INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043
MECHANICAL ENGINEERING
TUTORIAL QUESTION BANK

Course Title	DATA STRUCTURES				
Course Code	ACSB03				
Program	B.Tech				
Semester	THIRD				
Course Type	Core				
Regulation	IARE - R18				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	3	0	3	3	1.5
Course Coordinator	Ms. KLaxminarayanamma, Assistant Professor				

COURSE OBJECTIVES:

The course should enable the students to:

I	To provide students with skills needed to understand and analyse performance trade-offs of different algorithms / implementations and asymptotic analysis of their running time and memory usage.
II	To provide knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree, graphs, hashing and sorting, selection and searching.
III	The fundamentals of how to store, retrieve, and process data efficiently.
IV	To provide practice by specifying and implementing these data structures and algorithms in Python.
V	Understand essential for future programming and software engineering courses.

COURSE OUTCOMES:

At the end of the course the students should be able to:

Course Outcomes		Knowledge Level (Bloom's Taxonomy)
CO 1	Carryout the analysis of a range of algorithms in terms of algorithm analysis and express algorithm complexity using the O notation.	Remember

CO 2	Make use of recursive algorithm design technique in appropriate contexts.	Understand
CO 3	Represent standard ADTs by means of appropriate data structures.	Understand
CO 4	Select appropriate sorting technique for given problem.	Understand
CO 5	Select appropriate searching technique for given problem.	Understand
CO 6	Implement standard searching and sorting algorithms; including binary search; merge sort and quick sort; and their complexities.	Apply
CO 7	Design and implement linked lists, stacks and queues in Python.	Understand
CO 8	Explain the use of basic data structures such as arrays, stacks, queues and linked lists in program design.	Analyze
CO 9	Extend their knowledge of data structures to more sophisticated data structures to solve problems involving balanced binary search trees, AVL Trees, B-trees and B+ trees, hashing, and basic graphs.	Understand
CO 10	Design and implement tree structures in Python.	
CO 11	Compare and contrast the benefits of dynamic and static data structures implementations and choose appropriate data structure for specified problem domain.	Analyze
CO 12	Quickly determine and explain how efficient an algorithm or data structure will be, apply appropriate data structures for solving computing problems with respect to performance.	Apply

MAPPING OF EACH CO WITH PO(s), PSO(s):

Course	Program Outcomes												Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	4	-	-	2	-	-
CO 5	3	-	-	-	-	-	-	-	-	3	-	-	2	-	-
CO6	3	-	-	-	-	-	-	-	-	3	-	-	2	-	-
CO 7	3	7	7	-	-	-	-	-	-	-	-	-	2	-	2
CO 8	3	7	6	-	-	-	-	-	-	-	-	-	2	-	1
CO 9	2	7	6	-	-	-	-	-	-	-	-	-	2	-	1
CO 10	3	7	6	-	-	-	-	-	-	-	-	-	2	-	2

CO 11	3	6	7	-	-	-	-	-	-	-	-	-	2	-	2
CO 12	3	8	7	-	-	-	-	-	-	-	-	-	2	-	2

TUTORIAL QUESTION BANK

MODULE- I

INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING

Part - A (Short Answer Questions)				
S No	QUESTIONS	$\begin{gathered} \text { Blooms } \\ \text { Taxonomy } \end{gathered}$ Level	How does this subsume the below level	Course Outcomes
1	Draw the diagram showing classification of data structures?	Remember	---	CO 1
2	List out various linear data structures?	Understand	Learner to recall the concept of linear data structures and explain various types of linear data structures.	CO 2
3	Define data structure?	Remember	---	CO 1
4	What is an array and explain how the elements of an array can be accessed?	Remember	---	CO 3
5	List out various non-linear data structures?	Remember	---	CO 2
6	What is searching and list the types of searching techniques.	Remember	---	CO 5
7	Write the best case and worst case complexity of ordered linear search?	Remember	---	CO 5
8	Define linear search? What is best case efficiency of linear search? What are the various applications of linear search?	Remember	---	CO 5
9	Write the disadvantage of linear search compared to other searching techniques?	Remember	---	CO 5
10	Given a list arr $=\{2,5,7,55,72\}$, key $=$ 72 , write the procedure for finding the element 72 using linear search?	Remember	---	CO 2
11	Write the worst case time complexity of binary search?	Remember	---	CO 5
12	Write any two applications of binary search?	Remember	---	CO 5
13	Define queue and write the operations that can be performed on queue?	Understand	Learner to recall the concept of queue and explain the operations that can be performed on queue.	CO 5
14	What is sorting and list different sorting techniques that can be used to sort the list of elements?	Understand	Learner to recall the concept of list and explain the different types of sorting techniques.	CO 4
15	Define a linked list and write any two advantages of linked lists.	Remember	---	CO 3
16	Why we use sequential search write any two cases?	Understand	Learner to recall the concept of list	CO 5

