INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING
 TUTORIAL QUESTION BANK

Course Title	ENGINEERING MECHANICS				
Course Code	AMEB03				
Program	B. Tech				
Semester	THREE				
Course Type	Foundation				
Regulation	IARE - R18				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Course Coordinator	Dr. BDY Sunil, Associate Professor				

COURSE OBJECTIVES:

Students will try to learn:	
I	The application of mechanics laws to static and dynamic equilibrium conditions in a body for solving the field problems.
II	The importance of free body diagram for a given system and put in the knowledge of mathematics and science into the vast area of rigid body mechanics.
III	The effects of force and motion while carrying out the innovative design functions of engineering.

COURSE OUTCOMES:

At the end of the course the students should be able to:

Course Outcomes		Knowledge Level (Bloom's Taxonomy)
CO 1	Determine the reactions and resultants for the system of forces in engineering applications with principles of mechanics.	Apply
CO 2	Analyze the unknown forces with the help of free body diagrams to a given force system.	Analyze
CO 3	Identify the equilibrium equations for a planar and spatial force systems from the rest or motion condition of the body.	Remember

CO 4	Apply the static and dynamic friction laws for the equilibrium state of a wedge and ladder applications.	Apply
CO 5	Apply the friction laws to a standard and differential screw jack for conditions of self-locking and overhauling.	Apply
CO 6	Demonstrate the concepts of equilibrium for truss, beam, frames and machine applications.	Understand
CO 7	Identify the centroid, centre of gravity and moment of inertia for the simple plane sections from the first principles.	Apply
CO 8	Explore the theorems of moment and the mass moment of inertia of circular plate, cylinder, cone and sphere.	Apply
CO 9	Apply the concepts of virtual work and work-energy method for single and connected configured systems.	Apply
CO 10	Determine normal and tangential accelerations for a particle in rectilinear and curvilinear motion through kinematic equations.	Apply
CO 11	Derive the dynamic equilibrium of a body in motion by introducing inertia force through D' Alembert's principle.	Apply
CO 12	Compute the time period and frequencies of simple, compound and torsional pendulums using the basics of free and forced vibrations.	Understand

MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes	Program Outcomes												Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	-	4	-	2	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	-	3	-	2	-	-	-	-	-	-	-	-	2	-	-
CO 7	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	2	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 9	2	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 10	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 11	2	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 12	2	-	-	3	-	-	-	-	-	-	-	-	2	-	-

MODULE - I

INTRODUCTION TO ENGINEERING MECHANICS				
Part - A (Short Answer Questions)				
S No	QUESTIONS	Blooms Taxonomy	How does this subsume the level	Course Outcome
1	State Varignon's theorem	Remember	--	CO 1
2	What is a couple?	Understand	--	CO 1
3	Define principle of transmissibility.	Remember	--	CO 1
4	State the triangular law of forces?	Remember	--	CO 1
5	What is a moment of a couple?	Remember	--	CO 1
6	State Newton's three laws of motion?	Remember	--	CO 1
7	State and explain Newton's law of gravitation	Remember	--	CO 1
8	Define the term resultant and equilibrant	Remember	--	CO 1
9	What is a rigid body?	Remember	--	CO 1
10	What is a couple? State its characteristics	Remember	--	CO 1
11	Explain coplanar force system with sketch.	Remember	Learner to Recall the concept of force system and explain the coplanar force system	CO 2
12	Explain concurrent force system with sketch.	Remember	Learner to Recall the concept of force system and explain the concurrent force system	CO 2
13	Define the resultant of a force system.	Understand	--	CO 2
14	Explain the resultant of two like parallel forces.	Understand	Learner to Recall like parallel forces and explain how to determine the resultant of the same	CO 2
15	Define momentum of a force.	Remember	--	CO 2
16	Resultant of concurrent forces.	Understand	--	CO 2
17	Define Static Indeterminacy.	Understand	--	CO 2
18	Explain the resultant of two unlike parallel forces.	Remember	Learner to Recall unlike parallel forces and explain how to determine the resultant of the same	CO 2
19	Define spatial force system.	Understand	--	CO 3
20	List out the equilibrium equations for spatial force system	Remember	--	CO 3

