TITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad -500 043
CIVIL ENGINEERING
COURSE DESCRIPTOR

| Course Title | MATHEMATICAL TRANSFORM TECHNIQUES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Code | AHS011 |  |  |  |  |
| Programme | B.Tech |  |  |  |  |
| Semester | II EEE | EEE |  |  |  |
|  | III AE | AE\|ECE |  |  |  |
|  | IV ME | ME\|CE |  |  |  |
| Course Type | Foundation |  |  |  |  |
| Regulation | IARE - R16 |  |  |  |  |
| Course Structure | Theory |  |  | Practical |  |
|  | Lectures | Tutorials | Credits | Laboratory | Credits |
|  | 3 | 1 | 4 | - | - |
| Chief Coordinator | Ms. B Praveena, Assistant Professor |  |  |  |  |
| Course Faculty | Dr. S Jagadha, Associate Professor <br> Ms. V Subba Laxmi, Assistant Professor |  |  |  |  |

## I. COURSE OVERVIEW:

The course focuses on more advanced engineering mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes types of matrices, difference calculus methods and differential equations. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

## II. COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites |
| :---: | :---: | :---: | :---: |
| - | - | - | Basic principles of integration |

## III. MARKS DISTRIBUTION:

| Subject | SEE Examination | CIA <br> Examination | Total Marks |
| :---: | :--- | :---: | :---: |
| Mathematical Transform Techniques | 70 Marks | 30 Marks | 100 |

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\boldsymbol{\sim}$ | Chalk \& Talk | $\boldsymbol{\iota}$ | Quiz | $\boldsymbol{\nu}$ | Assignments | $\boldsymbol{x}$ | MOOCs |
| :---: | :--- | :---: | :--- | :--- | :--- | :---: | :--- |
| $\boldsymbol{\sim}$ | LCD / PPT | $\boldsymbol{\iota}$ | Seminars | $\boldsymbol{x}$ | Mini Project | $\boldsymbol{\iota}$ | Videos |
| $\boldsymbol{x}$ | Open Ended Experiments |  |  |  |  |  |  |

## V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

| $50 \%$ | To test the objectiveness of the concept. |
| :--- | :--- |
| $50 \%$ | To test the analytical skill of the concept OR to test the application skill of the concept. |

## Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

| Component | Theory |  | Total Marks |
| :---: | :---: | :---: | :---: |
| Type of Assessment | CIE Exam | Quiz / AAT |  |
| CIA Marks | 25 | 05 | 30 |

## Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the $8^{\text {th }}$ and $16^{\text {th }}$ week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part-A shall have five compulsory questions of one mark each. In part-B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

## Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

## VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

| Program Outcomes (POs) |  | Strength | Proficiency <br> assessed by |
| :---: | :--- | :---: | :---: |
| PO 1 | Engineering knowledge: Apply the knowledge of <br> mathematics, science, engineering fundamentals, and an <br> engineering specialization to the solution of complex <br> engineering problems. | 3 | Presentation on <br> real-world <br> problems |
| PO 2 | Problem analysis: Identify, formulate, review research <br> literature, and analyze complex engineering problems reaching <br> substantiated conclusions using first principles of mathematics, <br> natural sciences, and engineering sciences | 2 | Seminar |
| PO 4 | Conduct investigations of complex problems: Use research- <br> based knowledge and research methods including design of <br> experiments, analysis and interpretation of data, and synthesis <br> of the information to provide valid conclusions. | 2 | Term Paper |

3 = High; 2 = Medium; 1 = Low

## VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Program Specific Outcomes (PSOs) |  | Strength | Proficiency <br> assessed by |
| :--- | :--- | :---: | :---: |
| PSO 1 | Engineering knowledge: Graduates shall demonstrate sound <br> knowledge in analysis, design, laboratory investigations and <br> construction aspects of civil engineering infrastructure, along <br> with good foundation in mathematics, basic sciences and <br> technical communication | 1 | Seminar |
| PSO 2 | Broadness and diversity: Graduates will have a broad <br> understanding of economical, environmental, societal, health <br> and safety factors involved in infrastructural development, and <br> shall demonstrate ability to function within multidisciplinary <br> teams with competence in modern tool usage. | - | - |
| PSO 3 | Self-learning and service: Graduates will be motivated for <br> continuous self-learning in engineering practice and/ or pursue <br> research in advanced areas of civil engineering in order to offer <br> engineering services to the society, ethically and responsibly | - | - |

3 = High; 2 = Medium; 1 = Low

## VIII. COURSE OBJECTIVES (COs):

| The course should enable the students to: |  |  |
| :---: | :--- | :---: |
| I | Epress non periodic function to periodic function using Fourier series and Fourier transforms. |  |
| II | Apply Laplace transforms and Z-transforms to solve differential equations. |  |
| III | Formulate and solve partial differential equations. |  |