			and explain sequential search concepts.	
17	Consider a list arr $=\{1,2,4,3\}$. Bubble sort is used to sort the elements of a list. Find out the number of iterations that will be required to sort the list?	Understand	Learner to recall the concept of list and explain the bubble sort technique.	CO 4
18	Write the best, average and worst case time complexities of selection sort?	Remember	---	CO 4
19	Write the worst case time complexity of bubble when the input array is already sorted?	Understand	Learner to recall the concept of list and explain the bubble sort technique.	CO 4
20	Write the best, average and worst case time complexities of insertion sort?	Remember	---	CO 4
Part - B (Long Answer Questions)				
1	Write short notes on different sorting techniques.	Understand	Learner to recall the concept of list and explain the different types of sorting techniques.	CO 4
2	Define a data structure, draw and explain the classification of data structures.	Understand	Learner to recall the concept of data structures and explain the classification of data structures.	CO 1
3	Write a function that generates first N Fibonacci numbers.	Apply	Learner to recall the concept of function and describe the technique of Fibonacci Series. Use necessary formula to perform binary search.	CO 1
4	Explain linear search procedure for the following list of elements and assume the key element is 96 . $12,23,34,45,55,62,71,85,96$	Apply	Learner to recall the concept of function and describe the linear search technique. Use the technique to perform search.	CO 5
5	List out linear and non-linear data structures? Write an algorithm to print GCD of two numbers?	Understand	Learner to recall the concept of data structures and explain the algorithm of GCD.	CO 1
6	Define sorting? Write the procedure for bubble sort using a suitable example?	Understand	Learner to recall the concept of sorting and explain the bubble sort.	CO 4
7	Explain Binary Search procedure for the following list of elements and assume the key element is 85 . $12,23,34,45,55,62,71,85,96$	Apply	Learner to recall the concept of list and describe the binary search technique. Use the technique to perform search.	CO 5
8	Explain the following two comparison sort algorithms with an example and write their time complexities? Bubble sort Selection sort	Understand	Learner to recall the concept of sorting and compare the bubble and selection sort.	CO 4
9	Explain Binary Search procedure for the following list of elements and assume the key element is 49 . $12,23,34,45,55,62,71,85,96$	Apply	Learner to recall the concept of list and describe the binary search technique. Use the technique to perform search.	CO 5
10	Sort the given list of elements using insertion sort.14, 33,27,10,35,19,42,44.	Apply	Learner to recall the concept of list and describe insertion sort. Use the technique to perform insertion sort.	CO 4
11	Write the name of the sorting technique which is used in playing cards game? Write a procedure for sorting a given list	Apply	Learner to recall the concept of list and describe insertion sort. Use the technique to perform insertion sort.	CO 4

	of numbers using that technique? $14,25,36,74,85,6,53,62,41$			
12	Write the algorithm for bubble sort and explain with an example.	Understand	Learner to recall the concept of sorting and explain the bubble sort.	CO 4
13	Explain the procedure, advantages and disadvantages of linear and binary search with a suitable example?	Understand	Learner to recall the concept of searching techniques and compare linear and binary search.	CO 5
14	Compare the time complexities of various searching and sorting algorithms?	Understand	Learner to recall the concept of searching and sorting techniques and compare their time complexities.	CO 5
15	Write an algorithm to search for an employee ID in an array(Hint: use linear search)	Understand	Learner to recall the concept of searching techniques and explain linear search.	CO 5
16	Explain bubble sort by sorting the following list of elements: $5,1,4,2,8$.	Apply	Learner to recall the concept of sorting and describe bubble sort. Use bubble sort to sort the given elements.	CO 4
17	What is the idea behind Selection sort and sort the following list of elements using that idea. array $\mathrm{A}=[7,5,4,2]$ needs to be sorted in ascending order.	Apply	Learner to recall the concept of sorting and describe selection sort. Use selection sort to sort the given elements.	CO 4
18	Sort the given list of elements using selection sort.14, 33,27,10,35,19,42,44.	Apply	Learner to recall the concept of sorting and describe selection sort. Use selection sort to sort the given elements.	CO 5
19	Define selection sort and write pseudo code for selection sort	Understand	Learner to recall the concept of sorting and explain selection sort.	CO 4
20	Explain insertion sort with an example and compare time complexity of insertion sort with other sorting algorithms.	Understand	Learner to recall the concept of sorting and explain insertion sort.	CO 4
Part - C (Problem Solving and Critical Thinking Questions)				
1	If there are 22,049 data elements being searched, what is the maximum number of "looks" it will take with binary search to find the data element being search for.	Understand	Learner to recall the concept of array and then explain linear search to find the data element in a list.	CO 5
2	Explain the importance of data structures and discuss typical algorithm complexities of different problems? Write the best, average and worst case analysis of linear search and binary search algorithms.	Understand	Learner to recall the concept of constant speed and tangential direction. Then explaining what happens when a body in constant speed changes its direction constantly.	CO 1
3	Suppose an array A with elements indexed 1 to n is to be searched for a value x . Write pseudo code that performs a forward search, returning $n+1$ if the value is not found.	Apply	Learner to recall the concept of array and then describe binary search and use necessary formula to perform binary search.	CO 5
4	Searching in a phone book: A phone book is stored in a text file, containing names of people, their city names and phone numbers. Choose an appropriate data structure to search a person's phone	Apply	This would require the learner to recall the concept of array and then describe linear search and use necessary formula to perform binary search.	CO 5

