		CO 7
17	With the help of a neat sketch explain the	Understand	The learner to recall the principles of	CO 7
	working principle of a drilling machine.		working principle of a drilling	
18	What are the different horizontal boring	Understand	The learner to know the concept of	CO 7
	machines? List them and describe any one.		boring machine then explaining the functions of different horizontal boring machines	
19	With the help of a neat diagram describe a	Analyze	The learner to recall the concept of	CO 7
	horizontal boring machine.		boring machine then explaining the procedure of horizontal boring	
20	Describe in brief the various types of	Understand	The learner to know the concept of	CO 7
	operations performed on a horizontal and		boring machine then explaining the	
	vertical boring machine.		vertical boring machine.	
	PART – C (PROBLEM SOI	LVING AND	CRITICAL THINKING)	
1	What do you understand by approach length	Analyze	The learner to understand the	CO 7
	of a milling cutter for face milling operations?		concept of approach length of a	
	Discuss with neat sketch.		milling cutter then explaining their purpose in face milling operations to	
			analyze their results	
2	What is cam milling? What attachments are	Understand	The learner to know the concept of	CO 7
	specifically required to perform it? Describe the process.		proces	
3	What are the differences between single angle	Analyze	The learner to Understand the	CO 5
	and double angle milling cutter?		concept of angle milling cutter then	
			appry the single angle and double	

			angle milling cutter in milling	
4	Could a side milling be used efficiently for cutting on one side only? Give reasons.	Apply	The learner to Understand the concept of side milling cutter then apply the those milling cutter in milling operation and analyse the function of side milling	CO 5
5	Discuss how cutting for changes with variation of speed and rake angle of a milling cutter.	Analyze	The learner to recall the importance of rake angles of milling cutters then explaining their in milling cutting operation then analyse their results	CO 5
		CIE - II		
6	Find the time required to drill 4 holes in a CI flange of 20mm depth, if the hole diameter is 20mm. Assume cutting speed as 21.9 m/min and feed as 0.02 cm/rev.	Apply	The learner to identify the significant parameters then assigning given values for those parameters to estimate machining time by turning process at given specifications to know material removal rate in maching	CO 5,CO 8
7	A 9 cm thick laminated plate consists of a 7cm thick brass and a 2cm thick mild steel plate. A 20 mm diameter hale is to be drilled through the plate. Estimate the total time taken for drilling if Cutting speed of brass = 44 m/min Cutting speed for mild steel = 30 m/min Feed of 20mm drill for brass = 0.26 mm/rev	Apply	The learner to find the significant parameters then assigning given values for those parameters to estimate machining time by turning process at given specifications to know material removal rate in maching	CO 5,CO 8
8	Find the time required to drill 5 holes in a CI flange of 40mm depth, if the hole diameter is 30mm. Assume cutting speed as 24.9 m/min and feed as.06 cm/rev.	Apply	The learner to identify the significant parameters then assigning given values for those parameters to estimate machining time by turning process at given specifications to know material removal rate in maching	CO 5,CO 8
9	A 9 cm thick laminated plate consists of a 7.5cm thick brass and a 2.5cm thick mild steel plate. A 30 mm diameter hole is to be drilled through the plate. Estimate the total time taken for drilling if Cutting speed of brass = 47 m/min Cutting speed for mild steel = 32 m/min Feed of 20mm drill for brass = 0.36 mm/rev	Apply	The learner to find the significant parameters then assigning given values for those parameters to estimate machining time by turning process at given specifications to know material removal rate in maching	CO 5,CO 8
10	How long will it take a 12.7 mm to drill a hole 50mm deep is brass. Take cutting speed as 75 m/min and feed as 0.175 mm/rev. Take A=0.8D for through hole.	Apply	The learner to identify the significant parameters then assigning given values for those parameters to estimate machining time by turning process at given specifications to know material removal rate in maching	CO 5,CO 8

	MODULE – IV				
	GEOMETRICAL DIME	ENSIONING	AND TOLERANCES		
