

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	REFRIGE	REFRIGERATION AND AIR CONDITIONING				
Course Code	AME017	AME017				
Program	B. Tech	B. Tech				
Semester	SEVEN	SEVEN				
Course Type	CORE	CORE				
Regulation	IARE - R16	5				
		Theory Practical				
	Lectures Tutorials Credits Laboratory Credits					
Course Structure 3 1 4 -						
Course Coordinator	Mr. A Som	aiah, Assista	nt Professor			

I. COURSEOVERVIEW:

Refrigeration and air conditioning continues to grow in importance in every segment of our day-to-day living. The course covers various conventional refrigeration systems like aircraft refrigeration, vapour compression, vapor absorption and steam jet refrigeration systems, also describes some unconventional refrigeration systems; thermoelectric refrigeration, Hilsch tube, etc.. The course introduces the psychrometry, cooling load calculations, thermodynamics of human body, industrial and comfort air conditioning, equipment required for air conditioning systems and heat pump circuits.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B. Tech	AME003	IV	Thermodynamics
B. Tech	AME013	V	Thermal Engineering

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Refrigeration and Air Conditioning	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	PPT	X	Chalk & Talk	\checkmark	Assignments	X	MOOCs
\checkmark	Open Ended Experiments	\checkmark	Seminars	X	Mini Project	\checkmark	Videos
X	X Others:						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either", "or" choice will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level			
10 %	Remember			
50 %	Understand			
25 %	Apply			
15 %	Analyze			
0 %	Evaluate			
0 %	Create			

Table 1: The expected percentage of cognitive level of questions in SEE.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 2: Assessment pattern for CIA

Component		Total Marks			
Type of Assessment	CIE Exam	um Quiz AAT		i otai wiarks	
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

Quiz - Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

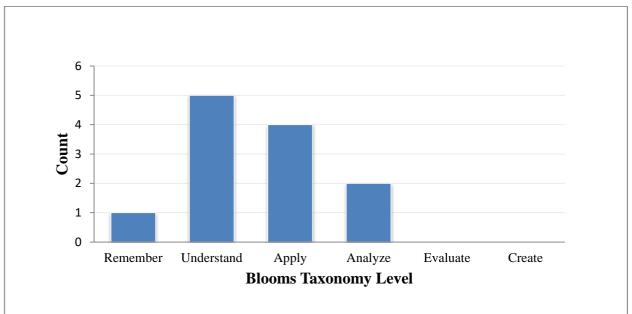
Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours / classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment		
20%	30%	30%	10%	10%		

Table 3: Assessment pattern for AAT

VI. COURSE OBJECTIVES:


The stude	The students will try to learn:				
Ι	The principles of thermodynamics in refrigeration and air conditioning, analyze the				
	methods of refrigeration, recognize the necessity and ideal cycle of refrigeration.				
II	The nomenclature of refrigerants, realize the desirable properties of refrigerants to probe				
	their ozone depleting and global warming potential.				
III	The working principles, limitations, maintenance of refrigeration and air conditioning				
	equipment and study their impact on the performance of the system.				
IV	The psychrometric relations, processes, utilize their principles to resolve cooling load				
	calculations and design of air conditioning systems.				

VII. COURSE OUTCOMES:

After succe	After successful completion of the course, students will be able to:				
	Course Outcomes				
CO 1	Relate the performance of a vapour compression refrigeration cycles under specified inlet and outlet conditions.	Remember			
CO 2	Identify the modifications required in an impossible reversed Carnot cycle to convert it into practical cycle for refrigeration applications.	Understand			