	number based on his / her first name and city.			
5	Sorting a phone book: Given a text file containing people's names, their city and phone numbers. Write a program which prints all the city names in an alphabetical order and for each one of them print their names in alphabetical order and their corresponding phone number.	Apply	Learner to recall the concept of list and then describe sorting and use necessary sorting technique to do sorting.	CO 4
6	What is a binary search and write the pseudo code for binary search.	Understand	Learner to recall the concept of binary search and then explain the pseudo code for binary search.	CO 5
7	Given an array A of non-negative integers of size m. Your task is to sort the array in non-decreasing order and print out the original indices of the new sorted array.	Apply	Learner to recall the concept of array and then describe the appropriate sorting technique to use in sorting the numbers in increasing order.	CO 4
8	Consider the following list of integers: $[12,9,3,14,5,66,7,80,9,10] ~ a n d ~ a r r a n g e ~$ the elements in descending order using insertion sort.	Understand	Learner to recall the concept of list and then describe insertion sort and use necessary sorting technique to arrange the elements in descending order.	CO 4
9	Consider the following list of integers: $[1,9,33,47,5,6,7,80,9,10]$ and write the procedure for finding the element '7' using binary search.	Apply	Learner to recall the concept of list and then explain binary search technique. Use this to find the element from the list.	CO 5
10	Define insertion sort and write the pseudo code for insertion sort.	Understand	Learner to recall the concept of insertion sort and explain insertion sort technique.	CO 4

MODULE-II

LINEAR DATA STRUCTURES

Part - A (Short Answer Questions)				
1	Define stack.	Understand	Learner to recall the concept of stack and explain basic operations of stack.	CO 7
2	Define queue.	Understand	Learner to recall the concept of queue and explain basic operations of queue.	CO 7
3	List the applications of stack.	Understand	Learner to recall the concept of stack and explain applications of stack.	CO 7
4	List the applications of queue.	Understand	Learner to recall the concept of queue and explain applications of queue.	CO 7
5	List the types of queues.	Remember	---	CO 7
6	List the various operations performed on stacks.	Understand	Learner to recall the concept of stack and explain basic operations of stack.	CO 7

7	List the various operations performed on linear queues.	Remember	---	CO 7
8	List the various operations performed on double ended queues.	Understand	Learner to recall the concept of deque and explain basic operations of deque.	CO 8
9	State the name of the data structure, in which deletion can be done from one end and insertion can take place only at the other end?	Understand	Learner to recall the concept of queue and explain basic operations of queue.	CO 8
10	Identify the data structure, in which elements can be inserted or deleted at/from both the ends, but not in the middle?	Understand	Learner to recall the concept of queue and explain basic operations of queue.	CO 8
11	List out any two applications of double ended queue?	Remember	---	CO