	PART – A (SHORT ANSWER QUESTIONS)				
1	Define fits. Describe the various types of fits in brief.	Understand	The learner to recall the Definition of fits, Understand various types of fits	CO 9	
2	Differentiate between Tolerance and Allowance	Analyze	The learner to recall the Tolerance and Allowances, and Understand difference between them and apply it in checking the dimension	CO 9	
3	With the help of the neat sketches state the essential conditions for i) clearance fit ii) interference fit	Understand	The learner to know the Definition of fits, Understand various types of fits and Demonstrate the difference between them	CO 9	
4	Define the terms i) Allowance ii) Limits iii) Tolerance iv) Fit	Remember		CO 9	
5	Explain clearly the following types of fits a) push fit b) wringing fit c) force fit	Understand	The learner to know the Definition of fits, Understand various types of fits and Demonstrate the difference between them	CO 9	
6	What is hole basis system?	Remember		CO 9	
7	Why it is necessary to give tolerance on engineering dimensions?	Apply	The learner to describe tolerance then explaining usefulness in engineering dimensions	CO 9	
8	Draw the conventional diagram of limits and fits of basic size and zero line	Understand	The learner to know the Definition of fits, Understand various types of fits and Demonstrate the difference between them with picture	CO 9	
9	Define the terms limits and tolerance	Remember		CO 9	
10	Explain about unilateral system	Understand	The learner to recall unilateral system explaining it	CO 9	
11	What is interchangeable assembly?	Remember		CO 9	
12	Explain about dial indicator	Understand	The learner to recall to dial indicator explaining about it	CO 9	
13	Write about limit gauges?	Remember		CO 9	
14	Draw the conventional diagram of limits and fits of upper deviation and lower deviation	Understand	The learner to recall the Definition of limits, Understand various types of limits and Demonstrate the difference between them with picture	CO 9	
15	Define the terms M.M.L and L. M. L.	Remember		CO 9	
16	What is shaft basis system?	Remember		CO 9	
17	Explain about bilateral system.	Understand	The learner to recall bilateral system explaining about it	CO 9	
18	Draw the conventional diagram of limits and fits of fundamental deviation.	Understand	The learner to know the Definition of limits and fits, Demonstrate difference between them with picture	CO 9	

19	What is selective assembly?	Remember		CO 10
20	Explain about micrometre.	Understand	The learner to recall micrometre and explaining about it	CO 10
	PART – B (LON	G ANSWER	QUESTIONS)	
1	What is meant by nominal size and tolerance? Explain	Understand	The learner to recall the Tolerance and Allowance, Understand difference between them and apply it in checking the dimension	CO 9
2	Why hole basis system of fit is generally employed? Explain	Understand	The learner to recall the Definition of fits, explaining various types of fits	CO 9
3	What are the essential considerations in selection of materials for gauges.	Remember		CO 9
4	Explain briefly the difference between the interchangeable manufacturing and selective assembly.	Analyze	The learner to recall the Definition interchangeable manufacturing and selective assembly., Demonstrate difference between them	CO 10
5	What are the common materials used for gauges. Explain why?	Remember		CO 10
6	Sketch and explain the use of limit gauges in mass production.	Understand	The learner to recall the Definition of limit gauge, Apply its use in mass production for measuring applications	CO 10
7	What are the various types of plug gauges? Sketch any four of them and state their specific applications.	Analyze	The learner to find types of plug gauges, Demonstrate difference between them with picture	CO 10
8	Distinguish between measuring instrument and a gauge.	Analyze	The learner to know measuring instruments and gauges, Demonstrate difference between them	CO 10
9	Explain with a neat sketch the working mechanism of a gear and pinion type dial indicator.	Understand	The learner to recall the measuring instruments, Understand the working mechanism of a gear and pinion and apply them on measuring parts	CO 10
10	Explain about simple lever and compound lever in dial indicator mechanism.	Underastand	The learner to recall the measuring instruments, explaining about the mechanism of simple and compound dial indictor demonstrating its working principle.	CO 10