CO 3	Demonstrate the working principle and coefficient of	Understand
	performance of a heat pump, heat engine and refrigerator.	
CO 4	Illustrate the working principles, limitations of practical aqua	Apply
	ammonia, Li Br-Water and Electrolux vapour absorption	
	refrigeration systems.	
CO 5	Analyze theoritical, practical aircraft refrigeration and steam jet	Analyze
	refrigeration cycles with T-S diagrams, by stating merits,	2
	limitations, etc.	
CO 6	Discuss the measures to protect the ozone layer through global	Understand
	control, eventually elimination of production and utilization of	
	ozone depleting substances.	
CO 7	Classify the equipment used for the refrigeration, air conditioning	Understand
	purposes with suitable materials and refrigerant pairs.	
CO 8	Construct the sensible heat factor lines, locate alignment circle	Apply
	and SHF scale on a psychrometric chart for the cooling load	
	calculations of air conditioning systems.	
CO 9	Explain thermal comfort conditions with respect to effective	Apply
	temperature, relative humidity, etc. and their impact on human	
	comfort, productivity and health.	
CO 10	Distinguish the equipment required for air conditioning systems,	Analyze
	study the operating principles, safety controls employed in air	·
	conditioning systems.	
CO 11	Apply the principles of psychrometry to calculate and design the	Apply
	air conditioning systems for particular purpose.	~~ -
CO 12	Compare the various heat pump circuits for heating, cooling	Understand
	purposes with suitable industrial applications.	

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes		Strength	Proficiency Assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and	3	CIE / Quiz / AAT

	Program Outcomes	Strength	Proficiency Assessed by
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review		
	research literature, and analyze complex engineering		
	problems reaching substantiated conclusions using	2	CIE / Quiz / AAT
	first principles of mathematics, natural sciences, and		-
	engineering sciences		
PO 4	Conduct Investigations of Complex Problems: Use		
	research-based knowledge and research methods		
	including design of experiments, analysis and	2	CIE / Quiz / AAT
	interpretation of data, and synthesis of the information		
	to provide valid conclusions.		
PO 7	Environment and sustainability: Understand the		
	impact of the professional engineering solutions in		
	societal and environmental contexts, and demonstrate	3	CIE / Quiz / AAT
	the knowledge of, and need for sustainable		-
	development.		

3 = High; **2** = Medium; **1** = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 1	Formulate and evaluate engineering concepts of		Research papers/ Group
	design, thermal and production to provide solutions	2	discussion/ Short term
	for technology aspects in digital manufacturing.		courses

3 = High; 2 = Medium; 1 = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course					Pro	gram	Outco	omes					Program Specific Outcomes			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	-	\checkmark	-		-	-	-	-	-	-	-	-	-	-	-	
CO 3		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 5		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 6	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	
CO 7	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 8		\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	
CO 9	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	

CO 10	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-
CO 11	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 12	-	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-

XI. JUSTIFICATIONS FOR CO-PO/PSO MAPPING - DIRECT:

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Understand the principle of vapour compression	2
		refrigeration system and the working of principal	
		components of a mechanical refrigeration system, in order	
		to mathematically relate the performance of various	
		vapour compression cycles.	
	PO 2	Define the type of vapour compression cycle, identify	5
		various processes involved in the cycle, then formulate it	
		for the determination of COP and interpret the results for	
		the improvement of the system performance.	
CO 2	PO 2	Analyse the reversed Carnot cycle to understand its	5
		practical impossibilities and identify modifications	
		required to make it practical to apply in refrigeration	
		purposes.	
	PO 4	Identify the modifications required in an actual reversed	5
		Carnot cycle, analyse and interpret the data to convert it	
		into practical cycle for refrigeration applications.	
CO 3	PO 1	Apply the knowledge of science, engineering	2
		fundamentals to demonstrate the working principles and	
		determination of COP of the heat pump, heat engine and	
<u> </u>	DO 1	refrigerator.	
CO 4	PO 1	Recall the principles of thermodynamics, vapor	1
		absorption refrigeration to illustrate ammonia-water and	
		lithium bromide two shell and four shell – water	
005	DO 1	absorption and Electrolux refrigeration systems.	
CO 5	PO 1	Explain the principle of steam jet refrigeration system,	2
		analyse theoritical, practical steam jet refrigeration cycles with T.S. diagrams and state the limitations	
	DO 1	with T-S diagrams and state the limitations.	
	PO 2	Illustrate the working of a steam jet refrigeration system,	6
		formulate and analyse theoritical and practical steam jet	
		refrigeration cycles with T-S and P-h charts and interpret ,	
<u> </u>	PO 7	stating merits, limitations, etc.	2
CO 6	ru /	Understand the impact of ozone depleting substances	2
		like chlorine, fluorine, etc. in societal and environmental contexts, and demonstrate the knowledge of, and need	
CO 7	PO 1	for sustainable development.	2
07	PUI	Classify the equipment used for the refrigeration and air	2
		conditioning purposes and relate the performance,	
		limitations of compressors, condensers, expansion devices	
COP	DO 1	and evaporators.	2
CO 8	PO 1	Construct the sensible heat factor lines, locate alignment	3
		circle, SHF scale on a psychrometric chart for the cooling	
		load calculations of air conditioning systems by applying	
		knowledge of science and engineering fundamentals.	

