

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	THERMOI	THERMODYNAMCS					
Course Code	AMEB04	AMEB04					
Program	B. Tech	B. Tech					
Semester	THREE	THREE					
Course Type	CORE						
Regulation	IARE - R18						
		Theory		Prac	tical		
Course Structure	Lectures Tutorials Credits Laboratory Credits						
	3 1 4						
Course Coordinator	Ms. N. Santhi Sree, Assistant Professor						

I. COURSE OVERVIEW:

Thermodynamics is the science that deals with the relationship between heat and work and those properties of systems that bear relation to heat and work. General laws of energy transformations concerning all types of systems, mechanical, electrical and chemical may fall within the purview of this science. It is a science based on a number of empirical laws formed by experimentation from which all predictions concerning the physical behavior of the system may be deduced by logical reasoning. The findings have been formalized into certain basic laws, which are known as Zeroth law, First, Second and third laws of thermodynamics. Power cycles and refrigeration cycle based on thermodynamic system is studied.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AHSB02	Ι	Linear Algebra Calculus
UG	AHSB04	II	Waves And Optics

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Thermodynamics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	РРТ	\checkmark	Chalk & Talk	\checkmark	Assignments	X	MOOCs
✓	Open Ended Experiments	\checkmark	Seminars	X	Mini Project	X	Videos
X	Others:						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either", "or" choice will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Table 1: The expected percentage of cognitive level of questions in SEE.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 2: Assessment pattern for CIA

Component		Total Marks		
Type of Assessment	CIE Exam Quiz		AAT	i otai wiarks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Ouiz - Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours / classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

Table 5. Assessment patient for AAT							
5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment			
20%	30%	30%	10%	10%			

Table 3: Assessment pattern for $\Delta \Delta T$

VI. COURSE OBJECTIVES:

The stu	The students will try to learn:					
Ι	The fundamental knowledge on concepts of physics and chemistry for obtaining the					
	axiomatic principles using thermodynamic co-ordinates.					
II	The thermodynamic disorderness in the real time physical systems like external/internal heat					
	engines, heat pumps to get the measure of performance characteristics.					
III	The performance characteristics of open and closed systems of thermodynamic cycles for					
	effective delineation of real time applications.					
IV	The thermodynamic cycles such as power and refrigerant cycles to yield alternative solutions					
	to conserve the environment.					

VII. COURSE OUTCOMES:

After successful completion of the course, students will be able to:					
	Knowledge Level (Bloom's Taxonomy)				
CO 1	Recall the thermodynamic properties and discern the path and point	Remember			
	functions through exact differentials.				
CO 2	Summarize working principles of energy conversions in physical	Understand			
	systems by fundamental laws of thermodynamics.				
CO 3	Explain the various energy transfer mechanisms which leads to the	Understand			
	ascertaining of properties involving thermodynamic cycles.				
CO 4	Identify the laws of conservation of energy to yield the relationship	Apply			
	between heat, work and change in internal energy.				

		XX 1 . 1
CO 5	Contrast between various statements of purpose in heat to work	Understand
	conversion and notice that thermodynamic direction laws defining	
	them are mutually complementary.	
CO 6	Relate various relations involving pressure, temperature and volume	Understand
	to discern the change in entropy generation in universe.	
CO 7	Interpret the properties of pure substances and steam to emit relevant	Understand
	inlet and exit conditions of thermodynamic work bearing systems.	
CO 8	Describe fundamental relationship between intensive properties in	Understand
	form of partial derivatives implemented for perfect gases.	
CO 9	Show the significance of partial pressure and temperature to table the	Understand
	performance parameters of gaseous mixtures.	
CO 10	List the properties of air conditioning systems by practicing	Analyze
	psychrometry chart and gas property tables.	-
CO 11	Illustrate the working of various air standard cycles and work out the	Understand
	performance characteristics.	
CO 12	Infer the performance of power and refrigerant cycles, and their	Understand
	significance in real world systems.	