2	Write down the algorithm to convert an infix expression to postfix form.	Understand	Learner to recall the concept of stack and explain applications of stack.	CO 7
3	Describe the operations of a stack using stacks using arrays.	Understand	Learner to recall the concept of stack and explain the basic operations of stack using arrays.	CO 7
4	Write an algorithm for postfix expression evaluation.	Understand	Learner to recall the concept of stack and explain applications of stack.	CO 7
5	Write the functional difference between stacks and queues.	Understand	Learner to recall the concept of queue and explain difference between stack and queue.	CO 7
6	Compare between linear queue and circular queue? Write down algorithms for insert and delete operations in a circular queue?	Understand	Learner to recall the concept of queue and explain different types of queue.	CO 8
7	Define a double ended queue (DEQUE). Explain input restricted and output restricted DEQUE.	Understand	Learner to recall the concept of deque and explain types of Deque.	CO 8
8	Explain the concept of a linear queue. Write algorithms for performing insert, delete operations using arrays.	Understand	Learner to recall the concept of linear queue and explain the basic operations of queue using arrays.	CO 8
9	Write the procedure for Circular Queue full and empty conditions.	Understand	Learner to recall the concept of circular queue and explain circular queue full and empty conditions.	CO 8
10	Write the equivalent prefix and postfix expression for the given infix expression: ($\mathrm{a} * \mathrm{~b}$) $/ 2-(\mathrm{c} / \mathrm{d}-\mathrm{e})$	Understand	Learner to recall the concept of stack and explain applications of stack.	CO 8
11	Convert following infix expression into postfix form: $(\mathrm{A}+\mathrm{B}) *(\mathrm{C}-\mathrm{D} / \mathrm{E}) * \mathrm{G}+\mathrm{H}$	Understand	Learner to recall the concept of stack and explain applications of stack.	CO 8
12	Evaluate the following postfix notation of expression (Show status of stack after execution of each operations): 52015 - * 252*+	Understand	Learner to recall the concept of stack and explain applications of stack.	CO 8
13	Convert the following infix expression to postfix expression using a stack using the usual precedence rule: $\mathrm{x}+\mathrm{y}$ * $\mathrm{z}+(\mathrm{p} * \mathrm{q}+$ r) * s	Understand	Learner to recall the concept of stack and explain applications of stack.	CO 8
14	Find the result of evaluating the postfix expression $5,4,3,+,{ }^{*}, 4,9,3, /,+$,*	Understand	Learner to recall the concept of stack and explain applications of stack.	CO 8
15	Convert following infix expression into postfix form: $\mathrm{A}+(\mathrm{B} * \mathrm{C}-\mathrm{D} / \mathrm{E} * \mathrm{G})+\mathrm{H}$	Understand	Learner to recall the concept of stack and explain applications of stack.	CO 8
16	Implement an algorithm to DEQUEUE delete from front operation	Understand	Learner to recall the concept of deque and explain basic operations of Deque.	CO 8
17	Implement an algorithm to DEQUEUE delete from rear operation	Understand	Learner to recall the concept of deque and explain basic operations of Deque.	CO 8

18	Implement an algorithm to DEQUEUE insert at front operation	Understand	Learner to recall the concept of deque and explain basic operations of Deque.	CO 8
19	Implement an algorithm to DEQUEUE insert at rear operation	Understand	Learner to recall the concept of deque and explain basic operations of Deque.	CO 8
20	Write the conditions for Queue full and empty conditions.	Understand	Learner to recall the concept of queue and explain basic operations of queue.	CO 8
Part - C (Problem Solving and Critical Thinking Questions)				

LINKED LISTS
Part - A (Short Answer Questions)

1	Write the advantages of linked lists?	Remember	---	CO 7
2	List out types of linked lists?	Remember	---	CO 7
3	Write the advantages of double linked list over single linked list?	Understand	Learner to recall the concept of linked list and explain the advantages of double linked list over single linked list.	CO 7
4	Write the applications of linked lists?	Remember	---	CO 7
5	Find the time complexity to count the number of elements in a linked list?	Remember	---	CO 7
6	Define a circular single linked list?	Understand	Learner to recall the concept of linked list and explain circular linked list.	CO 7
7	Write any two operations that is performed more efficiently by doubly linked list than singly linked list?	Understand	Learner to recall the concept of linked list and explain the advantages of double linked list over single linked list.	CO 7
8	Consider a single linked list, list out any two operations that can be implemented in O(1) time?	Remember	---	CO 7
9	Write the advantages of linked lists?	Remember	---	CO 7
10	List out types of linked lists?	Remember	---	CO 7

11	Identify the operation which is difficult to perform in a circular single linked list?	Understand	Learner to recall the concept of linked list and explain the operations of circular linked list.	CO 8
12	Write the asymptotic time complexity to insert an element at the second position in the linked list?	Remember	---	CO 8
13	Identify the variant of linked list in which none of the node contains a NULL pointer?	Remember	---	CO 8
14	In a circular linked list, how many pointers requires modification if a node is inserted?	Understand	Learner to recall the concept of linked list and explain the operations of circular linked list.	CO 8
15	Identify the searching technique for which linked lists are not suitable data structures?	Remember	---	CO 8
16	In worst case, find the number of comparisons needed to search a singly linked list of length n for a given element?	Remember	---	CO 8

17	State the name of data structure in which data elements is logically adjacent to each other?	Understand	Learner to recall the concept of data structures and explain various types of data structures.	CO 8
18	Write the disadvantages of double linked list over single linked list?	Remember	---	CO 8
19	Write the time complexity of enqueue() and 11equeued() operations of a linked list implementation of a linear queue?	Remember	---	CO 8
20	Write an example of a non-contiguous data structure?	Understand	Learner to recall the concept of data structures and explain various types of data structures.	CO 8
Part - B (Long Answer Questions)				
1	Write a program to implement the following operations of a single linked list: Creating a list List traversal	Understand	Learner to recall the concept of linked list and explain operations on single linked list.	CO 7
2	A node can be inserted at various places in a linked list. Write algorithms for inserting a new node in a single linked list at: At the front of the linked list After a given node At the end of the linked list	Understand	Learner to recall the concept of linked list and explain operations on single linked list.	CO 7
3	Write a program to count the number of nodes present in a single linked list?	Apply	Learner to recall the concept of linked list and describe operations on single linked list. Use the operations of single linked list to count the number of nodes.	CO 7
4	Write a program to search for an element present in a single linked list?	Apply	Learner to recall the concept of linked list and describe operations on single linked list. Use the operations of single linked list to search for an element in a linked list.	CO 7
5	Write a program to delete a node from the middle position of the single linked list?	Apply	Learner to recall the concept of linked list and describe operations on single linked list. Use the operations of single linked list to perform deletion operation.	CO 7
6	Write a program to reverse a single linked list of length n ?	Apply	Learner to recall the concept of linked list and describe operations on single linked list. Use the operations of single linked list to reverse a linked list.	CO 8
7	Write a program to implement the following operations of a double linked list: Creating a list Inserting a node at the beginning	Apply	Learner to recall the concept of linked list and describe operations on single linked list. Use the operations of double linked list to perform various operations.	CO 8