Part - B (Long Answer Questions)				
1	State and prove Lami's theorem with a neat sketch?	Remember	--	CO 1
2	State and prove the Parallelogram law of forces?	Understand	--	CO 1
3	Explain free body diagram with neat sketches.	Remember	--	CO 2
4	What differences exist between Kinetics and Kinematics	Remember	--	CO 1
5	Compare 'Resultant' and 'Equilibrant'	Remember	--	CO 3
6	Distinguish between couple and moment.	Understand	--	CO 1
7	Explain briefly about various types of supports.	Understand	--	CO 1
8	Explain the procedure to find the resultant of several forces acting at a point	Understand	Learner to explain the detailed procedure of how to determine the resultant when several forces are acting at a point	CO 2
9	Determine the magnitude and the direction of the resultant of two forces 7 N and 8 N acting at a point with an included angle of 60° with between them. The force of 7 N being horizontal	Understand	Learner to find the magnitude and direction of resultant by identifying the required formulae to be used.	CO 2
10	Two coplanar forces act towards a point with an angle of 45^{0} between them. If their resultant is 100 kN and one of the forces is 20 kN calculate the other force	Understand	Learner to find the magnitude and direction of the second force by identifying the required formulae to be used.	CO 2
11	Two forces act at an angle of 120°. The bigger forces is 60 N and the resultant is perpendicular to the smaller one. Find the smaller force.	Understand	Learner to find the magnitude and direction of the second force by identifying the required formulae to be used.	CO 2
12	Two homogeneous spherical balls rest between two vertical walls as shown in figure. The radius of smaller ball is 16 cm and its weight is 1.15 kN . The radius of the larger ball is 24 cm and weight is 3.45 kN . The distance between the walls is 72 cm . Assuming the contact surfaces to be smooth, Determine the reactions at A, B and C.	Understand	Learner to find the magnitude and direction of the reactions by identifying the required formulae to be used.	CO 2
13	A traffic signal of mass 50 kg is hung with the help of two strings, as shown in figure. Find the forces induced in	Apply	Learner to find the magnitude and direction of the forces in the strings by identifying the	CO 2

	the strings.		required formulae to be used.	
14	Two spheres are kept in a conical channel, as shown in figure. All contact surfaces are smooth. Determine the reactions at all the contact surfaces. Sizes of spheres are same but with different weight.	Evaluate	Learner to find the magnitude and direction of the reactions by identifying the required formulae to be used.	CO 2
15	An electric light fixture is held with the arrangement shown in figure. If the weight of the fixture is 20 kg and the hinge is an ideal one, determine the axial forces in the bar and the string.	Understand	Learner to find the magnitude and direction of the forces in the strings by identifying the required formulae to be used.	CO 2
16	Two weights are suspended as shown in figure. Determine the tension in String PQ. Pulley is assumed smooth.	Understand	Learner to find the magnitude and direction of the forces in the strings by identifying the required formulae to be used.	CO 2
17	In the arrangement shown in figure, all pulleys are assumed to be smooth	Understand	Learner to find the magnitude and direction of the forces in	CO 2

Part - C (Problem Solving and Critical Thinking Questions)				
1	A force P is applied at 'O' to the string AOB as shown in figure. If the tension in each part of string is 50 N, Find the direction and magnitude of force P for equilibrium conditions.	Remember	Learner to find the magnitude and direction of the reactions by identifying the required formulae to be used.	CO 2

5	Find the magnitude of two forces such that if they act at right angle, their resultant is $\sqrt{ } 10$, but they act at 60° their resultant is $\sqrt{ } 13$	Remember	Learner to find the magnitude and direction of the resultant by identifying the required formulae to be used.	CO 2
6	The five forces $20 \mathrm{~N}, 30 \mathrm{~N}, 40 \mathrm{~N}, 50 \mathrm{~N}$ and 60 N are acting at one of the angular points of a regular hexagon, towards the other five angular points taken in order. Find the direction and magnitude of the resultant force	Understand	Learner to find the magnitude and direction of the resultant by identifying the required formulae to be used.	CO 2
7	The following forces act at a point 30 kN inclined at 35° towards North to East. a. 22 kN towards North b. 30 kN inclined at 30° towards North to West c. 35 kN inclined at 25^{0} towards South to West. Find the magnitude and direction of the resultant force.	Understand	Learner to find the magnitude and direction of the resultant by identifying the required formulae to be used.	CO 2
8	Determine the horizontal force P to be applied to a block of weight of 1800 N to hold it in position on a smooth inclined plane, which makes an angle 30^{0} with horizontal reference line.	Understand	Learner to find the magnitude and direction of the resultant by identifying the required formulae to be used.	CO 2
9	A uniform plank ABC of weight of 30 N and 2 m long is supported one end A and at a point B 1.4 m from A. find the maximum weight W that can be placed at C,so that the plank does not topple	Understand	Learner to find the weight of the plank by identifying the required formulae to be used.	CO 2
10	The force of magnitudes 10 KN , $20 \mathrm{KN}, 25 \mathrm{KN} \& 40 \mathrm{KN}$ are concurrent in space and are directed through the points $\mathrm{A}(3,2,5), \mathrm{B}(1,7,4), \mathrm{C}(4,-2,4) \&$ $\mathrm{D}(-2,4,-3)$ respectively. Determine the resultant of the force system of forces. Given that system of forces are concurrent at the origin.	Understand	Learner to find the magnitude and direction of the resultant by identifying the required formulae to be used.	CO 2