11	Explain the term magnification of dial indicator.	Understand	The learner to recall the measuring instruments explaining about the magnification used on measuring parts and analyse their results	CO 10
12	Explain the principal and use of a sprit level.	Understand	The learner to recall the measuring instruments explaining about the working principle of spirit level and its industrial applications	CO 10
13	What are the various instruments used for measuring flatness of a surface plate?	Remember		CO 10
14	State and explain the principal and use of a micrometer.	Remember		CO 10

15	Describe the procedure for checking a) zero error b) flatness and parallelism of a micrometer	Analyze	The learner to find the error in measuring instruments, Demonstrate difference between errors while measuring	CO 10
16	State the difference between the hole basis systems and shaft basis system	Remember		CO 9
17	Explain the gauge design terminology with procedure and neat sketch	Understand	The learner to recall gauge and Demonstrate design terminology with picture	CO 10
18	What is sine bar? How it is used for angle measurements.	Remember		CO 10
19	Explain why it is not preferred to use sine bar for measuring angles more than 90 ⁰	Understand	The learner to know measuring instruments, explaining about sin bar applications	CO 10
20	Explain the use of sine bar for measuring angle of a taper plug gauges with the help of neat diagrams.	Understand	The learner to recall measuring instruments, explaining about sin bar applications	CO 10
	Part – C (PROBLEM SOL	VING AND	CRITICAL THINKING)	
1	A 50mm diameter shaft is made to rotate in the bush. The tolerances for both shaft and bush are 0.0050mm. Determine the dimension of the shaft and the bush to give a maximum clearance of 0.075mm with the hole basis system.	Apply	The learner to recall limits fits and tolerances, Understand what is hole and shaft base systems and their formula	CO 9,CO 10
2	In an assembly of two parts 50mm nominal diameter the lower deviation of the hole is zero and the higher is 4 microns; while that of shaft is -4 and -8 microns respectively. Estimate the allowance and state the type of fit of the assembly	Apply	The learner to recall limits fits and tolerances, Understand what is hole and shaft base systems and their formula	CO 9,CO 10
3	Between mating parts of 100mm basic size, the actual interference fit is to be from 0.05mm to 0.12mm. tolerance for the hole is the same as the tolerance for the shaft. Find the size of both the shaft and the hole on a) hole basis unilateral system and b) shaft basis unilateral system.	Apply	The learner to recall limits fits and tolerances, Understand what is hole and shaft base systems and their formula and Analyse their results	CO 9,CO 10
4	Discuss several types of tolerances. Explain about geometrical tolerance.	Understand	The learner to know tolerances, explaining about geometrical tolerance and analyse their results	CO 9
5	 How the following are designated? a) Standard tolerance grade b) Position of tolerance zone c) Upper deviation d) Lower deviation 	Understand	The learner to know tolerances, explaining about the deviations	CO 9
6	Calculate the cone angle of the taper plug gauge from the following data: Height of slip	Apply	The learner to recall gauges Understand what is taper plug gauge	CO <u>9,C</u> O 10

	gauges, $h_1 = 50.667$, $h_2 = 38.667$		and their formula	
	Length of sine bar = 125mm.			
7	A 200mm sine bar is to be set up to an angle	Understand	The learner to recall sin bar	CO 9,CO 10
	of 25°. Determine the slip gauges needed from		for silp gauge needed	
0	8 / pieces set.	D	Tot out Suese merees	CO 10
8	Select the size of angle gauges required to	Remember		CO 10
	build the following angles: 1) 10/20 ii) $20^{0}20^{0}54^{\prime\prime}$:::: $22^{0}51^{\prime}24^{\prime\prime}$			
0	202934 III) 323124 .	Understand	The learner to recall sin her	CO 0 CO 10
7	All angle of 102 -8 -42 is to be measured	Understand	Understand application of formula	CO 9,CO 10
	angle gauges and a square block		for slip gauge needed	
10	A 100mm sine bar is to be set up to an angle	Apply	The learner to recall sin bar	CO 9 CO 10
10	of 33° Determine the slip gauges needed from	r pprj	Understand application of formula	00,0010
	87 pieces set.		for slip gauge needed	
	1			
		UNII-V		
	MEASURI	NG INSTRU	IMENTS	
	PART – A (SHOP	RT ANSWER	QUESTIONS)	
1	What is the purpose of tools makers	Remember		CO 11
	microscope?			