8	Write a program to implement the following operations of a circular single linked list: Creating a list Deleting a node at the end	Apply	Learner to recall the concept of linked list and describe operations on circular single linked list. Use the operations of double linked list to perform various operations.	CO 8
9	Write a program to merge two sorted linked list into a third linked list using recursion?	Apply	Learner to recall the concept of linked list and describe operations of single linked list. Use merge operation to combine two sorted linked lists.	CO 8
10	Write a function to delete a given node in a double linked list?	Apply	Learner to recall the concept of linked list and describe operations of double linked list. Use the operation to delete a node from linked list.	CO 8
Part - C (Problem Solving and Critical Thinking)				
1	Write a program to split a circular linked list into two halves?	Apply	Learner to recall the concept of linked list and describe operations of circluar linked list. Use the operation to split a linked list into two halves.	CO 7
2	Define a node in a linked list? Explain the difference between creation of single linked list node and double linked list node?	Understand	Learner to recall the concept of linked list and explain operations on single and double linked list.	CO 7
3	Write a program to display node values in reverse order for a double linked list?	Understand	Learner to recall the concept of linked list and explain the reverse order for a DLL.	CO 7
4	Write a program to swap nodes in a linked list without swapping data?	Understand	Learner to recall the concept of linked list and explain the process of swapping nodes in a linked list.	CO 7
5	A circularly linked list is used to represent a Queue. A single variable p is used to access the Queue. Find the node to which p should point such that both the operations enQueue and deQueue can be performed in constant time?	Understand	Learner to recall the concept of circular linked list and explain the basic operations.	CO 7
6	Write a program to search for an element in the linked list without using recursion	Apply	Learner to recall the concept of linked list and describe operations of single linked list. Use search operation to find an element in the linked list.	CO 8
7	Write a program to count the number of occurrences of an element in the linked list without using recursion	Apply	Learner to recall the concept of linked list and describe operations of single linked list. Use search	CO 8

			operation to find an element in the linked list.	
8	Write a program to print middle most node of a linked list.	Apply	Learner to recall the concept of linked list and describe operations of linked list. Use the operation to find the middle node of a linked list.	CO 8
9	 union of two linked lists.	Understand	Learner to recall the concept of linked list and explain the intersection and union operations of on linked lists.	CO 8
10	Write a program to modify the linked list such that all even numbers appear before all the odd numbers in the modified linked list.	Understand	Learner to recall the concept of linked list and explain the sorting operation on linked list.	CO 8

NON LINEAR DATA STRUCTURES

Part - A (Short Answer Questions)					
1	Write the children for node 'w' of a complete-binary tree in an array representation?	Remember	---	CO 9	
2	Wrese the advantages of linked list representation of binary trees over arrays?	Remember	---	CO 9	
3	Write the different tree traversal algorithms in linked list representation?	Remember	---	CO 9	
4	State the graph traversal technique which is similar to level order tree traversal?	Remember	---	CO 9	
5	Write the recursive algorithm for pre- order traversal?	Understand	Learner to recall the concept of binary trees and explain the traversal operations.	CO 9	
6	Write the name of the tree traversal technique which would print the numbers in an ascending order in a binary search tree?	Remember	---	CO 9	
7	Define a full binary tree and complete binary tree?	Understand	Learner to recall the concept of binary trees and explain the types of trees.	CO 9	
8	Write the time complexity for finding the height of the binary tree?	Understand	Learner to recall the concept of binary trees and explain the operations on trees.	CO 9	
9	Write the worst case and average case complexities of a binary search tree?	Understand	Learner to recall the concept of binary search trees and explain the time complexities.	CO 9	
10	Write the number of edges present in a complete graph having n vertices?	Understand	Learner to recall the concept of graphs and explain the basics of graphs.	CO 9	
11	Write the different ways used to represent a graph in computer?	Remember	---	CO 9	

| 12 | Understand | Learner to recall the concept of
 graphs and explain the traversal
 operations. | CO 10 |
| :--- | :--- | :--- | :--- | :---: |
| graph? | | | |