MODULE-II

FRICTION AND BASIC STRUCTURAL ANALYSIS

Part - A (Short Answer Questions)				
1	Explain the types of friction with examples?	Understand	--	CO 4
2	Define Friction	Understand	--	CO 4
3	Define the following (i)Angle of Repose (ii)Coefficient of frictions	Understand	--	CO 4
4	Differentiate between static and dynamic friction?	Understand	--	CO 4
5	State laws of solid friction.	Understand	--	CO 4

6	What do you understand by the limiting friction?.	Remember	--	CO 4
7	What is the principle of a screw jack?	Remember	--	CO 5
8	Define a beam? And explain different types of beams with neat sketches.	Remember	--	CO 6
9	Explain the classification of friction.	Understand	--	CO 4
10	Differentiate between beam and column.	Remember	--	CO 6
11	Explain types of friction.	Understand	--	CO 4
12	Explain rolling friction.	Understand	--	CO 4
13	Under what conditions can a cylinder roll down and under what conditions can it slide down an inclined plane.	Understand	Learner to recall conditions of an inclined plane and then explain how a cylinder may roll down and slide down.	CO 4
14	Differentiate between angle of repose and angle of friction.	Understand	--	CO 4
15	Explain the difference between coefficient of friction and angle of friction	Remember	--	CO 4
Part - B (Long Answer Questions)				
1	Derive an expression for the minimum effort required along the inclined plane to keep a body in equilibrium position when it is at point of sliding downwards on a inclined plane.	Remember	--	CO 4
2	Solve reactions at points A \& B	Understand	Learner to find the magnitude and direction of the resultant by identifying the required formulae to be used.	CO 6
3	Explain the difference between coefficient of friction and angle of friction	Remember	--	CO 4
4	Derive an expression for the maximum force required along the horizontal plane to keep a body in equilibrium position when it is at point of sliding downwards on a inclined plane.	Remember	--	CO 4
5	Two 6^{0} of wedges are used to push a block horizontally as shown in figure. Calculate the minimum force required to push the block of weight 10 kN .	Remember	Learner to find the minimum force required to push the block by identifying the required formulae to be used.	CO 5

	Take coefficient of friction as 0.25 for all contact surfaces.			
6	A body of weight 300 N is lying on a rough horizontal surface having coefficient of friction as 0.3 . Find the magnitude of force, which can move the body, while acting at an angle 25^{0} with the horizontal.	Remember	Learner to find the minimum force required to push the block by identifying the required formulae to be used.	CO 4
7	A body resting on a rough horizontal plane, required a pull of 180 N inclined at 30° to the plane just to move it. It is found that a push of 220 N inclined at 30° to the plane just to move the body. Determine the weight of the body and coefficient of friction.	Remember	Learner to find the weight of the body and co-efficient of friction by identifying the required formulae to be used.	CO 4
8	A object of weight 100 N is kept in position on a inclined 30° to the horizontal by a horizontal applied force. If the coefficient of friction of the surface of the inclined plane is 0.25 . determine the minimum magnitude of force.	Remember	Learner to find the minimum force required to push the block by identifying the required formulae to be used.	CO 4
9	Find the force and its nature in member AD and BC for given cantilever truss loaded by 40 KN as shown figure.	Remember	Learner to find the minimum force required by identifying the required formulae to be used.	CO 6
10	Find the forces in the members DF, DE, CE, and EF by method of joints for the pin-jointed frame as shown in figure.	Understand	Learner to find the forces by identifying the required formulae to be used.	CO 6