			-
	PO 2	Identify , the various psychrometric processes by plotting a	5
		skeleton psychrometric chart and solve the problems	
		related to cooling load of air conditioning systems.	
	PSO 1	Understand thermodynamics of a human body and	1
		environmental indices to design refrigeration and air	
		conditioning systems for residential and public buildings,	
		industrial applications, etc.	
CO 9	PO 1	Determine the thermal comfort conditions with respect to	2
		effective temperature, relative humidity, etc. and their	
		impact on human comfort, productivity and health.	
	PO 2	Identify and analyse human thermodynamic comfort	5
		conditions like effective temperature, relative humidity,	
		etc., state the influence on health and productivity.	
CO 10	PO 1	Distinguish the equipment required for air conditioning	2
		systems, study the operating principles and safety controls	
		employed in air conditioning systems.	
CO 11	PO 1	Assess the principles of psychrometry to calculate and	2
		design the air conditioning systems for a particular	-
		purpose.	
	PO 2	Formulate and analyse the principles of psychrometry	5
		to construct grand sensible heat factor, effective room	Ũ
		sensible heat factor lines and design the air conditioning	
		systems for particular purpose.	
	PSO 1	Understand, analyse and design to calculate and design	2
		the air conditioning systems for residential and public	-
		buildings, industrial applications and for any particular	
		purpose.	
CO 12	PO 2	Identify various heat pump circuits for heating, cooling	4
	104	purposes and analyse them stating suitable domestic and	
		industrial applications.	
	PO 4	Understand the difference between heat pump, heat	5
	104	engine and refrigerator, analyse and interpret the data in	5
	DCO 1	design of heat pump circuits for different purposes.	
	PSO 1	Analyse the air to air, air to liquid, liquid to liquid design	1
		and construct the heat pump circuits for residential and	
		public buildings, industrial applications, etc.	

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

Course Outcomes		Prog	gram (Jutcor	mes / l	No. of	Key (Comp	etenci	es Ma	tched	-	PSOs/ No. of key competencies		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10 10 11 1 5 3 3 12 5 12 12												2	2
CO 1	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	-	5	-	5	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	6	-	-	-	-	-	-	-	-	-	-	-	-	-

CO 6	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-
CO 7	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	3	5	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 9	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 10	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 11	2	5	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 12	-	4	-	5	-	-	-	-	-	-	-	-	1	-	-

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

		Pro	gram	Outco	omes /	No. o	f key o	compe	tencie	S			PSOs/ No. of key competencies			
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2	
CO 1	66.7	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 2	0.0	50.0	0.0	45.45	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 3	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 4	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 5	66.7	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 6	0.0	0.0	0.0	0.0	0.0	0.0	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 7	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 8	100	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	
CO 9	66.7	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 10	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 11	66.7	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100	0.0	0.0	
CO 12	0.0	40.0	0.0	45.45	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	

XIV. COURSE ARTICULATION MATRIX - PO/PSO MAPPING:

COs and POs & COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

$0 - 0 \le \mathbf{C} \le 5\%$ – No correlation;
$1 - 5 < C \le 40\% - Low/ Slight;$

2 - 40 % < C < 60% – Moderate. $3 - 60\% \le C < 100\%$ – Substantial /High

Course Outcomes		Program Outcomes													Program Specific Outcomes		
outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 2	-	2	-	2	-	-	-	-	-	-	-	-	-	-	-		
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 4	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 6	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-		
CO 7	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 8	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-		
CO 9	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 10	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 11	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-		
CO 12	-	2	-	2	-	-	-	-	-	-	-	-	2	-	-		
TOTAL	25	15		4			3						7				
AVERAGE	2.77	2.14		2.0			3.0						2.33				