3	Illustrate the output obtained after pre-order, in-order and post-order traversal of the following tree	Understand	Learner to recall the concept of binary search trees and explain the tree traversals.	CO 9
4	Develop a program in Python to implement Depth First Search traversal of a graph using Adjacency Matrix.	Understand	Learner to recall the concept of graphs and explain the graph traversal techniques.	CO 9
5	Construct a binary search tree by inserting following nodes in sequence: $68,85,23,38,44,80,30,108,26,5$, 92, 60. Write in-order, pre-order and post-order traversal of the above generated Binary search tree.	Apply	Learner to recall the concept of binary search trees and describe operations of BST. Use tree traversal algorithms.	CO 9
6	Write the in-order, pre-order and post-order traversals for the given binary tree.	Understand	Learner to recall the concept of binary search trees and explain the tree traversals.	CO 9
7	Define Adjacency Matrix? Draw the Adjacency Matrix of the following graph. Also give adjacency list representation for the same.	Understand	Learner to recall the concept of adjacency matrix and explain the adjacency list representation.	CO 9
8	Explain the array and linked representation of a binary tree using a suitable example?	Understand	Learner to recall the concept of binary tree and explain the array and linked representation.	CO 9
9	Define a binary tree? Construct a binary tree given the pre-order traversal and in-	Understand	Learner to recall the concept of binary tree and explain the array	CO 10

	order traversals as follows: Pre-Order Traversal: G B Q A C K F P D E R H In-Order Traversal: Q B K C F A G P E D H R		and linked representation.	
10	Construct an expression tree for the following expression. A+ (B + C* D + E + F / G. Make a preorder traversal of the resultant tree.	Apply	Learner to recall the concept of expression trees and describe operations of tree construction. Use tree traversal algorithms to construct an expression tree.	CO 10
11	Explain the binary tree traversal algorithms with a suitable example?	Understand	Learner to recall the concept of binary search trees and explain the tree traversals.	CO 10
12	Write the basic tree terminologies and the properties of binary tree?	Understand	Learner to recall the concept of trees and explain the basic tree terminologies.	CO 10
Explain the breadth first search and				
depth first search graph traversal				
algorithms for the following graph?				

17	Define a binary search tree and write the properties of a binary search tree? Construct a binary search with the following keys: $8,3,, 1,6,14,4,7,13$, 17, 5	Understand	Learner to recall the concept of binary search trees and explain its properties.	CO 10
18	Write the procedure for finding an element 85 in a given binary search tree?	Understand	Learner to recall the concept of binary search trees and explain search procedure.	CO 10
19	Write a program for breadth first traversal of a graph?	Understand	Learner to recall the concept of graphs and explain the graph traversal techniques.	CO 10
20	Write the in-order, pre-order and postorder traversal of a given tree?	Understand	Learner to recall the concept of binary search trees and explain the tree traversals.	CO 10
Part - C (Problem Solving and Critical Thinking)				
1	Let G be a graph with n vertices and m edges. Find the tightest upper bound on the running time on depth first search of graph G. Assume that graph is represented using adjacency matrix.	Understand	Learner to recall the concept of graphs and explain the graph traversal techniques.	CO 9
2	Let G be a undirected graph with n vertices and 25 edges such that each vertex has degree at least 3 . Find the maximum possible value of n ?	Understand	Learner to recall the concept of graphs and explain the graph traversal techniques.	CO 9
3	In a binary tree, for every node the difference between the number of nodes in the left and right sub trees is at most two. If the height of the tree is $h>0$, then find the minimum number of nodes in the tree?	Understand	Learner to recall the concept of binary trees and explain its properties.	CO 9
4	Write a program to find the number of occurrences of a number in a tree of numbers?	Understand	Learner to recall the concept of binary trees and explain frequency of a number in a tree.	CO 9
5	Write breadth first search (BFS) traversal algorithm, based on a queue, to traverse a directed graph of n vertices and m edges?	Understand	Learner to recall the concept of graphs and explain the graph traversal techniques.	CO 9

6	Consider the example Find out the BFS and DFS	Understand	Learner to recall the concept of graphs and explain the graph traversal techniques.	CO 9
7	Draw a directed graph with five vertices and seven edges. Exactly one of the edges should be a loop, and do not have any multiple edges.	Understand	Learner to recall the concept of graphs and explain the graph traversal techniques.	CO 9
8	Given A Binary Tree. Write an efficient algorithm to delete entire binary tree.	Understand	Learner to recall the concept of trees and explain the algorithm how to delete a binary tree.	CO 9
9	Given A Binary Tree. Write an efficient algorithm to print a left view of a binary tree.	Understand	Learner to recall the concept of trees and explain the algorithm how to delete a binary tree.	CO 9
10	Given binary tree write a recursive solution to traverse the tree using post order traversal.	Understand	Learner to recall the concept of trees and explain post order tree traversal.	CO 9
MODULE -V				
BINARY TREES AND HASHING				
Part - A (Short Answer Questions)				
1	Define binary search tree?	Understand	Learner to recall the concept of binary search trees and explain the basic concepts.	CO 11
2	Write the worst case and average case complexities of a binary search tree?	Remember	---	CO 11
3	Define an AVL tree and its operations?	Understand	Learner to recall the concept of AVL trees and explain the basic concepts.	CO 11
4	State the maximum height of an AVL tree with p nodes?	Remember	---	CO 11
5	State the data structure which checks the height of the left and the right sub-trees and assures that the difference is not more than 1 ?	Remember	---	CO 11
6	Write the formula for balance factor in AVL trees?	Remember	---	CO 11
7	List out the types of rotations performed in AVL trees?	Understand	Learner to recall the concept of AVL trees and explain the types of rotations.	CO 11