11	A beam AB is supported and loaded as shown in fig.1. Find the reactions at the supports.	Understand	Learner to find the reactions by identifying the required formulae to be used.	CO 6
12	Explain the Coulomb's laws of friction.	Remember	--	CO 4
13	Explain Cone of friction.	Remember	--	CO 4
14	Explain wedge friction.	Remember	--	CO 5
15	Find the forces in the members AB and BD by method of sections.	Understand	Learner to find the forces by identifying the required formulae to be used.	CO 6
16	Find the forces in the members AB and BD by method of sections.	Understand	Learner to find the forces by identifying the required formulae to be used.	CO 6
17	A screw thread of a screw jack has a mean diameter of 10 cm and a pitch of 1.25 cm . The coefficient of friction between the screw and its nut housing is 0.25 . Determine the force F that must be applied at the end of a 50 cm lever arm to raise a mass of 5000 kg . Is the device self-locking? Also determine its efficiency.	Understand	Learner to find the force that is to be applied and also determine the efficeincy by identifying the required formulae to be used.	CO 5
18	A horizontal force F is applied to a block which rests on an inclined plane, as shown in figure. Find the force required to initiate motion up the plane.	Understand	Learner to find the forces required by identifying the required formulae to be used.	CO 4

19	Find the minimum weight W of the triangular block such that it remains in equilibrium under the action of the force 1kN applied to it as shown in figure. Take $\mu=0.25$.	Understand			Learner to find the weight of
:---					
the body by identifying the					
required formulae to be used.	\quad CO 5				

	between the ladder and the floor? Show that the ladder will remain in equilibrium in this position.		
3	A block of mass 150kg is raised by a 100wedge weight 50kg under it and by applying a horizontal force at its end. Taking coefficient of friction between all surfaces of contact as 0.3, find minimum force that should be applied to raise the block.	Remember	Learner to find the force required to raise the block by identifying the required formulae to be used.

	60cm length is needed to raise a weight of 2KN			
9	A differential screw jack has a pitch of $12 \mathrm{~mm}, 10 \mathrm{~mm}$ and 300mm arm length. What will be the efficiency of the machine, if it can lift a load of 7.5 KN by an effort of 30N.	Understand	Learner to find effort required to raise a given load by identifying the required formulae to be used	CO 5
10	In a differential screw jack has pitch of 10 mm and 7 mm . if the efficiency of machine is 28\%. Find the effort required at the end of the arm 360mm long to lift a load of 5KN.	Understand	Learner to find effort required to at the end of the arm to lift given load by identifying the required formulae to be used	CO 5

MODULE -III

CENTROID AND CENTRE OF GRAVITY AND VITUAL WORK AND ENERGY METHOD
Part - A (Short Answer Questions)

1	Distinguish between centroid and centre of gravity	Understand	--	CO 7
2	Define polar moment of inertia	Remember	--	CO 8
3	Define Radius of gyration	Remember	--	CO 8
4	State the parallel axis theorem	Remember	--	CO 8
5	State the perpendicular axis theorem	Remember	--	CO 8
6	State Pappus - Guildinus theorem.	Remember	--	CO 9
7	Determine the moment of inertia of rectangular lamina about base using parallel axis theorem.	Understand	--	CO 8
8	Determine the polar moment of inertia of circular lamina about centroidal axis.	Understand	--	CO 8
9	Describe the various methods of finding the center of gravity of a body	Understand	--	CO 7
10	List out the solid of revolution.	Remember	--	CO 9
CIE-II				
11	Give the location of centroids of rectangle, right angled triangle, parabola, semi-circle, quarter circle.	Remember	--	CO 7
12	Determine the volume and surface area of cylinder of height ' h ' and radius ' r ' using Pappus - Guildinus theorems.	Understand	--	CO 8
13	Define mass moment of inertia	Remember	--	CO 8
14	Determine the moment of inertia of a square lamina about its diagonal.	Understand	--	CO 8
15	Determine the moment of inertia of Triangular lamina, using parallel axis theorem.	Understand	--	CO 8
16	Define the term power	Remember	--	CO 9