10 9 8 7 6 Count 5 4 3 2 1 0 Remember Understand Apply Analyze Evaluate Create Blooms Taxonomy Level

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII.HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics,	3	CIE/Quiz/AAT
	science, engineering fundamentals, and an engineering		
	specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	3	CIE/Quiz/AAT
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 3	Design/development of solutions : Design solutions for	2	CIE/Quiz/AAT
	complex engineering problems and design system components		
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations.		

3 = High; **2** = Medium; **1** = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

		Strength	Proficiency assessed by
PSO 1	Formulate and evaluate engineering concepts of	2	AAT/ Group discussion/
design, thermal and production to provide solutions			Short term courses
	for technology aspects in digital manufacturing.		

3 = High; **2** = Medium; **1** = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course												S	Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-		-	-
CO 3	\checkmark	-	-	-	-	-	-	-	-	-	-	-		-	-
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-		-	-
CO 5	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-
CO 7	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 8	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	\checkmark		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
CO 10	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 11	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 12	\checkmark		\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-

XI. JUSTIFICATIONS FOR CO-PO/PSO MAPPING - DIRECT:

Course Outcomes	POs / PSOs	Justificationfor mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Recall the thermodynamic properties and discern the path and	3
		point functions through exact differentials using the	
		knowledge of mathematics, science and engineering	
		fundamental.	
CO 2	PO 1	Understand the working principles of energy conversions in	2
		physical systems by fundamental laws of thermodynamics	
		using the knowledge of engineering fundamentals and	
		mathematics.	
	PSO 1	Discuss the various fundamentals of thermodynamics applied in	1
		energy conversion problems to real world systems and	
		provide solutions for digital manufacturing.	

00.1	DO 1		2
CO 3	PO 1	Understand the necessity of various energy transfer	3
		mechanisms and their involvement in properties of systems	
		using mathematical knowledge and engineering fundamentals.	
	PSO 1	Establish the relationship between properties and functions	1
	1501	applied to thermal systems and utilize such relations to solve	1
		engineering problems applied in manufacturing industry.	
CO 4	PO 1	Using the law of conservation of energy from engineering	2
0.4	101	fundamentals evaluate the relationship between heat, work and	2
		*	
	PO 2	internal energy by applying basic mathematical equations. Analyze the relationship of heat and work to discern problems	5
	102	and identify solutions. Balance the equation using	5
		fundamental laws and internal energy to develop solution in	
		real world problems.	
	PSO 1	A	1
	1501	Understand the significance of law of conservation of energy applied to the relationship of heat and work to determine	1
		thermal properties.	
CO 5	PO 1	Remember the second law of thermodynamics and compare the	3
005	101	Kelvin Planck & Clausius statements to evaluate the	5
		equivalence and similarity between them using the	
		fundamentals of engineering, science and mathematics.	
	PO 2	Recall the relationship between the various statements of	5
	102	second law of thermodynamics to develop different	5
		metaphysical system and interpret solutions for engineering	
		problems. Further, apply the basic engineering knowledge	
		to derive futuristic solutions and solve engineering	
		problems.	
	PSO 1	Understand the veracity of second law of thermodynamics and	1
		its applications in thermal problems to be applied in	
		manufacturing industry.	
CO 6	PO 1	Remember the properties applied to various thermodynamic	3
		systems using engineering fundamentals and derive the	
		relationship between them using basic mathematical	
		equations.	
	PO 2	Equate the fundamental properties of thermodynamics like	5
		pressure, volume and temperature to recognize the significance	
		of them in solving various engineering problems and	
		creating solutions for thermal systems.	
CO 7	PO 1	Interpret the properties of pure substances and steam using	3
		fundamental knowledge of science and engineering to evolve	
		relationships using partial derivative mathematical functions	
	PO 3	Understand the customer requirement, identify the cost to	5
		correlate the properties of pure substances and steam to emit	
		relevant inlet and exit conditions of thermodynamic work	
	DCO 1	bearing systems used in various day to day applications	1
	PSO 1	Recall the properties of steam and pure substances used in	1
00.0	DO 1	thermal applications to be applied in real life physical systems	
CO 8	PO 1	Describe fundamental relationship between intensive properties	2
		in form of partial derivatives implemented for perfect gases	
		using fundamental engineering and mathematical	
		knowledge	

