

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	METALLURGY AND MATERIAL SCIENCE ENGINEERING					
Course Code	AME00)5				
Programme	B.Tech					
Semester	III	ME				
Course Type	Core					
Regulation	IARE -	R16				
	Theory Practical					al
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits
	3		1	4	3	2
Chief Coordinator	Mr. M Prashanth Reddy, Assistant Professor					
Course Faculty	Mr. M Mr. G A	Prash Aravi	anth Reddy, Ass nd Reddy, Assist	sistant Professo ant Professor	or	

I. COURSE OVERVIEW:

Metallurgy and material science subject is backbone to mechanical engineering discipline. The students are given inputs on fundamentals of crystallography, microstructures and relation to properties of materials. Also students acquire knowledge on phase diagrams, heat treatment which will enable them to select materials for industrial applications .Inputs are also planned on ceramics, glasses, polymers and composites as present day designs are based on many advanced materials.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS005	Ι	Engineering chemistry	3
UG	AHS008	II	Modern Physics	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Metallurgy and Material Science	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	>	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	~	Mini Project	~	Videos
~	Open Ended Experin	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern t	for CIA
-------------------------------	---------

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT	i otar iviariks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments, Practical's
PO 3	Design/ development of solutions: Competence to design a system, component or process to meet societal needs within realistic constraints.	2	Assignments, Practical's
PO 4	Conduct investigations of complex problems: To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	1	Assignments, Practical's,
PO 12	Life-long learning: Recognition of the need and an ability to engage in lifelong learning to keep abreast with technological changes.	1	Seminars, Practical's

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency
			assessed by
PSO 1	Professional Skills: To produce engineering professional	2	Lecture,
	capable of synthesizing and analyzing mechanical systems		Assignments.
	including allied engineering streams.		
PSO 2	Problem solving skills: An ability to adopt and integrate	1	Projects
	current technologies in the design and manufacturing domain		
	to enhance the employability.		
PSO 3	Successful career and Entrepreneurship: To build the	1	Projects
	nation, by imparting technological inputs and managerial skills		
	to become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course s	The course should enable the students to:						
Ι	Understand the physical and mechanical, metallurgical engineering concepts for metals and preparation of alloys.						
II	Analyze the microstructures of metals, alloys and relationship to heat treatment.						
III	Compare the properties of ceramics, glasses, composites and polymers for industrial applications.						

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
AME005.01	CLO 1	Analyze the structure of materials at different	PO 1	3
		levels, basic concepts of crystalline materials		
		like unit cell, FCC, BCC, HCP, Atomic		
		packing factor, Coordinate number etc.		
AME005.02	CLO 2	Explain the necessity of alloying, types of	PO 1	3
		solid solution and intermediate alloy phases.		
AME005.03	CLO 3	Explain the concept of phase and phase	PO 1	3
		diagram and understand the basic	PO 3	1

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Manned	Strength of Mapping
		terminologies associated with metallurgy.	Tappea	Press
AME005.04	CLO 4	Construction of phase diagrams and identification of different phases and invariant reaction.	PO 1	3
AME005.05	CLO 5	Understand and suggest the heat treatment processes and types, and significance of mechanical and metallurgical properties with respect to microstructures.	PO 1	3
AME005.06	CLO 6	Explain the concept of Hardenability and demonstrate the test used to find the Hardenability of steels.	PO 1	2
AME005.07	CLO 7	Analyze the microstructure of metallic materials using phase diagram and modify the microstructure and properties using different heat treatment processes.	PO 1 PO 4	2 1
AME005.08	CLO 8	Define and differentiate engineering materials on the basis of structure and properties for engineering applications.	PO 1	2
AME005.09	CLO 9	Explain features, classification, and application of materials like polymers like thermosetting, thermoplastics.	PO 1	2
AME005.10	CLO 10	Explain features, classification, and application of materials like ceramics.	PO 1 PO 4	3 1
AME005.11	CLO 11	Explain features, classification, and application of materials like composites.	PO 1 PO 3 PO 4	3 2 2
AME005.12	CLO 12	Differentiate the properties and application of various materials like ceramics, composites and polymers.	PO 1 PO 3 PO 4	3 2 1
AME005.13	CLO 13	Enable students to understand various material standards.	PO 1	3
AME005.14	CLO 14	Enable students for selection of material for product design	PO 1 PO 3	2 2
AME005.15	CLO 15	Enable students for selection of material for manufacture.	PO 1	2
AME005.16	CLO 16	Develop skills for lifelong learning in specialized materials in engineering areas	PO 1 PO 12	2 3

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												2		
CLO 2	3												2		
CLO 3	3		1										3		

CLO		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 4	3												3		
CLO 5	3												1	1	
CLO 6	2												1		
CLO 7	2			1											
CLO 8	2												1		
CLO 9	2												2		
CLO 10	3			1										2	1
CLO 11	3		2	2									2	2	1
CLO 12	3		2	1									2	2	
CLO 13	3												2		
CLO 14	2		2										1	2	1
CLO 15	2												1	1	
CLO 16	2											3	1		
	3 = H	ligh;	2 = N	lediu	m; 1 =	- Low								•	

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1	SEE Exams	PO 1	Assignments	PO 1 PO 3 PO 4	Seminars	PO 12
Laboratory Practices	PO 1	Student Viva	-	Mini Project	PO 1 PO 3 PO 4	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
~	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I STRUCTURE OF METALS

Structure of metals: Crystallography, Miller indices, packing efficiency, Density calculations, Grains and grain boundaries, Effect of grain size on the properties, Determination of grain size by different methods. Constitution of alloys: Necessity of alloying, Types of solid solutions, Hume-Rothery's rules, Intermediate alloy phases