17	State the principle of conservation of energy	Understand	--	CO 9
18	Explain the term work done by friction force	Understand	--	CO 9
19	Explain the term work done by spring force	Understand	--	CO 9
20	State the principle of virtual work.	Remember	--	CO 9
Part - B (Long Answer Questions)				
1	State and prove the parallel axis theorem.	Remember	--	CO 7
2	State and prove the perpendicular axis theorem	Remember	--	CO 7
3	State and prove the Pappus guildlinus theorem for area and volume	Remember	--	CO 7
4	Determine the coordinates of centroid of the shaded area shown in figure.	Remember	Learner to find the coordinates of centroid by identifying the required formulae to be used.	CO7
5	Determine the Moment of Inertia about the centroidal coordinate axes of plane area shown in fig. Also find Polar Moment of Inertia.	Remember	Learner to find the Moment of Inertia and polar moment of inertia by identifying the required formulae to be used.	CO 7
6	Derive an expression for centroid of semi-circle.	Remember	--	CO 7
7	Derive an expression for MI for a rectangle section.	Remember	--	CO 8
8	State and explain Pappus-Guldinus theorems for surface of revolution and Volume of revolution.	Understand	--	CO 8
9	Locate the centroid of the composite area shown in figure.	Understand	Learner to find the coordinates of centroid by identifying the required formulae to be used.	CO 7

10	Locate the centroid of the composite area shown in figure.	Understand	Learner to find the coordinates of centroid by identifying the required formulae to be used.	CO 7
CIE-II				
11	In a rectangular plate of 100×120 mm and of negligible thickness, a rectangular cut of dimensions 30 x 40 mm is made as shown in figure. Determine the position of centroid of the remaining part of the plate.	Understand	Learner to find the coordinates of centroid by identifying the required formulae to be used.	CO 8
12	A block of mass 50 kg slides down a 35° incline and strikes a spring 1.5 m away from it as shown in Fig. The maximum compression of the spring is 300 mm when the block comes to rest. If the spring constant is $1 \mathrm{~N} / \mathrm{cm}$, Solve the coefficient of kinetic friction between the block and the plane.	Remember	Learner to find the Co-efficient of kinetic friction between the block and the plane by identifying the required formulae to be used	CO 7

13	State and prove work energy principle	Remember	--	CO 9
14	Explain the following terms 1. Work done by weight force 2. Work done by friction force and 3. Work done by spring force	Remember	--	CO 9
15	A force of 500 N is acting at 30° to the horizontal on a block of mass 50 kg resting on a horizontal surface. Determine the velocity after the block has travelled a distance of 10 m . Coefficient of kinetic friction is 0.5 .	Understand	Learner to find the velocity after the block has travelled the given distance upon the application of given force by identifying the required formulae to be used	CO 7
16	A pump lifts $40 \mathrm{~m}^{3}$ of water to a height of 50 m and delivers it with a velocity of $5 \mathrm{~m} / \mathrm{s}$. what is the amount of energy spent during the process? If the job is done in half an hour, what is the input power of the pump which has an overall efficiency of 70%.	Understand	Learner to find the input power of the pump with a given efficiency by identifying the required formulae to be used	CO 9
17	Locate the centroid of the dam cross section shown in figure with respect to its base and vertical face.	Understand	Learner to find the coordinates of centroid by identifying the required formulae to be used.	CO 7
18	A block of mass 50 kg slides down a 35° incline and strikes a spring 1.5 m away from it as shown in Fig. The maximum compression of the spring is 300 mm when the block comes to rest. If the spring constant is $1 \mathrm{~N} / \mathrm{cm}$, Solve the coefficient of kinetic friction between the block and the plane.	Understand	Learner to find the Co-efficient of kinetic friction between the block and the plane by identifying the required formulae to be used	CO 7
19	A ladder of length 4.4 m and weight 250 N is placed at one end on wall and other end on floor. To prevent slipping of the ladder, a rope PC is tied with the wall. Using the method of virtual work, determine the tension of the rope.	Understand	Learner to find the tension of the rope by using the virtual work method	CO 7

20	Determine the centroid of the shaded area ABDEFG shown in figure.	Understand	Learner to find the coordinates of centroid by identifying the required formulae to be used.	CO 7
Part - C (Problem Solving and Critical Thinking)				
1	Find the centre of gravity of the "T "lamina as shown in figure. All dimensions are in mm .	Remember	Learner to find the coordinates of centre of gravity by identifying the required formulae to be used.	CO 7
2	Find the centroid of the plane lamina shown in Figure	Remember	Learner to find the coordinates of centroid by identifying the required formulae to be used.	CO 7
3	Uniform lamina shown in fig consists of rectangle, a semi-circle and a triangle. Find the centre of gravity.	Remember	Learner to find the coordinates of centre of gravity by identifying the required formulae to be used.	CO 7