8	Explain how to perform left and right rotations on the right and left unbalanced AVL trees given below	Understand	Learner to recall the concept of AVL trees and explain the types of rotations.	CO 11
9	Explain how to perform left-right rotation on the given unbalanced AVL tree?	Understand	Learner to recall the concept of AVL trees and explain the types of rotations.	CO 11

17	State the techniques required to avoid collision?	Remember	---	CO 11
18	Define a hash function and list out popular hash functions?	Understand	Learner to recall the concept of hash table and explain the popular hashing methods.	CO 11
19	In simple chaining technique used in hashing, state which data structure is appropriate?	Remember	---	CO 11
20	Write the applications of hashing?	Understand	Learner to recall the concept of hash table and explain the applications of hashing.	CO 11
Part - B (Long Answer Questions)				
1	Define the properties of binary search trees? Write a program to construct a binary search tree with the given keys $8,3,10,1,6,14,4$, 7, 13?	Understand	Learner to recall the concept of binary search trees and explain the binary search procedure for a particular element.	CO 11
2	List out the operations of a binary search tree and write the procedure to search for a key 45 in a given binary search tree containing elements $25,15,50,10,22,35,70,4,12,18,24$, $31,44,66,90$?	Understand	Learner to recall the concept of binary search trees and explain the binary search procedure for a particular element.	CO 11
3	Write the procedure for inserting an element 60 in a given binary search tree containing elements $25,15,50,10,22$, $35,70,4,12,18$, $24,31,44,66,90$?	Understand	Learner to recall the concept of binary search trees and explain the procedure for inserting a particular element.	CO 11
4	Explain the different possibilities that arise while deleting an element from a given binary search tree containing elements $50,30,70,20,40,60,80$? i. Delete 20 ii. Delete 30 iii. Delete 50	Understand	Learner to recall the concept of binary search trees and explain the procedure for deleting a particular element.	CO 11
5	Define an AVL tree and write the steps used to follow while inserting an element 3 into an given AVL tree containing elements $13,10,15,5,11$, 16, 4, 8 .	Understand	Learner to recall the concept of AVL trees and explain the types of rotations.	CO 11
6	Draw a hash table with open addressing and a size of 9 . Use the hash function (k mod 9). Insert the keys: 5, 29, 20, 0, 27 and 18 into the hash table (in that order).	Understand	Learner to recall the concept of hash table and explain open hashing procedure.	CO 11
7	Define a B-Tree and its properties? Construct a B-tree of minimum degree 3 from the following elements $1,2,3,4,5,6,30,40,50,60,70,80$, 82, 84, 86.	Understand	Learner to recall the concept of Btree and explain its properties and construction.	CO 11
8	Write the procedure for insertion and deletion operation in a B tree with the following elements $10,20,30,40,50,60$, 70, 80, 90.	Understand	Learner to recall the concept of Btree and explain its properties and construction.	CO 11

9	Explain the collision resolution techniques separate chaining and open addressing with suitable example?	Understand	Learner to recall the concept of hashing and explain collision resolution techniques.	CO 11
10	Explain the following: i. Hashing ii. Hash table iii.Hash Function	Understand	Learner to recall the concept of hashing and explain hashing concepts.	CO 11
11	Insert the following sequence of elements into an AVL tree, starting with an empty tree: $10,20,15,25,30,16,18,19$ and delete 30 in the AVL tree that you got.	Understand	Learner to recall the concept of AVL trees and explain the various operations of AVL trees.	CO 11
12	Explain the collision resolution technique double hashing and linear probing with suitable example?	Understand	Learner to recall the concept of hash table and explain the collision resolution techniques.	CO 11
13	Show the B-tree the results when deleting A , then deleting V and then deleting P from the following B-tree with a minimum branching factor of $t=2$.	Understand	Learner to recall the concept of Btree and explain its properties and construction.	CO 11
14	Which of the following are legal B-trees for when the minimum branching factor t $=3$? For those that are not legal, give one or two sentence very clearly explaining what property was violated.	Understand	Learner to recall the concept of Btree and explain its properties and construction.	CO 11
15	Create binary search tree for the following elements ($23,32,24,36,15$, $12,39,2,19)$.Discuss about the height of the above binary search tree.	Understand	Learner to recall the concept of binary search trees and explain its properties and construction.	CO 11
16	Explain with examples different cases of deletion of elements in a binary search tree?	Understand	Learner to recall the concept of binary search trees and explain deletion of elements in a binary search tree.	CO 11
17	Explain how M-way search trees differ from binary seach trees with an example.	Understand	Learner to recall the concept of Mway search trees and explain its basic concepts.	CO 11
18	Construct a M-way search tree of order 3 for the following nodes $20,70,110,210,130$	Understand	Learner to recall the concept of Mway search trees and explain its basic concepts.	CO 11