2	Explain about collimator	Understand	The learner to recall collimator	CO 11
3	What is the application of optical projector	Remember		CO 11
				0011
4	Discuss about interferometer	Understand	The learner to recall interferometer	CO 11
5	Write about screw threads element of	Remember		CO 11
	measurement	remember		0011
6	What are the errors in screw threads?	Remember		CO 11
7	How to measurement of effective diameter in	Apply	The learner to recall measuring	CO 11
	screw threads?		instruments demonstrate about	
			working principle of screw thread	
8	Write about angle of thread and thread nitch	Remember	measurement	CO 11
0	while about angle of thread and thread pitch.	Remember		0011
9	Discuss about profile thread gauges	Analyze	The learner to recall measuring	CO 11
			instruments demonstrate principle of profile thread gauges	
10	What are the applications of Surface	Understand	The learner to recall measuring	CO 11
	roughness measurement		instruments explaining different	
	-		applications of surface roughness	
11	Write about Numerical assessment of surface	Remember	ineasurements	CO 11
	finish			
12	Explain about CLA.	Understand	The learner to recall measuring	CO 11
			instruments explaining surface	
			Average measure	
L		1		

13	Write about R.M.S Values.	Remember		CO 12
14	Discuss about Rz values.	Analyze	The learner to recall measuring instruments explaining surface roughness measurements with Average measure	CO 12
15	What are the methods of measurement of surface finish	Remember		CO 11
16	Write about Profilograph.	Remember		CO 12
17	Discuss any two ISI symbols for indication of surface finish	Analyze	The learner to identify measuring instruments explaining surface roughness measurement indications	CO 12
18	What is meant by "Best size wire" in screw thread measurement?	Remember		CO 11
19	How to find pitch errors	Remember		CO 11
20	Explain about Screw thread terminology	Understand	The learner to know thread terminology explaining about Screw thread	CO 11
	Part – B (Le	ong Answer (Juestions)	
1	Describe the working principal and applications of Tool's makers microscope	Analyze	The learner to identify measuring instruments then demonstrate principle of Tool's makers microscope and apply in thread measurement	CO 11
2	What do you mean by Ra and Rz values?	Remember		CO 12
3	State how surface finish is designated on drawings.	Remember		CO 12
4	Define the terms primary texture and secondary texture.	Understand	The learner to identify measuring instruments then explaining surface roughness measurements with Average measure	CO 11
5	Describe the principal and operation of Taylor-Hobson Talysurf surface roughness instrument.	Apply	The learner to find the suitable measuring instruments then explaining principal surface roughness measurements with formula to measure the roughness on surfaces	CO 11
6	Draw and explain the measurement of effective diameter of a screw thread using three wires.	Analyze	The learner to know measuring instruments demonstrate principle of three wires apply in thread measurement	CO 11
7	Describe a method to find out flatness of a surface plate.	Apply	The learner to recall measuring instruments explaining surface roughness measurements with Average measure	CO 11
8	State the reasons for controlling the surface finish.	Apply	The learner to recall measuring instruments explaining surface roughness measurements with Average measure	CO 12

9	Explain about the micro irregularities and	Understand	The learner to know measuring	CO 11				
	macro irregularities		instruments explaining surface					
	6		roughness measurements with					
			Average measure					
10	Name the various methods of inspecting the	Analyze	The learner to identify measuring	CO 11				
	surface finish by comparison. State their		instruments explaining surface					
	advantages and limitations.		roughness measurements with					
			Average measure and analyse their					
			results					
11	It is not possible to produce perfectly smooth	Apply	The learner to recall measuring	CO 12				
	surface. Justify the statement.		instruments explaining surface					
			roughness measurements with					
10		D 1	Average measure	CO 10				
12	Name the various types of pitch errors found	Remember		CO 12				
	in screw. State their causes.							