4	Derive an expression for centroid of triangular area	Remember	--	CO 7
5	Derive an expression for centroid of circle.	Remember	--	CO 7
CIE-II				
6	Derive an expression for centroid of rectangle area.	Understand	--	CO 7
7	Determine the distance in which a car moving at 90 kmph can come to rest after the power switched off if coefficient of friction is 0.8 on road and tyres.	Understand	Learner to find the distance covered by the car moving by identifying the required formulae to be used.	CO 7
8	Derive the expression for range along an inclined plane. What is the necessary condition for obtaining maximum range along an inclined plane?	Remember	--	CO 9
9	Two blocks are placed on two smooth inclined planes as shown in figure. The string connecting the blocks passing over a smooth pulley is inextensible. If $\mathrm{W}_{1}=75 \mathrm{~N}, \mathrm{~W}_{2}=$ 65 N and $\alpha=37^{0}$ determine using the method of virtual work, the angle θ.	Understand	Learner to find the angle by identifying the required formulae to be used.	CO 9
10	Using the method of virtual work, determine the reaction at supports A and B of the transversely loaded beam shown in figure.	Remember	Learner to find the reactions by identifying the required formulae to be used.	CO 9
MODULE -IV				
PARTICLE DYNAMICS AND INTRODUCTION TO KINETICS				
Part - A (Short Answer Questions)				

1	Define the terms velocity and acceleration	Understand	--	CO 10
2	Define angular displacement, angular velocity and angular acceleration	Understand	--	CO 10
3	Define the terms Kinetics and kinematics.	Understand	--	CO 10
4	Define the term rigid body	Remember	--	CO 10
5	State D'Alembert's principle..	Remember	--	CO 11
6	Compare Newton's second law with D'Alembert's principle	Remember	--	CO 11
7	Define the term momentum of a body with units	Remember	--	CO 11
8	Distinguish between mass and weight.	Remember	--	CO 10
9	Write governing equations of velocity and acceleration of fixed axis rotation	Remember	--	CO 11
10	Define instantaneous centre of velocity	Remember	--	CO 10
11	State the assumptions necessary for the analysis of a plane projectile motion.	Remember	--	CO 11
PART - B (LONG ANSWER QUESTIONS)				
1	Derive an expression $\mathrm{F}=\mathrm{ma}$	Understand	--	CO 11
2	The rectilinear motion of a particle is defined by the displacement time equation as $x=x_{0}+v_{0} t+(1 / 2) \operatorname{at}^{2}$. Find the displacement and velocity at time $\mathrm{t}=2 \mathrm{~s}$ while $\mathrm{x}_{0}=250 \mathrm{~mm}, \mathrm{v}_{0}=125 \mathrm{~mm} / \mathrm{s}$ and $\mathrm{a}=0.5 \mathrm{~mm} / \mathrm{s}^{2}$.	Remember	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 10
3	A particle starts from rest and moves along a straight line with constant acceleration a. If it acquires a velocity $\mathrm{v}=3 \mathrm{~mm} / \mathrm{s}^{2}$, after having travelled a distance $\mathrm{S}=7.5 \mathrm{~m}$, find the magnitude of the acceleration.	Remember	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 10
4	A flywheel of diameter 50 cm starts from rest with constant angular acceleration of $2 \mathrm{rad} / \mathrm{s} 2$. Determine the tangential and the normal components of acceleration of a point on its rim 3 s after the motion began	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 11
5	Derive the expression for range along an inclined plane. What is the necessary condition for obtaining maximum range along an inclined plane?	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 10
6	A car of mass 1000 kg descends a hill of $\sin -1(1 / 6)$. The frictional resistance to motion is 200 N . Calculate using work energy method, the average braking effort to bring the car to rest from 48 kmph in 30 m .	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 10
7	A hammer of mass 400 kg falls through a height of 3 m on a pile of negligible	Apply	Learner to find the displacement and velocity by	CO 11

	mass. If it drives the pile 1 m into the ground, find the average resistance of the ground for penetration		identifying the required formulae to be used.	
8	A mass of 5 kg is dropped from a height of 2 metres upon a spring whose stiffness is $10 \mathrm{~N} / \mathrm{mm}$. Calculate the speed of the mass when a spring is compressed through a distance of 100 mm .	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 11
9	For the system of connected bodies as shown in the figure given below, calculate the force F required to make the motion impending to the left. Use the method of virtual work and take coefficient of friction for all contiguous surfaces except pulleys as 0.25 .	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 10
10	A pulley whose axis passes through the centre ' O ' carries a load as shown in figure given below. Neglect the inertia of pulley and assuming that the cord is inextensible; determine the acceleration of the block A. How much weight should be added to or taken away from the block A if the acceleration of the block A is required to be $\mathrm{g} / 3$ downwards?	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 11
11	A rope AB is attached to a small block of negligible dimensions at B and passes over a pulley C so that its free end A hangs 1.5 m above ground when the block rests on the floor. The end A of the rope is moved horizontally in a straight line by a man walking with a uniform velocity $\mathrm{v}_{0}=3$ m / s. Deduce the generalised expression for velocity. Also find the time required for the block to reach the pulley if $\mathrm{h}=4.5 \mathrm{~m}$ and the pulley is negligibly small.	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 11

