THERMODYNAMICS

	MEB04		Hours / Week			Credits			Marks
		Core	L	Т	Р	С	CIA	SEE	Total
Contac	WIED04		3	1 -	-	4	30	70	100
	t Classes: 45	Tutorial Classes: 15	P	ractica	l Class	es: Nil	Total Classes: 60		s: 60
	SE OBJECTIV dent will try to								
Ι	The fundamer	ntal knowledge on concep	ots of pl	nysics a	nd che	mistry for o	btaining t	the axio	natic
	principles usin	ng thermodynamic co-ord	linates.						
Π	The thermody	mamic disorderness in the	e real ti	me phys	sical sy	vstems like e	external/in	nternal h	neat
	engines, heat	pumps to get the measure	of perf	formanc	e chara	acteristics.			
III	The performation	nce characteristics of ope	n and c	losed sy	ystems	of thermody	ynamic cy	cles for	
		neation of real time applic							
IV	The thermodynamic cycles such as power and refrigerant cycles yields to alternative solutions								
	to conserve th	e environment.							
At the e		se students are able to:	. 1 .1		(1	1	<i></i>	1	
CO 1	differentials.	rmodynamic properties a	nd disce	ern the j	path an	d point func	ctions thro	ougn exa	ict
CO 2	Summarize working principles of energy conversions in physical systems by fundamental laws of thermodynamics.								
CO 3	Explain the various energy transfer mechanisms which leads to the ascertaining of properties involving thermodynamic cycles.								
CO 4	Identify the laws of conservation of energy to yield the relationship between heat, work and change in internal energy.								
CO 5	Contrast between various statements of purpose in heat to work conversion and notice that thermodynamic direction laws defining them are mutually complementary.								
CO 6	Relate various relations involving pressure, temperature and volume to discern the change in entropy generation in universe.								
CO 7	Interpret the properties of pure substances and steam to emit relevant inlet and exit conditions of thermodynamic work bearing systems.								
CO 8		amental relationship betw	veen int	ensive	propert	ies in form	of partial	derivati	ves
CO 9	implemented for perfect gases. Show the significance of partial pressure and temperature to table the performance parameters								
	of gaseous mixtures.								
CO 10	List the properties of air-conditioning systems by practicing psychrometry chart and gas								
	property tables					_	_		
CO 11		working of various air sta	ndard c	cycles a	nd wor	k out the pe	rformanc	e	
CO 12	characteristics.			t ovoloo	and 41	ain airmifia	noo in co	ما سمعا ما	
CO 12	systems.	ormance of power and ref	ngeran	i cycles	, and th	ieir significa	ance in re	al world	ļ

System, control volume, surrounding, boundaries, universe, types of systems, macroscopic and microscopic viewpoints, concept of continuum, thermodynamic equilibrium, state, property, process, cycle, reversibility, quasi static process, irreversible process, causes of irreversibility, various flow and non-flow processes , energy in state and in transition, types-work and heat, point and path function, Zeroth law of thermodynamics, concept of quality of temperature, Principles of thermometry, reference points, constant volume gas thermometer, ideal gas scale, PMMI Joule's experiments, first law of thermodynamics, corollaries first law applied to a process, applied to a flow system, steady flow energy equation.

MODUL -II SECOND LAW OF THERMODYNAMICS

Classes: 12

Classes: 12

Classes: 12

Thermal reservoir, heat engine, heat pump, parameters of performance, second Law of thermodynamics, Kelvin Planck and Claussius statements and their equivalence, Corollaries, PMM of second kind, carnot's principle, Carnot cycle and its specialties, thermodynamic scale of temperature, Clausius inequality, Entropy, principle of Entropy increase, availability and irreversibility, thermodynamic potentials, Gibbs and Helmholtz functions, Maxwell relations, elementary treatment of the Third Law of thermodynamics.

MODULE-III PURE SUBSTANCES & GAS LAWS

Phase transformations, T-S and H-S diagrams, P-V-T surfaces, triple point at critical state properties during change of phase, dryness fraction, Mollier charts, various thermodynamic processes and energy transfer, steam calorimeter.

Equation of state, specific and universal gas constants, throttling and free expansion processes, deviations from perfect gas model, Vander Waals equation of state.

MODULE-IV MIXTURES OF PERFECT GASES

Mole fraction, mass friction, gravimetric and volumetric analysis, volume fraction, Dalton's law of partial pressure, Avogadro's laws of additive volumes, and partial pressure, equivalent gas constant, internal energy, enthalpy, specific heats and entropy of mixture of perfect gases; psychometric properties, dry bulb temperature, wet bulb temperature, dew point temperature, thermodynamic wet bulb temperature, specific humidity, relative humidity, saturated air, vapor pressure, degree of saturation, adiabatic saturation, Carrier's equation, Psychometric chart.

MODULE-V POWER CYCLES

Classes: 12

Otto, Diesel, Dual combustion cycles, description and representation on P-V and T-S diagram, thermal efficiency, mean effective pressures on air standard basis, comparison of cycles, introduction to Brayton cycle and Bell Coleman cycle.

Text Books:

- 1. P. K. Nag, "Engineering Thermodynamics", Tata McGraw Hill, 4th Edition, 2008.
- 2. Yunus Cengel, Michael A. Boles, "Thermodynamics-An Engineering Approach", Tata McGraw Hill, 7th Edition, 2011.

Reference Books:

- 1. J. B. Jones, R. E. Dugan, "Engineering Thermodynamics", Prentice Hall of India Learning,1st Edition, 2009.
- 2. Y. V. C. Rao, "An Introduction to Thermodynamics", Universities Press, 3rd Edition, 2013.
- 3. K. Ramakrishna, "Engineering Thermodynamics", Anuradha Publishers, 2nd Edition, 2011.
- 4. Holman. J.P, "Thermodynamics", Tata McGraw Hill, 4th Edition, 2013.

Web References:

1. https://nptel.ac.in/courses/112/105/112105123/