13	Describe the effects of pitch errors on the	Apply	The learner to know measuring	CO 11				
	effective diameter of a screw thread.		instruments then demonstrate					
			principle of thread terminology					
14	Enumerate the effect of flank angle error on	Understand	The learner to recall measuring	CO 12				
	the effective diameter of a screw thread.		instruments demonstrate principle					
1.7		** 1 1	of thread terminology	00.11				
15	Name and describe the various methods of	Understand	The learner to recall measuring	COTI				
	measuring the minor diameter of the thread.		instruments explaining different					
			instruments used to measure thread					
16	Describe the following witch among of thread	Analuza	The learner to find manufacturing	CO 11				
10	Describe the following plich errors of thread	Anaryze	instruments explaining different	COTI				
	in brief:		instruments used to measure thread					
	i) Periodic error ii) Drunken error		annly to determine pitch errors					
17	Describe any one method of measuring	Analyze	The learner to recall measuring	CO 11				
17	offective diameter of internal threads	7 mary 20	instruments explaining different	0011				
	effective drameter of internal threads.		instruments used to measure thread					
			apply to determine the diameter					
18	With the help of a neat sketch explain the	Understand	The learner to know measuring	CO 11				
_	construction, working and applications of		instruments demonstrate principle					
	Tool maker's microscope.		of Tool's makers microscope and					
	1 I		apply in thread measurement					
19	How does the error in flank angles affect the	Apply	The learner to recall measuring	CO 12				
	effective diameter of a screw threads?		instruments explaining different					
			instruments used to measure thread					
			apply to determine the diameter					
20	What is the best size wire? Derive the	Apply	The learner to know measuring	CO 12				
	expression for the same in terms of the pitch		instruments, demonstrate the					
	and angle of the thread.		expression of pitch and angle of					
			thread for apply in selection of best					
			size wire					
	PART – C (PROBLEM SOLVING AND CRITICAL THINKING)							
1	In the measurement of surface roughness	Apply	The learner to find the measuring	CO 11,CO 12				
	heights of successive 10 peaks and troughs		instruments, Understand what is					
	were measured from a datum and were 33, 25,		surface roughness and their					
	30, 19, 22 18, 27, 29 and 20 microns. If these		formula.					
	measurements were obtained on 10mm length,							

	determine CLA and RMS values of surface roughness.			
2	Calculate the CLA(Ra) value of a surface for which the sampling length was 0.8mm. The graph was drawn to a vertical magnification of 10,000 and a horizontal magnification of 100, and the areas above and below the datum line were: Above: 150 80 170 40mm2 Below: 80 60 150 120mm2	Apply	The learner to find the measuring instruments, Understand what is surface roughness and their formula .	CO 11,CO 12
3	How CLA Index number is determined? Explain why CLA Index Number alone is not sufficient to specify the surface texture required and to make the information complete, what else is to be specified?	Apply	The learner to recall the measuring instruments, Understand why is surface roughness texture required for specific information	CO 11,CO 12
4	Describe various methods of measuring surface texture giving their relative advantages.	Analyze	The learner to recall the measuring instruments, explaining different methods for surface roughness measurement and its advantages	CO 11
5	Explain with the help of neat sketches the principal and construction of an auto-collimator.	Understand	The learner to recall the measuring instruments, explaining principle of collimator with a picture	CO 11
6	In the measurement of surface roughness heights of 20 successive peaks and troughs were measured from a datum and were 35, 25, 40, 22, 35, 18, 42, 25, 35, 22, 36, 18, 42, 22, 32, 21, 37, 18, 35, 20 microns. If these measurements were obtained on 20mm length, determine CLA and RMS values of rough surface.	Apply	The learner to find the measuring instruments, Understand what is surface roughness and their formula .	CO 11,CO 12
7	Calculate the Ra value of a surface for which the sampling length was 8mm, the graph was drawn to a vertical magnification of 1000 and areas above and below the datum line were: Above: 180 90 155 55mm2 Below: 70 90 170 150mm2	Apply	The learner to find the measuring instruments, Understand what is surface roughness and their formula .	CO 11,CO 12
8	How Tomlinson surface recorded and Talysurf machine work? What are their relative merits?	Apply	The learner to find the measuring instruments, Understand how is surface roughness measured using Tomlinson surface recorded and Talysurf	CO 11
9	State the possible causes of each of the various types of irregularities found in surface texture.	Remember		CO 11
10	Which of the methods is recommended by IS: 3073-1967 for specifying the surface texture on machined parts? Explain	Apply	The learner to find the measuring instruments, Understand how is surface roughness measured Apply IS standards on machined parts	CO 11,CO 12