XV. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO 2, PO 4,PSO 1	SEE Exams	PO 1, PO 2, PO 4,PSO 1	U	PO 2	Seminars	PO 4
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4	5Minutes Video	PO 1, PO 2	Tech talk	PO 7	Open Ended Experiments	PO 1, PO 2

XVI. ASSESSMENT METHODOLOGIES - INDIRECT

√	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

UNIT-I INTRODUCTION TO REFRIGERATION

Basic concepts: unit of refrigeration and COP, refrigerators, heat pump, Carnot refrigerator, applications of refrigerators, air refrigeration: Bell-Coleman cycle, open and dense air system, ideal and actual refrigeration, applications, vapor compression refrigeration, ideal cycle, effect of sub cooling of liquid,

super heating of vapor, deviations of practical (actual cycle) from ideal cycle, construction and use of p- h chart problems.				
Unit-II	VAPOUR ABSORPTION REFRIGERATION AND AIR REFRIGERATION			
Vapor absorption refrigeration: description, working of NH ₃ -Water, Li Br–water system, calculation of HCOP, Principle and operation of three fluid vapor absorption refrigeration systems. Steam jet refrigeration system, working principle, basic operation; Refrigerants: Properties, nomenclature selection of refrigerants, effects of refrigerants on global warming, alternate refrigerants.				
Unit-III	REFRIGERATOR COMPONENTS			
Compressors: class	sification, working, advantages and disadvantages; Condensers: classification,			
working Principles.				
Evaporators: classif	ication, working Principles; Expansion devices: types, working principles.			
Unit-IV	INTRODUCTION TO AIR CONDITIONING			
Psychometric properties and processes, sensible and latent heat loads, characterization, need for ventilation, consideration of Infiltration, load concepts of RSHF, ASHF, ESHF and ADP; concept of human comfort and effective temperature, comfort air conditioning, industrial air conditioning and requirements, air conditioning load calculations.				
Unit-V	AIR CONDITIONING SYSTEMS			
Classification of equipment, cooling, heating humidification and dehumidification, filters, grills and registers, deodorants, fans and blowers, heat pump, heat sources, different heat pump circuits, applications.				
Text Books:				
 Manohar Prasad, "Refrigeration and Air Conditioning New Age International, 3rd Edition, 2015 S. C. Arora, Domkundwar, A Course in Refrigeration and Air-conditioning, Dhanpatrai Publications, Edition 2014. S. N. Sapali, "Refrigeration and Air-conditioning", PHI Learning, 2nd Edition, 2011. 				
Reference Books:				
 C. P. Arora, Refrigeration and Air Conditioning Tata McGraw-Hill, 17th Edition, 2006. Ananthanarayanan, Basic Refrigeration and Air Conditioning, Tata McGraw-Hill, 2015. R.K.Rajput, A text of Refrigeration and Air Conditioning S. K. Kataria & Sons, 3rd Edition, 2009. P. L. Ballaney, Refrigeration and Air Conditioning Khanna Publishers, 16th Edition, 2015. 				

4. P. L. Ballaney, Refrigeration and Air Conditioning Khanna Publishers, 16th Edition, 2015.

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No.	Topics to be covered	Course Outcomes	Text (T) book / Reference (R) book
1	Introduction to refrigeration and air conditioning.	CO 2	T2:2.3
2	Review of thermodynamics and define TR	CO 2	R1:2.6
3	Derive COP of heat pump, refrigerator and heat engine.	CO 3	T1:2.6
4	Numerical problems on heat pump, refrigerator and heat engine.	CO 3	T1:2.7
5	Describe the working of Carnot refrigerator and its applications.	CO 2	T2:2.7 R1:2.18
6	Air refrigeration: Bell-Coleman cycle, open and dense air system	CO 3	T3:3.6.5