## IX. COURSE LEARNING OUTCOMES (CLOs)

| $\begin{aligned} & \hline \text { CLO } \\ & \text { Code } \\ & \hline \end{aligned}$ | CLO's | At the end of the course, the student will have the ability to: | PO's <br> Mapped | Strength of Mapping |
| :---: | :---: | :---: | :---: | :---: |
| AHS011.01 | CLO 1 | Ability to compute the Fourier series of the function with one variable. | PO 1 | 3 |
| AHS011.02 | CLO 2 | Understand the nature of the Fourier series that represent even and odd functions. | PO 1 | 3 |
| AHS011.03 | CLO 3 | Determine Half- range Fourier sine and cosine expansions. | PO 1 | 2 |
| AHS011.04 | CLO 4 | Understand the concept of Fourier series to the real-world problems of signal processing | PO 2 | 1 |
| AHS011.05 | CLO 5 | Understand the nature of the Fourier integral. | PO 2 | 2 |
| AHS011.06 | CLO 6 | Ability to compute the Fourier transforms of the function. | PO 2 | 2 |
| AHS011.07 | CLO 7 | Evaluate finite and infinite Fourier transforms. | PO 4 | 1 |
| AHS011.08 | CLO 8 | Understand the concept of Fourier transforms to the real-world problems of circuit analysis, control system design | PO 2 | 3 |
| AHS011.09 | CLO 9 | Solving Laplace transforms using integrals. | PO 2 | 1 |
| AHS01110 | CLO 10 | Evaluate inverse of Laplace transforms by the method of convolution. | PO 2 | 2 |
| AHS011.11 | CLO 11 | Solving the linear differential equations using Laplace transform. | PO 1 | 3 |
| AHS011.12 | CLO 12 | summarize the concept of Laplace transforms to the real-world problems of electrical circuits, harmonic oscillators, optical devices, and mechanical systems | PO 1 | 3 |
| AHS011.13 | CLO 13 | Apply Z-transforms for discrete functions. | PO 1 | 3 |
| AHS011.14 | CLO 14 | Evaluate inverse of Z-transforms using the methods of partial fractions and convolution method. | $\begin{aligned} & \text { PO } 1, \\ & \text { PO } 2 \end{aligned}$ | 3 |
| AHS011.15 | CLO 15 | Apply Z-transforms to solve the difference equations. | PO 2 | 3 |
| AHS011.16 | CLO 16 | Understand the concept of Z-transforms to the real-world problems of automatic controls in telecommunication. | PO 2 | 2 |
| AHS011.17 | CLO 17 | Understand partial differential equation for solving linear equations by Lagrange method. | $\begin{aligned} & \text { PO 1, } \\ & \text { PO } 2 \\ & \hline \end{aligned}$ | 3 |
| AHS011.18 | CLO 18 | Apply the partial differential equation for solving non-linear equations by Charpit's method. | $\begin{aligned} & \hline \text { PO 1, } \\ & \text { PO } \end{aligned}$ | 3 |
| AHS011.19 | CLO 19 | Solving the heat equation and wave equation in subject to boundary conditions. | $\begin{aligned} & \hline \text { PO 1, } \\ & \text { PO } \end{aligned}$ | 3 |
| AHS011.20 | CLO 20 | Summarize the concept of partial differential equations to the real-world problems of electromagnetic and fluid dynamics | $\begin{aligned} & \hline \text { PO 1, } \\ & \text { PO } 2 \end{aligned}$ | 3 |
| AHS011.21 | CLO 21 | Possess the knowledge and skills for employability and to succeed in national and international level competitive examinations. | PO 1 | 3 |

3 = High; 2 = Medium; 1 = Low
X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| CLOs | Program Outcomes (POs) |  |  |  |  |  |  |  |  |  |  |  | Program Specific Outcomes (PSOs) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 1 | 3 |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 2 | 3 |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 3 | 2 |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 4 |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLO 5 |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLO 6 |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLO 7 |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
| CLO 8 |  |  |  | 3 |  |  |  |  |  |  |  |  |  |  |  |
| CLO 9 |  | 1 |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 10 |  | 2 |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 11 | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLO 12 | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLO 13 | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLO 14 | 3 | 2 |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 15 |  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLO 16 |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLO 17 | 3 | 3 |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 18 | 3 | 3 |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 19 | 2 | 3 |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 20 | 3 | 2 |  |  |  |  |  |  |  |  |  |  | 1 |  |  |
| CLO 21 | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