5	A body A is projected vertically upwards from the top of a tower with a velocity of $40 \mathrm{~m} / \mathrm{s}$, the tower being 180 m high. After t seconds, another body B is allowed to fall from the same point. Both the bodies reach the ground simultaneously. Calculate t and the velocities of A and B on reaching the ground.	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 11
6	Two cars A and B travelling in the same direction get stopped at a traffic signal. When the signal turns green, car A accelerates at $0.75 \mathrm{~m} / \mathrm{s} 2.1 .75$ seconds later, car B starts and accelerates at $1.1 \mathrm{~m} / \mathrm{s} 2$. Determine i) when and where B will overtake A and The speed of each car at that time.	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 11
7	A system of weights connected by string passing over pulleys A and B is shown in figure given below. Find the acceleration of three weights assuming weightless strings and ideal conditions for pulleys.	Apply	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 10
8	Two blocks A and B are connected with inextensible string as shown in figure given below. If the system is released from rest, determine the velocity of block A after if has moved 1.5 m . Assume the coefficient of friction between block A and the plane is 0.25 . Masses of block A and B are 200 kg and 300 kg respectively.	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 11
9	A block of mass 5 kg resting a 30° inclined plane is released. The block after travelling a distance of 0.5 m along inclined plane hits a spring of	Understand	Learner to find the displacement and velocity by identifying the required formulae to be used.	CO 10

| | stiffness 15N/cm as shown in figure
 given below. Find the maximum
 compression of spring. Assume
 coefficient of friction between block
 and the inclined plane as 0.2. | | |
| :--- | :--- | :--- | :--- | :--- |

8	Write the expression for time period of a compound pendulum	Understand	--	CO 12
9	Write the expression for time period of a torsional pendulum	Understand	--	CO 12
10	Write the expression for time period of a conical pendulum	Remember	--	CO 12
11	Define the term free vibration.	Understand	--	CO 12
12	A point describes simple harmonic motion in a 0.6 m long. Find the maximum velocity if the time period is 0.3 s	Understand	Learner to find the maximum velocity by identifying the required formulae to be used	CO 12
13	If a displacement of a particle in simple harmonic motion is $x=0.3 \sin (0.4 t)$ meter.find its displacement and velocity when $t=$ 10s.	Remember	Learner to find the maximum velocity by identifying the required formulae to be used	CO 12
14	Write the expression for equivalent stiffness of a spring system when springs are arranged in series.	Remember	Learner to find the maximum velocity by identifying the required formulae to be used	CO 12
15	Write the expression for equivalent stiffness of a spring system when springs are arranged in parallel.	Understand	Learner to find the maximum velocity by identifying the required formulae to be used	CO 12
16	Find the length of second pendulum assuming the value of gas $9.81 \mathrm{~m} / \mathrm{s}^{2}$	Understand	Learner to find the maximum velocity by identifying the required formulae to be used	CO 12
17	Define the term free vibration	Remember	--	CO 12
18	Calculate the length of a simple pendulum to make one complete oscillation per second	Remember	--	CO 12
Part - B (Long Answer Questions)				
1	Derive an expression for the time period of a simple pendulum.	Remember	--	CO 12
2	Derive an expression for the time period of a compound pendulum	Remember	--	CO 12
3	Derive an expression for the time period of a torsional pendulum	Remember	--	CO 12
4	A body performing simple harmonic motion has a velocity $12 \mathrm{~m} / \mathrm{s}$ when the displacement is 50 mm and $3 \mathrm{~m} / \mathrm{s}$ when the displacement is 100 mm , the displacement measured from the midpoint. Calculate the frequency and amplitude of the motion. What is the acceleration when the displacement is 75 mm .	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12
5	A body moving with SHM has amplitude of 1 m and period of oscillation of 2 seconds. What will be its velocity and acceleration at 0.4 s after passing an extreme position?	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12
6	A body moving with SHM has amplitude of 30 cm and the period of one complete oscillation is 2 s . What	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12

