EMBEDDED SYSTEMS DESIGN

I Semester: M TECH (ES)

Course Code	Category	Hours / Week			Credits	Maximum Marks		
BESB01	Core	L	T	P	C	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practic	al Class	ses: Nil		Total Classes: 45		

COURSE OBJECTIVES:

The course should enable the students to:

- I Introduce the difference between embedded systems and general purpose systems.
- II Optimize hardware designs of custom single-purpose processors.
- III Compare different approaches in optimizing general-purpose processors.
- IV Introduce different peripheral interfaces to embedded systems.

COURSE OUTCOMES (COs):

- CO 1 Understand the basic concepts of embedded system and various applications and characteristics system design of embedded system design and Quality Attributes of Embedded Systems.
- CO 2 Classify the different types of processors and compare them and remember the definitions of ASICs, PLDs, memory, memory interface. Communication Interface.
- CO 3 Applying the blocks and different circuits and Embedded Firmware Design Approaches and Development Languages.
- CO 4 Understand Operating System Basics, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.
- CO 5 Understand Task Communication Synchronization Issues, Task Synchronization Techniques, Device Drivers, analyze RTOS.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Demonstrate to understand the definition and comparison of embedded system with other systems.
- 2. Explain to understand the history embedded system, Classify the embedded systems.
- 3. List out the application areas of embedded systems Understand the purpose of the embedded systems.
- 4. Understand the concepts of the characteristics and quality attributes.
- 5. Classify the different types of processors and compare them and remembering the definitions of ASICs, PLDs.
- 6. Concept of COTS and Explain the memory shadowing, memory selection.
- 7. Communication Interface: Onboard and External Communication Interfaces.
- 8. Applying the different blocks and different circuits.
- 9. Applying the embedded firmware design approaches and development languages.
- 10. Remembering the basics of operating system and types of operating systems.
- 11. Understanding the definitions of task, process and threads.
- 12. Analyze the multiprocessing, multi tasking, task scheduling.
- 13. Understanding Task Communication.
- 14. Analyze the Task Synchronization, issues and techniques.
- 15. Analyze Real Time Operating System and how to choose RTOS.

Unit-I INTRODUCTION TO EMBEDDED SYSTEMS:

Classes: 09

Definition of Embedded System, Embedded Systems Vs 5General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

Unit-II TYPICAL EMBEDDED SYSTEM:

Classes: 09

Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

Unit-III EMBEDDED FIRMWARE:

Classes: 09

Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

Unit-IV RTOS BASED EMBEDDED SYSTEM DESIGN:

Classes: 09

Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.

Unit-V TASK COMMUNICATION:

Classes: 09

Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

Text Books:

1. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley Publications, 3rd Edition, 2006.

Reference Books:

- 1. Raj Kamal, "Embedded Systems", TMH, 2nd Edition, 2008.
- 2. Shibu K.V, "Introduction to Embedded Systems, McGraw Hill, 3rd Edition, 2012.
- 3. Lyla, "Embedded Systems", Pearson Education, 2nd Edition, 2013.

Web References:

- 1. http://www.igniteengineers.com
- 2. http://www.ocw.nthu.edu.tw
- 3. http://www.uotechnology.edu.iq
- 4. http://www.nptel.com

E-Text Books:

- 1. https://www.jntubook.com/embedded systems-textbook
- 2. http://tradownload.com/results/neamen-embedded-systems-.html
- 3. http://www.everythingvtu.wordpress.com