

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	NON DESTRUCTIVE TESTING									
Course Code	AME526	AME526								
Programme	B.Tech	B.Tech								
Semester	VI N	VI ME								
Course Type	Professional Elective									
Regulation	IARE - R16									
			Theory	Practical						
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits				
	3		-	3	-	-				
Chief Coordinator	Mr. A. V	enu	prasad, Assistan	t Professor						
Course Faculty			prasad, Assistan eep Kumar, Ass		ſ					

I. COURSE OVERVIEW:

Understand the basic principles of various NDT methods, fundamentals, discontinuities in different product forms, importance of NDT, applications, limitations of NDT methods and techniques and codes, standards and specifications related to non-destructive testing technology. To impart knowledge of advanced NDE Techniques-I and advanced NDE Techniques-II. Overview the concepts, principles, and methods employed for NDT of structures and materials.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS007	Ι	Applied Physics	3
UG	AME005	III	Metallurgy and Material Science	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Non Destructive Testing	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	✔ Quiz		Assignments	×	MOOCs				
~	LCD / PPT	×	Seminars	×	Mini Project	~	Videos				
×	✗ Open Ended Experiments										

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		- Total Marks			
Type of Assessment	CIE Exam	Quiz / AAT			
CIA Marks	25	05	30		

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	Presentation on
	mathematics, science, engineering fundamentals, and an		real-world
	engineering specialization to the solution of complex		problems
	engineering problems.		
PO 3	Design/development of solutions: Design solutions for	3	Seminar
	complex engineering problems and design system components		
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations.		
PO 4	Conduct investigations of complex problems: Use research-	3	Seminar
	based knowledge and research methods including design of		
	experiments, analysis and interpretation of data, and synthesis		
	of the information to provide valid conclusions.		
PO 5	Modern tool usage: Create, select and apply appropriate	2	Presentation on
	techniques, resources, and modern engineering and IT tools		real-world
	including prediction and modeling to complex engineering		problems
	activities with an understanding of the limitation.		
	2 High 2 Madium 1 Law		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering professional	1	Seminar
	capable of synthesizing and analyzing mechanical systems		
	including allied engineering streams.		
PSO 2	Problem solving skills: An ability to adopt and integrate	2	Seminar
	current technologies in the design and manufacturing domain		
	to enhance the employability.		
PSO 3	Successful career and Entrepreneurship: To build the	1	Seminar
	nation, by imparting technological inputs and managerial skills		
	to become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:								
Ι	Apply the techniques of surface non destructive techniques testing methods.								
II	Apply of ultrasonic, radiographic techniques.								
III	Understand advanced NDT technique.								
IV	Understand the relevant non-destructive testing methods for various engineering practice.								

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AME526.01	CLO 1	Understand the visual examination techniques in	PO 1	3
		direct and indirect methods for NDT.		
AME526.02	CLO 2	Remember the various equipment available for	PO 1, PO 3	3
		the visual inspection and the codes and standards		
		for non-destructive testing.		

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AME526.03	CLO 3	Apply the liquid penetrant test that can be used for effective identification of surface cracks in	PO 1, PO 4	2
AME526.04	CLO 4	metals Apply the codes and standards applicable for the liquid penetrant testing in the classification of NDT	PO 1, PO 4, PO 5	3
AME526.05	CLO 5	Understand the principle of magnetic particle testing and the advantages and limitations of the magnetic particle testing equipment and process.	PO 1, PO 3	2
AME526.06	CLO 6	Understand the principle of ultrasonic testing and identify the suitable methods for conducting non- destructive testing using the ultrasonic testing equipment.	PO 1, PO 3, PO 4	3
AME526.07	CLO 7	Evaluate the interpretation procedures for NDT by ultrasonic testing along with its applications.	PO 1	2
AME526.08	CLO 8	Understand transmission and pulse-echo methods of ultrasonic testing.	PO 1	2
AME526.09	CLO 9	Evaluate and apply ultrasonic testing and acoustic emission testing and for various particle applications.	PO 1, PO 3	3
AME526.10	CLO 10	Understand the working principle, advantages, limitations and applications of X-ray film in radiography testing.	PO 1	2
AME526.11	CLO 11	Remember X-ray films used in industrial radiography and describe the stage of development of X-ray films in radiography testing.	PO 3	3
AME526.12	CLO 12	Apply the knowledge of radiographic testing method for the NDT of metals for knowing the defects internally present in the metals.	PO 1	3
AME526.13	CLO 13	Remember the variables and the radiographic image quality improving techniques along with the safety norms to be considered for radiation effects	PO 1, PO 5	3
AME526.14	CLO 14	Understand various process during interaction of X-ray with matter.	PO 1	2
AME526.15	CLO 15	Understand the working principle, advantages, limitations and applications of various advanced radiography techniques viz fluoroscopy testing, xerography, computed tomography.	PO 1, PO 3,	3
AME526.16	CLO 16	Understand the principle of phase array and its technique utilized for the NDT of materials along with the equipment for phase array.	PO 1,PO 5	2
AME526.17	CLO 17	Remember the verification for flow existence and position for reporting and applications of the phase array	PO 1, PO 4, PO 5	2
AME526.18	CLO 18	Understand the techniques and interpretation of radiography in the field of phase array techniques and various applications of the process.	PO 1	2
AME526.19	CLO 19	Remember the special radiographic techniques and the various advantages and limitations of the processes.	PO 1	1
AME526.20	CLO 20	Understand the acoustic emission inspection method principle and understand its various applications.	PO 1, PO 3, PO 4	3