COA	DO 1		
CO 9	PO 1	Show the significance of partial pressure and temperature using	3
		fundamental engineering and science to table the	
		performance parameters of gaseous mixtures in mathematical	
		form.	
	PO 2	Discuss partial pressure and temperature to evaluate the	7
		performance, solve problems and identify avenues of	
		research. Use parameters of gaseous mixtures to evaluate the	
		performance characteristics of various systems.	
	PO 3	Investigate and define a problem and identify constraints	6
		including environmental and sustainability limitations, health	
		and safety and risk assessment issues when dealing with	
		performance of gaseous mixtures and their application on real	
		world problems	
CO 10	PO 1	Understand the significance of psychrometry charts and Mollier	2
		diagram to determine the properties of refrigeration system	
		using the fundamentals of engineering and mathematical	
		equations	
	PO 2	Model and validate the various refrigeration system in real	7
		world applications to enumerate the various problems and	
		effective solutions that can be proposed/	
	PO 3	Find creative solution for various problems related to	5
		refrigeration and air conditioning systems in adverse climatic	
		conditions across the various tropics of the world. Explore the	
		problems in current HVAC systems and find avenues of	
		innovations. Define problems in integration of air-	
		conditioning and HVAC systems to find effective solutions .	
	PSO 1	Understand the significance of refrigeration and air-	1
		conditioning as a thermal problem related to multiple	
		manufacturing systems in the current digital era of robotic	
		system cooling	
CO 11	PO 1	Evaluate the performance characteristics of various air standard	3
		cycles using the basic understanding of engineering science	
		and mathematical equations	
	PO 2	Using the fundamentals of air standard cycles explore the	7
		possibilities of combined cycles for creating effective systems	
		to be used in real world having better efficiencies.	
CO 12	PO 1	Understand the performance relationship between various	2
		power and refrigeration cycles using the fundamental	
		engineering properties and mathematical equations.	
	PO 3	Postulate problems in power and refrigeration cycles to create	7
		opportunities of improvement in design and development of	
		superior systems in comparison to currently available	
		models.	
	PSO 1	Apply the knowledge of power and refrigeration cycles for	1
		various thermal problems found in the industry and find	
		effective solutions.	

Course		Prog	ram (Outcor	mes /]	No. of	Key (Comp	etenci	es Ma	tched		PSOs/ No. of key competencies		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	-	-		-	-	-	-	-	-	-	-	1	-	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 4	2	5	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 5	3	5	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 6	3	5	-	-	-	-	2	-	-	-	-	-	-	-	-
CO 7	3	-	5	-	-	-	-	-	-	-	-	-	1	-	-
CO 8	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	3	7	6	-	-	-	-	-	-	-	-	-	-	-	-
CO 10	2	7	5	-	-	-	-	-	-	-	-	-	1	-	-
CO 11	3	7	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 12	2	-	7	-	-	-	-	-	-	-	-	-	1	-	-

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

Course		Program Outcomes / No. of key competencies												PSOs/ No. of key competencies		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2	
CO 1	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 2	66.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	
CO 3	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	
CO 4	66.6	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	
CO 5	100.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	
CO 6	100.0	50.0	0.0	0.0	0.0	0.0	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 7	100.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	
CO 8	66.7	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

CO 9	100.0	70.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 10	66.7	70.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0
CO 11	100.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100	0.0	0.0
CO 12	66.6	0.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0

XIV. COURSE ARTICULATION MATRIX - PO/PSO MAPPING:

COs and POs & COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0} - \mathbf{0} \le \mathbf{C} \le 5\%$ – No correlation;

2 - 40 % < C < 60% – Moderate.