Part - C (Problem Solving and Critical Thinking)				
1	The integers $\{1-1000\}$ are stored in a binary search tree (BST). Suppose the search algorithm is implemented on the key 363 , one of the following sequences is not a possible sequence of nodes that is examined. It is i. $2,252,401,398,330,344,397,363$ ii. $924,220,911,244,898,258,362$, 363 iii. $925,202,911,240,912,345,245$, 363 iv. $2,399,387,219,266,382,381$,	Understand	Learner to recall the concept of binary search trees and explain the search algorithm.	CO 11
2	If h is any hashing function and used to hash n keys into a table of size m, where $\mathrm{m}>=\mathrm{n}$, find the expected number of collisions involving a particular key x ?	Understand	Learner to recall the concept of hash table and explain the collision resolution techniques.	CO 11
3	Consider a hash table with 9 slots. The hash function is $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 9$. The Collisions are resolved by chaining. The following 9 keys are inserted in the order: $5,28,19,15,20,33,12,17,10$. Find the maximum, minimum and average chain length in the hash table?	Apply	Learner to recall the concept of hash tables and describe concepts of hashing techniques. Use collision resolution techniques.	CO 5
4	A binary search tree contains the numbers $1,2,3,4,5,6,7,8$. When the tree is traversed in pre-order and the values in each node printed out, the sequence of values obtained is $5,3,1,2$, $4,6,7,8$. Find the post order traversal sequence of the tree?	Apply	Learner to recall the concept of hash tables and describe concepts of hashing techniques. Use collision resolution techniques.	CO 11
5	A hash table contains 10 buckets and uses linear probing to resolve collisions. The key values are integers and hash function used is key $\% 10$. If the values $43,165,62,123,142$ are inserted in the table, then find the location of the key value 142 in the table?	Apply	Learner to recall the concept of hash tables and describe concepts of hashing techniques. Use collision resolution techniques.	CO 11
6	Find the smallest number of keys that will force a B-tree of order 3 to have a height 2 ?	Apply	Learner to recall the concept of Btree and describe concepts of Btree construction. Use search procedure to find the smallest number of keys.	CO 11
7	Suppose that the computer you will be using has disk blocks holding 4096 bytes, the key is 4 bytes long, each child pointer (which is a disk block id) is 4 bytes, the parent is 4 bytes long and the data record reference (which is a disk block id along with a offset within the block) is 8 bytes. You have an application in which you want to store $1,000,000$ items in your B-tree.	Apply	Learner to recall the concept of Btree and describe concepts of Btree construction. Use search procedure to find the smallest number of keys.	CO 11

	What value would you select for t? (Show how you derived it.) What is the maximum number of disk pages that will be brought into main memory during a search? Remember that the root is kept in main memory at all times				
8	Show the B-tree that results when inserting R,Y,F,X,A,M,C,D,E,T,H,V,L,W,G (in that order)branching factor of t = 3. You need only draw the trees just before and after each split.	Apply	Learner to recall the concept of B- tree and describe concepts of B- tree construction. Use search procedure to find the smallest number of keys.	CO 11	
9	Draw a hash table with open addressing and a size of 9. Use the hash function "k\%9". Insert the keys: 5, 29, 20, 0, 27 and 18 into your table (in that order).	Understand	Learner to recall the concept of hash tables and describe concepts of hashing techniques. Use collision resolution techniques.	CO 11	
10	A cosmetician wants to represent a list of her clients' records (by their ID). For each client we would like to mark whether he is a man or she is a woman. Suggest a data structure that supports the following operations in O(log n) time in the worst case, where n is the number of persons (men and women) in the data structure when the operation is executed: 1. Insert(k, c) - Insert a new client c with id = k to the data structure, at first mark the client as a woman. 2. Update(k) - Update client with ID = k to be a man. 3. FindDiff(k) - Find the difference between the number of women and the number of men (\|\#of women - \#of men) among all the clients with ID smaller than k	Learner to recall the concept of hash tables and describe concepts of hashing techniques. Use collision resolution techniques.	CO 11	

Prepared by:
Ms. K Laxminarayanamma, Assistant Professor