3 = **High**; **2** = **Medium**; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning				I	Progra	m Ou	tcome	s (POs)					pecific PSOs)
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11			PSO3
CLO 1	3											1	2	
CLO 2	3		3										2	
CLO 3	2			2								1	2	
CLO 4	3			3	3							 1	2	
CLO 5	2		2									1	2	
CLO 6	3		3	3									2	1
CLO 7	2											1	2	
CLO 8	2												2	
CLO 9	3		3										2	1
CLO 10	2											1		
CLO 11			3										2	
CLO 12	3											1	2	
CLO 13	3				2							1	2	
CLO 14	2											1		1
CLO 15	3		3									1	2	
CLO 16	2				2								2	1
CLO 17	2			2	2							1		
CLO 18	2												2	
CLO 19	1												2	
CLO 20	3		3	3								1	2	

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1 PO 3 PO 4 PO 5	SEE Exams	PO 1 PO 3 PO 4 PO 5	Assignments	PO 1	Seminars	PO 2
Laboratory Practices	-	Student Viva	PO 1	Mini Project	PO 1	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES – INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
~	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I	SURFACE NDE METHODS		
testing, var	imination, direct and indirect methods, equipment, codes and standards, liquid penetrant iables, interpretation and evaluation of test results, applicable codes and standards, magnetic ting, principle, equipment, advantages and limitations.		
UNIT-II	ULTRASONIC TESTING		
Principle of	f ultrasonic testing, methods, equipment, evaluation, interpretation, applications.		
UNIT-III	RADIOGRAPHIC TESTING		
Principles,	films, radiography equipment, variables, radiographic image quality, techniques, safety.		
UNIT-IV	ADVANCED NDE TECHNIQUES-I		
1	of phase array, technique, equipment, verification of flow existence and position, reporting , special radiographic techniques and interpretation of radiography, advantages and limitations.		
UNIT-V	ADVANCED NDE TECHNIQUES-II		
	emission inspection, principles and applications, leak testing, principles and applications, omputed tomography principles and applications.		
Text Book	s:		
	ad, C.G.K Nair, —Non-destructive Test and Evaluation of materials , Tata McGraw-Hill, lition, 2011.		
2. J. Krau	tkramer, H. Krautkramer, —Ultrasonic Testing of materiall, Springer, 4th Edition, 1990		
Reference	Books:		
1. B. Raj Interna	, T. Jayakumar, M. Thavasinumuthu, —Practical Non-destructive Testing, Alpha science ational Limited, 3rd Edition, 2002.		
	shaw, —Industrial Radigraphy: Theory and Practicel, Springer, 2nd Edition, 1995.		
$3 \Delta SM$	-Non destructive examination and quality control ASM International volume 17 0th		

3. ASM, —Non-destructive examination and quality controll, ASM International, volume17, 9th Edition, 1989.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Outline of various units	CLO 1	T1:1.4, R1:1.2
2-5	Explain the Visual examination, direct and indirect methods	CLO 1	T1:1.5, R1:2.4
6-7	Explain equipment, codes and standards	CLO 1	T1:2.5, R1:2.5
8-10	Explain liquid penetrant testing, variables, interpretation.	CLO 1	T1:2.5, R1:2.6
11-12	Discuss evaluation of LT test results, applicable codes and standards	CLO 4	T1:2.7

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
13-14	Explain magnetic particle testing principle.	CLO 6	T1:3.1, R1:5.3
15-17	Discuss magnetic particle equipment, advantages and limitations	CLO 7	T1:3.2, R1:5.3.6
18-21	Explain principle of ultrasonic testing and methods	CLO 7	T1:7.1, R1:6.3
22-24	Discuss Equipment, evaluation, interpretation and applications.	CLO 7	T1:7.3, R1:6.3
25-27	Explain principles, films, radiography equipment.	CLO 7	T1:8.1, R1:6.8
28	Discuss radiographic image quality.	CLO 7	T1:8.2, R1:13.1
29-30	Discuss techniques and safety of radiographic testing.	CLO 9	T1:8.3, R1:13.2
31-32	Explain Principle of phase array.	CLO 10	T1:9.1, R1:13.7
33-36	Discuss technique, equipment, verification of flow existence and position.	CLO 11	T1:9.2, R1:10.2
37-39	Discuss the reporting, application and special radiographic techniques.	CLO 12	T1:9.3, R1:10.3
40-42	Discuss the interpretation of radiography, advantages and limitations.	CLO 12	T1:9.4, R1:11.9
43-45	Discuss the Advanced NDE techniques.	CLO 12	T1:11.1, R1:11.5
46-48	Explain the acoustic emission inspection principles and applications	CLO 12	T1:11.2
49-52	Discuss the leak testing, principles and applications	CLO 18	T1:11.3, R1:17.2
53-56	Explain the Industrial computed tomography principles	CLO 19	T1:11.4, R1:17.4
56-58	Discuss the industrial computed tomography applications.	CLO 20	T1:11.6 R1:18.5
59-60	Compare the advanced NDE techniques I and advanced NDE techniques II.	CLO 21	T1:8.1, T1:8.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars/ Guest Lecture	PO 1, PO 4	PSO 1
2	Encourage students to learn advanced NDE techniques.	Seminars / NPTEL	PO 4, PO3	PSO 2
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 5	PSO 3

Prepared by:

Mr. A Venuprasad, Assistant Professor Mr. A. Anudeep Kumar, Assistant Professor

HOD, ME