 $1 - 5 < C \le 40\% - Low/Slight;$

 $3-60\% \leq C < 100\%$ – Substantial /High

Course Outcomes	Program Outcomes												Program Specific Outcomes			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	3	-	-	2	-	-	-	-	-	-	-	-	2	-	-	
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-	
CO 4	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-	
CO 5	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-	
CO 6	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 7	3	-	2	-	-	-	-	-	-	-	-	-	2	-	-	
CO 8	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 9	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	
CO 10	3	3	2	-	-	-	-	-	-	-	-	-	2	-	-	
CO 11	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 12	3	-	3	-	-	-	-	-	-	-	-	-	2	-	-	
TOTAL	36	15	10	-			-						14			
AVERAGE	3.0	3.0	2.0										2.0			

XV. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2, PO 3	SEE Exams	PO 1, PO 2, PO 3	Assignments	PO 2	Seminars	PO 1,PO 2, PO3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 1, PO 2, PO 3	5Minutes Video	PO 1, PO 2	Tech talk	PO2		

XVI. ASSESSMENT METHODOLOGIES - INDIRECT

\checkmark	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

MODULE-I	BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS								
microscopic viewp cycle, reversibility, non-flow processes Zeroth law of thern points, constant vo	olume, surrounding, boundaries, universe, types of systems, macroscopic and oints, concept of continuum, thermodynamic equilibrium, state, property, process, quasi static process, irreversible process, causes of irreversibility, various flow and s, energy in state and in transition, types-work and heat, point and path function, nodynamics, concept of quality of temperature, Principles of thermometry, reference blume gas thermometer, ideal gas scale, PMMI Joule's experiments, first law of corollaries first law applied to a process, applied to a flow system, steady flow								
MODULE -II	SECOND LAW OF THERMODYNAMICS								
Thermal reservoir, heat engine, heat pump, parameters of performance, second Law of thermodynamics, Kelvin Planck and Clausius statements and their equivalence, Corollaries, PMM of second kind, carnot's principle, Carnot cycle and its specialties, thermodynamic scale of temperature, Clausius inequality, Entropy, principle of Entropy increase, availability and irreversibility, thermodynamic potentials, Gibbs and Helmholtz functions, Maxwell relations, elementary treatment of the Third Law of thermodynamics									
MODULE -III	PURE SUBSTANCES &GAS LAWS								
during change of pl transfer, steam calo Equation of state,	Phase transformations, T-S and H-S diagrams, P-V-T surfaces, triple point at critical state properties during change of phase, dryness fraction, Mollier charts, various thermodynamic processes and energy transfer, steam calorimeter. Equation of state, specific and universal gas constants, throttling and free expansion processes, deviations from perfect gas model, Vander Waals equation of state.								
MODULE -IV	MIXTURES OF PERFECT GASES								
partial pressure, Av internal energy, en properties, dry bull bulb temperature,	ss friction, gravimetric and volumetric analysis, volume fraction, Dalton's law of vogadro's laws of additive volumes, and partial pressure, equivalent gas constant, nthalpy, specific heats and entropy of mixture of perfect gases; psychometric b temperature, wet bulb temperature, dew point temperature, thermodynamic wet specific humidity, relative humidity, saturated air, vapor pressure, degree of c saturation, Carrier's equation, Psychometric chart.								
MODULE -V	POWER CYCLES								
efficiency, mean ef	combustion cycles, description and representation on P-V and T-S diagram, thermal fective pressures on air standard basis, comparison of cycles, introduction to Bell Coleman cycle.								
Text Books:									
2. Yunus Cengel									
Reference Books:									
Edition, 2009.	E. Dugan, "Engineering Thermodynamics", Prentice Hall of India Learning, 1 st "An Introduction to Thermodynamics", Universities Press, 3 rd Edition, 2013.								
3. K. Ramakrish	na, "Engineering Thermodynamics", Anuradha Publishers, 2 nd Edition, 2011. Thermodynamics", Tata McGraw Hill, 4 th Edition, 2013.								
Page 10									