7	Ideal, actual refrigeration and applications.	CO 2	T3:3.6.7
8	Describe the working of vapor compression refrigeration cycle and ideal cycle of refrigeration.	CO 1	T2:2.22
9	Discuss the effect of sub cooling	CO 1	T2:2.2
10	Discuss the effect of superheating	CO 1	T2:2.26 R1:2.55
11	Numerical problems on sub cooling and super heating.	CO 1	T3:4.162
12	Construction and description of PH chart & Solve the problems.	CO 1	T3:4.162
13	Introduction to vapor absorption refrigeration.	CO 4	T1:4.8 R2:4.68
14	Description and working of NH ₃ -Water (actual and practical cycles).	CO 4	T1:4.8 R2:4.68
15	Illustrate Li Br-water system (two shell and four shell).	CO 4	T2:4.15 R1:5.74
16	Derivation for COP of a VARS and Numerical problems.	CO 4	T1:4.12 R2:5.75
17	Principle and operation of three fluid vapor absorption refrigeration systems.	CO 5	T1:4.8 R1:5.72
18	Introduction to steam jet refrigeration system and working principle.	CO 5	T3:2.3.5
19	Explain basic operation of SJRS.	CO 5	T3:2.3.5
20	Analysis of SJRS cycle and Numerical problems.	CO 5	T3:2.3.5
21	Introduction to refrigerants and discuss the properties of refrigerants.	CO 7	T3:5.4
22	Nomenclature and selection of refrigerants.	CO 7	T3:5.7
23	Discuss the effects of refrigerants on global warming.	CO 7	T3:5.13
24	Describe alternate refrigerants.	CO 7	T3:5.15
25	Introduction to compressors and classification.	CO 7	T2:3.14 R1:4.31
26-27	Working principles of compressors.	CO 7	T2:3.14 R1:4.31
28	Advantages and disadvantages of compressors.	CO 7	T2:3.14 R1:4.31
29	Classification and working principles of condensers.	CO 7	T2:3.18 R1:4.64
30	Advantages and disadvantages of condensers.	CO 7	T2:3.18 R1:4.64
31-32	Classification and working principles of expansion devices.	CO 7	T2:4.2
33	Advantages and disadvantages of expansion devices.	CO 7	T2:4.3 R1:4.71
34-35	Classification and working principles of evaporators.	CO 7	T2:3.28 R1:4.67
36	Advantages and disadvantages of evaporators.	CO 7	T2:3.28 R1:4.67
37-38	Describe psychometric properties.	CO 11	T3:8.2

39-40	Explain psychometric processes and solve numerical problems.	CO 11	T2:5.19 R1:6.81
41	Describe sensible, latent heat loads and characterization.	CO 11	T1:6.4 R2:6.8
42	Discuss need for ventilation and consideration of infiltration.	CO 11	T2:7.7 R1:7.74
43-44	Load concepts of RSHF, GSHF and ESHF, ADP and solve numerical problems.	CO 8	T3:9.18
45	Concept of human comfort and effective temperature.	CO 9	T3:9.4
46	Describe summer, winter and year round air conditioning systems.	CO 11	T3:9.19
47	Comfort air conditioning, industrial air conditioning and requirements,	CO 11	T1:8.8 R1:8.73
48	Air conditioning load calculations.	CO 8	T1:9.14 R1:10.78
49	Classification of equipment required for air conditioning.	CO 10	T2:9.19 R1:10.814
50-51	Equipment required for cooling, heating, humidification and dehumidification	CO 10	T2:9.19 R1:10.814
52	Describe various types of filters used in A.C systems.	CO 10	T1:10.4 R2:11.68
53	Discuss the functions of grills, registers and deodorants.	CO 10	T1:10.4 R2:11.68
54-55	Demonstrate various types of fans and blowers.	CO 10	T1:10.4 R2:11.68
56	Introduction and working of a heat pump.	CO 12	T2:10.7 R1:12.74
57	Discuss various types of heat sources required for heat pumps.	CO 12	T2:10.7 R1:12.74
58-59	Demonstrate different heat pump circuits.	CO 12	T1:11.12 R2:12.75
60	Discuss applications of heat pump circuits.	CO 12	T1:11.12 R2:12.75

Prepared by:

Mr. A Somaiah, Assistant Professor

HOD, ME