3 = High; 2 = Medium; 1 = Low
XI. ASSESSMENT METHODOLOGIES - DIRECT

| CIE Exams | PO 1, <br> PO 2, <br> PO 4 | SEE Exams | PO 1, <br> PO 2, <br> PO 4 | Assignments | PO 1, <br> PO 2, <br> PO 4 | Seminars | PO 2 |
| :--- | :---: | :--- | :---: | :--- | :--- | :--- | :---: |
| Laboratory <br> Practices | - | Student Viva | - | Mini Project | - | Certification | - |


| Tem Peper | PO4 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## XII. ASSESSMENT METHODOLOGIES - INDIRECT

| $\boldsymbol{\iota}$ | Early Semester Feedback | $\boldsymbol{\nu}$ | End Semester OBE Feedback |
| :---: | :--- | :---: | :--- |
| $\boldsymbol{x}$ | Assessment of Mini Projects by Experts |  |  |

## XIII. SYLLABUS

## UNIT-I $\quad$ FOURIER SERIES

Definition of periodic function, determination of Fourier coefficients; Fourier expansion of periodic function in a given interval of length $2 \pi$; Fourier series of even and odd functions; Fourier series in an arbitrary interval; Half- range Fourier sine and cosine expansions.

## UNIT-II FOURIER TRANSFORMS

Fourier integral theorem, Fourier sine and cosine integrals; Fourier transforms; Fourier sine and cosine transform, properties, inverse transforms, finite Fourier transforms.

## UNIT-III LAPLACE TRANSFORMS

Definition of Laplace transform, linearity property, piecewise continuous function, existence of Laplace transform, function of exponential order, first and second shifting theorems, change of scale property, Laplace transforms of derivatives and integrals, multiplied by $t$, divided by $t$, Laplace transform of periodic functions.

Inverse Laplace transform: Definition of Inverse Laplace transform, linearity property, first and second shifting theorems, change of scale property, multiplied by s, divided by s; Convolution theorem and applications.

## UNIT-IV $\quad$ Z-TRANSFORMS

Z-transforms: Elementary properties, inverse Z-transform, convolution theorem, formation and solution of difference equations.

## UNIT-V $\quad$ PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equation by Lagrange method; Charpit's method; method of separation of variables; One dimensional heat and wave equations under initial and boundary conditions.

## TEXT BOOKS:

1. Kreyszig, "Advanced Engineering Mathematics", John Wiley \& Sons Publishers, $10^{\text {th }}$ Edition, 2010.
2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, $43^{\text {rd }}$ Edition, 2015.

## REFERENCES:

1. G. Shanker Rao, "Mathematical Methods", I. K. International Publications, ${ }^{\text {st }}$ Edition, 2009.
2. G. Shanker Rao, "Engineering Mathematics-1", I. K. International Publications, 1" Edition, 2009.

## XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Lecture <br> No | Topics to be covered | Course <br> Learning <br> Outcomes <br> (CLOs) | Reference |
| :---: | :--- | :---: | :---: |
| 1 | Define periodic function | CLO 1 | T1:22.5 <br> R1:2.3 |
| 2 | Solve Fourier coefficients | CLO 2 | T1:22.5 <br> R1:2.4 |
| 3 | Apply Fourier series for $(0,2 \pi)$ | CLO 2 | T1:22.6 <br> R1:2.6 |
| $4-5$ | Determine even and odd function | CLO 4 | T1:22.7 <br> R1:4.4 |
| $6-7$ | Determine Fourier series in $(0,2 l)$, <br> in $(0, l)$$\quad(-l, l)$ and also half range series | CLO 4 | T1:22.7 <br> R1:4.10 |