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No.	Topics to be covered	Course Outcomes	Text (T) book / Reference (R) book
1	System, control volume, surrounding, boundaries, universe, types of systems.	CO1	T2:2.3
2	Macroscopic and microscopic viewpoints, concept of continuum,	CO1	R1:2.6
3	Thermodynamic equilibrium, state, property, process, cycle, reversibility.	CO1	T1:2.6
4	Quasi static process, irreversible process, causes of irreversibility.	CO3	T2:2.7 R1:2.18
5	Various flow and non-flow processes ,energy in state and in transition, types-work	CO2	T2:2.22
6	Heat, point and path function, Zeroth law of thermodynamics.	CO1	T2:2.25
7	Concept of quality of temperature, Principles of thermometry, reference points.	CO2	T2:2.26 R1:2.55
8	Constant volume gas thermometer, ideal gas scale, PMMI Joule's experiments,	CO3	T2:2.16 R1:2.61
9	First law of thermodynamics, corollaries first law applied to a process	CO3	T2:2.30 R1:2.58
10	Applied to a flow system, steady flow energy equation.	CO3	T2:3.6 R1:4.29
11	Thermal reservoir, heat engine, heat pump	CO4	T2:3.14 R1:4.31
12	Parameters of performance, second Law of thermodynamics	CO4	T2:3.14 R1:4.33
13	Kelvin Planck, Claussius statements and their equivalence	CO4	R1:4.36
14	Corollaries, PMM of second kind, Carnot's principle	CO5	T2:3.18 R1:4.64
15	Carnot cycle and its specialties	CO5	T2:3.22
16	thermodynamic scale of temperature, Claussius inequality	CO5	T2:3.28 R1:4.67
17	Entropy, principle of Entropy increase, availability and irreversibility	CO5	T2:4.2
18	Thermodynamic potentials	CO6	T2:4.3 R1:4.71
19	Gibbs and Helmholtz functions, Maxwell relations	CO6	R2:4.68
20-21	Elementary treatment of the Third Law of thermodynamics	CO6	T2:4.15 R1:5.74
22	Phase transformations, T-S and H-S diagrams, P-V-T surfaces,	CO6	T1:4.12 R2:5.75
23-24	Triple point at critical state properties during change of phase,	CO6	T1:4.8 R1:5.72
25	Dryness fraction, Mollier charts, various thermodynamic processes	CO6	T1:5.8 R1:5.73
26-27	Energy transfer, steam calorimeter.	CO7	T1:5.14 R1:6.78

28	Equation of state, specific and universal gas constants.	CO7	T2:5.19 R1:6.81
29-30	Throttling and free expansion processes	CO7	T1:6.4 R2:6.8
31	Deviations from perfect gas model, Vander Waals equation of state.	CO8	T2:7.7 R1:7.74
32-33	Mole fraction, mass friction, gravimetric and volumetric analysis, volume fraction,	CO8	T1:7.12 R2:8.75
34	Dalton's law of partial pressure, Avogadro's laws of additive volumes, and partial pressure	CO8	T1:7.8 R1:8.72
35	Equivalent gas constant, internal energy, enthalpy, specific heats	CO8	T1:8.8 R1:8.73
36	Entropy of mixture of perfect gases; psychometric properties	CO9	T1:9.14 R1:10.78
37-38	Dry bulb temperature, wet bulb temperature, dew point temperature,	CO9	T2:9.19 R1:10.814
39-40	Thermodynamic wet bulb temperature, specific humidity, relative humidity, saturated air.	CO10	T1:10.4 R2:11.68
41-43	Vapor pressure, degree of saturation, adiabatic saturation, Carrier's equation, Psychometric chart.	CO10	T2:10.7 R1:12.74
44-48	Otto, Diesel, Dual combustion cycles, Problems on cycles	CO10	T1:11.12 R2:12.75
49-50	Description and representation on P-V and T-S diagram,	CO11	T1:12.4 R2:13.68
51-54	Thermal efficiency, mean effective pressures on air standard basis. Comparison of cycles	CO12	T2:13.7 R1:14.74
55-58	Introduction to Brayton cycle and Bell Coleman cycle.	CO12	T1:14.12 R2:15.75

Signature of Course Coordinator Ms. N SanthiSree, Assistant Professor

HOD, ME