UNIT-II	PHASE DIAGRAMS					
Joint probability distributions, joint probability mass, density function, marginal probability mass, density functions; Correlation: Coefficient of correlation, the rank correlation; Regression: Regression coefficient, the lines of regression, multiple correlation and regression.Phase Diagrams: Construction and interpretation of phase diagrams, Phase rule, Lever rule. Binary phase diagrams, Isomorphous, Eutectic and Eutectoid transformations with examples.						
UNIT-III	ENGINEERING MATERIALS-I STEELS					
Engineering N carbide phase	Aaterials-I Steels: Iron –Carbon phase diagram and heat treatment: Study of iron-iron diagram,					
Construction Hardenability,	of TTT diagrams, Annealing, Normalizing, Hardening and Tempering of steels, Alloy steels.					
UNIT-IV	ENGINEERING MATERIALS –II &III					
Engineering Materials –II: Cast Irons: Structure and properties of White cast iron, malleable cast iron Grey cast iron. Engineering materials –III: Non-ferrous metals and alloys: Structure and properties of aluminum copper						
and its alloys,	Al-Cu phase diagram, Titanium and its alloys.					
UNIT-V	ENGINEERING MATERIALS –IV					
Engineering m Structure, pro Classification,	naterials –IV: Ceramics, Polymers and composites: Crystalline ceramics, glasses, cermets: operties and applications. Classification, properties and applications of composites, properties and applications of polymers.					
Text Books:						
 Sidney H Avner, "Introduction to Physical Metallurgy", McGraw-Hill Education, 2nd Edition, 2008. Donald R Askeland, Thomson, "Essentials of Material Science and Engineering", Thomson Press, 1st Edition, 2005 						
Reference Books:						
 Kodgire, "Material Science and Metallurgy", Everst Publishing House, 12th Edition, 2002 William, Callister, "Material science and Engineering", Wiley, 9th Edition, 2014. V Raghavan, "Elements of Material Science", PHI Learning Company Pvt Ltd, 6th Edition, 2015 Dr. Amandeep Singh Wadhva, "Engineering Materials and Metallurgy", Laxmi Publications, 1st Edition, 2008. 						

XIV. COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Introduction to Metallurgy and Material Science Importance to Various Engineering disciplines	CLO1	T2-1.1
3	Branches of Metallurgy , chemical , physical , Mechanical Engineering, Metals , Non-metals, composites , nano-materials	CLO 1	T1-1.2, T2-1.2
4	Atomic structure , bonding in solids, different bonds and examples Crystal structure, unit cell,7 crystal systems, 14 Bravais lattices, Miller indices, crystallographic planes of refrigeration	CLO 1	T1-1.4
5-7	Atomic radius, Coordination number, Atomic packing factor ,Density calculation	CLO 1	T1-1.7, T2-1.8
8-11	Crystallization of pure metals ; solidification of pure metals, alloysGrains , Grain boundary , ASTM grain size no	CLO 2	T1-1.9
12	Crystal imperfections - Defects ; point , line , planar defects	CLO 2	T2-1.9
13	Phase diagrams : Phase rule	CLO 3	T1-3.1

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
14	Binary alloys – phase diagrams: Isomorphous system. Cu-Ni	CLO 3	T1-3.3
15-16	Chemical composition of phases, Lever rule, Equilibrium	CLO 3	T1-3.4, T2- 4 4
17-18	Eutectic system. I Bi-Cd, Hypo, Hyper II Pb-Sn system	CLO 4	T2-4.5
19-20	Peritectic system Pt-Ag, Eutectoid reaction, Peritectoid reaction	CLO 3	T1-3.6, T2- 4.5
21-22	Engineering Materials – 1 steels	CLO 4	T1-5.1
23-24	Steel :Fe – C ; Allotropy of Fe	CLO 4	T1-5.2
25	Peritectic transformation	CLO 4	T1-5.3,
26	Eutectoid transformation	CLO 5	T1-5.4
27	Hyper eutectoid transformation	CLO 5	T1-5.5
28	Heat treatment, Annealing Normalizing, Hardening, Tempering	CLO 5	T2-5.7
29-30	Hardenability	CLO 6	T1-6.1,
31	Alloy steels – Effect of alloying elements	CLO 6	T1-6.2,
32	Low alloy steels, stainless steels, Tool steels	CLO 6	T2-6.5,
33-35	Engineering Materials – II & III	CLO 6	T1-7.1,
36-37	White Cast Iron, Malleable CI, Grey CI, SG Iron	CLO 7	T2-6.7,
38-41	Engineering materials III :Nonferrous alloys - classification	CLO 7	T1-8.1,
41-42	Copper alloys	CLO 8	T2-7.2,
43-45	Al-alloys	CLO 8	T1-8.5,
46-48	Titanium alloys	CLO 8	T2-7.9,
49-50	Ceramics, Types, properties, applications	CLO 10	T2-10.1
51-53	Glasses, Types, Properties, applications	CLO 10	T2-10.3
54-56	Cermets, Types, Properties, applications	CLO 12	T2-10.5
57-58	Composites , Types , Properties , applications	CLO 11	T2-10.6
59-60	Polymers, Types, Properties, applications	CLO 09	T2-10.9

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Crystal imperfections	Seminars /	PO 1, PO 2,	PSO 1
		Guest Lectures	PO 3	
		/ NPTEL		
2	Solidification and	Seminars /	PO 2, PO 5	PSO 2
	crystallization, Recovery,	Guest Lectures		
	recrystallization and grain	/ NPTEL		
	growth.			
3	Material characterization	Assignments /	PO 1, PO 3,	PSO 2
		Laboratory	PO 4	
		Practices		

Prepared By:

Mr. M Prashanth Reddy, Assistant Professor

HOD, MECHANICAL ENGINEERING