| $\begin{aligned} & \text { Lecture } \\ & \text { No } \end{aligned}$ | Topics to be covered | Course Learning Outcomes (CLOs) | Reference |
| :---: | :---: | :---: | :---: |
| 8-9 | Determine half range series in ( $0, \pi$ ) | CLO 7 | $\begin{aligned} & \hline \text { T1:22.8 } \\ & \text { R1:4.15 } \\ & \hline \end{aligned}$ |
| 10 | Apply Fourier integral theorem to find integrals | CLO 9 | $\begin{aligned} & \text { T1:22.9 } \\ & \text { R1:5.4 } \end{aligned}$ |
| 11 | Apply Fourier sine and cosine integrals to find integrals | CLO 9 | $\begin{aligned} & \text { T1:22.9 } \\ & \text { R1:5.8 } \end{aligned}$ |
| 12-13 | Define and apply Fourier transforms | CLO 11 | $\begin{gathered} \text { T1:23.10 } \\ \text { R1:6.8 } \end{gathered}$ |
| 14 | Use properties to solve the given functions | CLO 11 | $\begin{gathered} \mathrm{T} 1: 23.10 \\ \mathrm{R} 1: 6.13 \end{gathered}$ |
| 15-16 | Define and apply Inverse transforms | CLO 13 | $\begin{aligned} & \hline \text { T1:23.9 } \\ & \text { R1:7.5 } \end{aligned}$ |
| 17 | Define and apply Finite Fourier transforms | CLO 11 | $\begin{gathered} \mathrm{T} 1: 23.10 \\ \mathrm{R} 1: 7.5 \end{gathered}$ |
| 18 | Define Laplace transform and its property | CLO 9 | $\begin{gathered} \mathrm{T} 1: 23.10 \\ \text { R1:8.1 } \\ \hline \end{gathered}$ |
| 19 | Define piecewise continuous function | CLO 14 | $\begin{aligned} & \text { T1:23.1 } \\ & \text { R1:9.2 } \end{aligned}$ |
| 20 | Define and apply shifting theorem, change of scale property | CLO 14 | $\begin{aligned} & \text { T1:23.1 } \\ & \text { R1:9.4 } \end{aligned}$ |
| 21 | Solve derivatives and integrals, multiplied by t , divided by t | CLO 14 | $\begin{aligned} & \hline \text { T1:23.1 } \\ & \text { R1:9.9 } \end{aligned}$ |
| 22-23 | Define periodic functions | CLO 14 | $\begin{aligned} & \text { T1:23.1 } \\ & \text { R1:9.10 } \end{aligned}$ |
| 24-25 | Solve Inverse Laplace transform | CLO 14 | $\begin{aligned} & \hline \text { T2:27.5 } \\ & \text { R1:10.2 } \end{aligned}$ |
| 26 | Define and apply shifting theorem, change of scale property | CLO 17 | $\begin{aligned} & \mathrm{T} 2: 27.7 \\ & \mathrm{R} 1: 11.3 \\ & \hline \end{aligned}$ |
| 27 | Solve multiplied by s, divided by s | CLO 17 | $\begin{aligned} & \mathrm{T} 2: 27.8 \\ & \mathrm{R} 1: 11.6 \end{aligned}$ |
| 28-30 | Define and apply Convolution theorem | CLO 19 | $\begin{aligned} & \mathrm{T} 2: 27.12 \\ & \mathrm{R} 1: 11.7 \end{aligned}$ |
| 31-32 | Define Z-transforms, Elementary properties | CLO 19 | $\begin{gathered} \mathrm{T} 2: 27.12 \\ \mathrm{R} 1: 11.8 \end{gathered}$ |
| 33-34 | Define inverse Z-transform | CLO 20 | $\begin{gathered} \hline \text { T2:27.12 } \\ \mathrm{R} 1: 11.9 \end{gathered}$ |
| 35-36 | Define and apply convolution theorem | CLO 20 | $\begin{aligned} & \mathrm{T} 2: 27.12 \\ & \mathrm{R} 1: 11.10 \\ & \hline \end{aligned}$ |
| 37-38 | Formulate partial differential equations | CLO 21 | $\begin{gathered} \mathrm{T} 2: 27.14 \\ \mathrm{R} 1: 12.3 \end{gathered}$ |
| 39 | Solve by lagrange's method | CLO 22 | $\begin{aligned} & \text { T2:27.1 } \\ & \text { R1:12.7 } \end{aligned}$ |
| 40-41 | Solve by Charpit's method | CLO 23 | $\begin{aligned} & \mathrm{T} 2: 27.17 \\ & \mathrm{R} 1: 12.15 \\ & \hline \end{aligned}$ |
| 42 | Apply method of separation of variables | CLO 23 | $\begin{aligned} & \mathrm{T} 2: 18.2 \\ & \mathrm{R} 1: 13.1 \end{aligned}$ |
| 43-45 | Solve heat and wave equations | CLO 23 | $\begin{gathered} \mathrm{T} 2: 18.3- \\ 18.5 \\ \mathrm{R} 1: 13.2, \\ 13.3 \\ \hline \end{gathered}$ |

## XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S no | Description | Proposed <br> Actions | Relevance with <br> Pos | Relevance with <br> Psos |
| :---: | :--- | :---: | :---: | :---: |
| 1 | Problem deduction, Initial and <br> Boundary value problems | Seminars | PO 1 | PSO 1 |
| 2 | Fourier Integral Transforms, <br> Convolution theorem in Fourier <br> Transforms, Higher order difference <br> equations | Seminars / <br> NPTEL | PO 4 | PSO 1 |
| 3 | Encourage students to identify the <br> type of transform involved in industry | NPTEL | PO 2 | PSO 1 |

## Prepared by:

Ms .B.Praveena, Assistant Professor, FE