	will be the speed and acceleration of the body $2 / 5$ of a second after passing the mid position			
7	A vertical shaft 5 mm in diameter and 1.2 m in length has its upper end fixed to the ceiling. At the lower end it carries a rotor of diameter 180 mm and weight 30 N . The modulus of rigidity for the material of the rotor is $0.85 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Calculate the frequency of torsional vibrations for the system	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12
8	Derive an expression for the time period for a spring mass system subjected to free vibration.	Understand	Learner to find the frequency by identifying the required formulae to be used.	CO 12
9	A weight of 10 N attached to a spring oscillates at a frequency of 60 oscillations per minute. If the maximum amplitude is 30 mm , find the tension induced in the spring. Also find the spring constant and the maximum velocity in the spring.	Understand	Learner to find the frequency by identifying the required formulae to be used.	CO 12
10	A pendulum having a time period of 1 s is installed in a lift. Determine its time period when a The lift is moving upwards with an acceleration of $\mathrm{g} / 10 \mathrm{~m} / \mathrm{s} 2$ b The lift is moving downwards with an acceleration of $\mathrm{g} / 10 \mathrm{~m} / \mathrm{s} 2$	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12
11	A conical pendulum rotates at 100 $\mathrm{rev} / \mathrm{min}$. The cord is 150 mm long and the mass of bob 1.35 Kg . Find (a) The amount of which the bob rises above its lowest position (b) The period (c) The tension in the cord	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12
12	A vertical shaft 5 mm in diameter and 1.2 m in length has its upper end fixed to the ceiling. At the lower end it carries a rotor of diameter 180 mm and weight 30 N . The modulus of rigidity for the material of the rotor is $0.85 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Calculate the frequency of torsional vibrations for the system	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12
13	Derive an expression for the time period for a spring mass system subjected to free vibration.	Understand	--	CO 12
14	A weight of 10 N attached to a spring oscillates at a frequency of 60 oscillations per minute. If the maximum amplitude is 30 mm , find the tension induced in the spring. Also find the spring constant and the maximum velocity in the spring	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12

15	A simple pendulum swings 5 oscillations in the same time as another 0.48m longer swings 3 oscillations. Determine their lengths.	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12
16	A spring of stiffness 10N/m is cut into two halves and fixed with a mass M, so that the system can vibrate, as shown in figure. If the cyclic frequency of the system is 7 cps, determine the magnitude of M.	Understand	Learner to find the frequency by identifying the required formulae to be used.	CO 12

6	A particle is moving with its acceleration directed to and proportional to its distance from a fixed point. When the distance of the particle from equilibrium position has values of 1.3 m and 1.8 m , the corresponding velocities are $5 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$. Determine a Amplitude and time period of oscillations b Maximum velocity and maximum acceleration	Understand	Learner to find the frequency by identifying the required formulae to be used.	CO 12
7	A vertical shaft 5 mm in diameter and 1 m in length has its upper end fixed to the ceiling. At the lower end it carries a rotor of diameter 200 mm and weight 20N. The modulus of rigidity for the rotor is $0.85 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Calculate the frequency of torsional vibration for the system.	Remember	Learner to find the frequency by identifying the required formulae to be used.	CO 12
8	A vertical shaft 7 mm in diameter and 1.7 m in length has its upper end fixed to the ceiling. At the lower end it carries a rotor of diameter 180 mm and weight 50 N . The modulus of rigidity for the material of the rotor is $0.95 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Calculate the frequency of torsional vibrations for the system.	Understand	Learner to find the frequency by identifying the required formulae to be used.	CO 12
9	A body moving with SHM has amplitude of 50 cm and the period of one complete oscillation is 3 s . What will be the speed and acceleration of the body $1 / 5$ of a second after passing the mid position	Understand	Learner to find the speed and acceleration by identifying the required formulae to be used.	CO 12
10	A body performing simple harmonic motion has a velocity $20 \mathrm{~m} / \mathrm{s}$ when the displacement is 40 mm and $3 \mathrm{~m} / \mathrm{s}$ when the displacement is 120 mm , the displacement measured from the midpoint. Calculate the frequency and amplitude of the motion. What is the acceleration when the displacement is 85 mm .	Understand	Learner to find the acceleration by identifying the required formulae to be used.	CO 12

Prepared by:
Dr. B D Y Sunil, Associate Professor
HOD, ME

