MECHANICAL VIBRATIONS

VI Semester: ME								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AME524	Elective	L	Т	Р	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 60		

OBJECTIVES:

The course should enable the students to:

- I. Understand basic concepts of mechanical vibrations and phenomena of transmissibility
- II. Analyze mechanical systems with/ without damping for 1/ multi degrees of freedom environment.
- III. Application of vibration measuring instruments and machine monitoring systems.
- IV. Develop competency in analytical methods in solving problems of vibrations along with mode shapes.

Course Outcomes (CO'S):

- CO 1. Understand the equations of motion of single degree of freedom systems.
- CO 2. Understand the equations of motion of two degree of freedom systems.
- CO 3. Understand the equations of motion of multi degree of freedom systems.
- CO 4. Explore the concept of frequency domain of vibration analysis.

CO 5. Explore the natural frequencies by using numerical methods.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the degree of freedom of systems.
- 2. Understand the simple harmonic motion of various systems..
- 3. Understand the undamped and damped free vibrations Understand a problem and apply the fundamental concepts and enable to solve problems arising in metal removal process.
- 4. Understand the forced vibrations and columb damping
- 5. Understand the vibration isolation and transmissibility
- 6. Compute the natural frequency of single degree of freedom systems
- 7. Understand the non periodic excitations.
- 8. Understand the two degree of freedom systems.
- 9. Determine the mode shapes of two degree of freedom systems.
- 10. Understand the multi degree of freedom systems.
- 11. Determine the Eigen values.
- 12. Determine the normal modes and their properties.
- 13. Determine the free and forced vibration by Modal analysis.
- 14. Understand the vibration measuring instruments
- 15. Understand the frequency domain vibration analysis.
- 16. Understand the trending analysis of various systems.
- 17. Understand the Raleigh"s method of multi degree of freedom system.
- 18. Understand the matrix iteration method of multi degree of freedom system.
- 19. Understand the Raleigh"s Ritz method of multi degree of freedom system.
- 20. Understand the Holzerd's method of multi degree of freedom system.

UNIT I SINGLE DEGREE OF FREEDOM SYSTEMS

Classes: 09

Single degree of freedom systems: Undamped and damped free vibrations; forced vibrations coulomb damping; Response to excitation; rotating unbalance and support excitation; vibration isolation and transmissibility, response to non Periodic Excitations: Unit impulse, unit step and unit ramp functions; response to arbitrary excitations, the convolution integral; shock spectrum; System response by the laplace transformation method.

UNIT IITWO DEGREE FREEDOM SYSTEMSClasses: 09

Two degree freedom systems: Principal modes, undamped and damped free and forced vibrations; undamped vibration absorbers.

UNIT III MULTI DEGREE FREEDOM SYSTEMS

Classes: 09

Multi degree freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis. Method of matrix inversion; Torsional vibrations of multi-rotor systems and geared systems; DiscreteTime systems; Vibration measuring instruments: Vibrometer, velocity meters and accelerometers.

UNIT IV F

FREQUENCY DOMAIN VIBRATION ANALYSIS

Classes: 09

Classes: 09

Frequency domain vibration analysis: Overview, machine train monitoring parameters, data base development, vibration data acquisition, trending analysis, failure node analysis, root cause analysis.

UNIT V NUMERICAL METHODS

Numerical methods: Raleigh's stodola's, Matrix iteration, Rayleigh- Ritz Method and Holzer's methods.

Text Books:

1. Singiresu S Rao, "Mechanical Vibration", 4th Edition, 2013.

2. G. K. Grover, "Mechanical Vibration", Nemchand & Brothers, 8th Edition, 2009.

3. J.S. Rao and K. Gupta, "Introductory Course On Theory & Practice Of Mechanical Vibrations", New Age International (p) Ltd , 2nd Edition, 2012

Leonard Meirovitch, "Elements of vibration analysis", Tata McGraw-Hill, 2nd Edition, 2007.
John S. Mitchell, "Introduction to Machinery Analysis and Monitoring", Pennwell books, 2nd Edition, 1993.

Reference Books:

1.Singh V. P, "Mechanical Vibration", Dhanpat Rai & Co (p) Ltd, 3rd Edition, 2012.

2. AD Dimarogonas, SA Paipetis, "Analytical Methods In Rotor Dynamics", Applied Science Publishers London, 1983.

3. J. S. Rao, "Rotor Dynamics", New Age International (p) Ltd., 3rd Edition, 2012.

4. B.C. Nakra and K. K. Chowdary, "Mechanical Measurements", 2nd Edition, Tata McGraw-Hill, New Delhi, 2004.

5. Collacott, R.A., "Mechanical Fault Diagnosis and Condition Monitoring", 1st Edition, Chapman and Hall, London, 1977.

Web References:

1. http://www.math.psu.edu/tseng/class/Math251/Notes-MechV.pdf 2.

2.https://engineering.purdue.edu/~deadams/ME563/notes_10.pdf 3.

3.http://nptel.ac.in/courses/112103111/# 4.

4.https://engfac.cooper.edu/pages/tzavelis/uploads/Vibration%20Theory.pdf 5.

5.http://vdol.mae.ufl.edu/CourseNotes/EML4220/vibrations.pdf

E-Text Books:

1. http://sv.20file.org/up1/541_0.pdf 2.

2.https://aerocastle.files.wordpress.com/2012/10/mechanical_vibrations_5th-edition_s-s-rao.pdf 3. 3.http://freshersclub.in/mechanical-vibrations-by-v-p-singh-pdf/