ROBOTICS

VI Semester: ME								
Course Code	Category	Hours / Week Credits			Credits	Maximum Marks		
AMEB49	Professional Elective	L	Т	Р	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: N			es: Nil	Total Classes: 45		

OBJECTIVES:

The course should enable the students to learn:

- I. The fundamental concepts of various configurations of the robot manipulators and their working principles used in the industries.
- II. The basics of motion analysis of manipulator and process to find forward kinematics and inverse kinematics of the robot manipulator.
- III. The path planning of a robot manipulator for given polynomial equation and how to avoid obstacles in its path.
- IV. The performance of various feedback components like sensors and actuators and how they can be used according to the specifications of the manipulator.

COURSE OUTCOMES:

After successful completion of the course, students will be able to:

- CO 1 **Outline** the relationship between mechanical structures of industrial robots and their operational workspace characteristics.
- CO 2 **Demonstrate** an ability to apply spatial transformation to obtain forward kinematics equation of robot manipulators.
- CO 3 Develop the mechanism for solving forward and inverse kinematics of simple robot manipulators.
- CO 4 **Develop** an ability to obtain the Jacobian matrix and use it to identify singularities.
- CO 5 Outline the various motions of the manipulator and use it for trajectory.
- CO 6 **Explain** an ability to generate the trajectory for given application of robot manipulator.
- CO 7 Identify the knowledge of robot controllers and actuators used in the manipulators.
- CO 8 Recall the applications of robot in manufacturing, material handling, assembly and inspections.
- CO 9 Illustrate the considerations of workspace for a given robot application.

MODULE-I INTR

-I INTRODUCTION TO AUTOMATION AND ROBOTICS

Classes: 09

Introduction: Automation and robotic, an over view of robotics, classification by coordinate system and control systems, components of the industrial robotics: Degrees of freedom, end effectors: mechanical gripper, magnetic vacuum cup and other types of grippers, general consideration on gripper selection and design, robot actuator and sensors.

MODULE-II MOTION ANALYSIS

Classes: 09

Motion analysis: Basic rotation matrices, composite rotation matrices, equivalent angle and axis homogeneous transformation, problems; Manipulator kinematics: D-H notations, joint coordinates and world coordinates, forward and inverse kinematics, problems.

MODULE-III	DIFFERENTIAL KINEMATICS	Classes: 09
	hatics: Differential kinematics of planar and spherical manipulators, Jacobian Lagrange, Euler formulations, Newton-Euler formulations, problems on plan	
MODULE-IV	TRAJECTORY PLANNING	Classes: 09
	ng: Joint space scheme, cubic polynomial fit, avoidance of obstacles, types o polated motion, straight line motion, problems, robot actuators and feedback tic.	
MODULE-V	DIMENSIONAL ANALYSIS AND PUMPS	Classes: 09
Robot application	in manufacturing: Material handling, assembly and inspection, work cell de	esign.
Text Books:		
	r, "Industrial Robotics", Pearson, 2 nd Edition, 2012. roduction to Robotic Mechanics and Control", Pearson, 3 rd Edition, 2013.	
Reference Books	:	
 Richard, D. K Approach", P Asada, Sloting 	otics", McGraw-Hill, 1 st Edition, 2013 lafter, Thomas A Chmielewski, Miachael Neigen, "Robotic Engineering An rentice Hall, 1 st Edition, 2013. e, "Robot Analysis and Intelligence", Wiley, 1 st Edition, 2013. ng, M. Vidyasagar, I. John, "Robot Dynamics & Control", John Wiley & So	Ū.
Web Reference:		
	ac.in/courses/112101099/ ac.in/courses/112101099/3	
E-Book:		
1. http://www.i	ntechopen.com/books/robot-control	
1 1 1		

2. http://www.springer.com/gp/book/9781846286414