

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTION

Course Title	NETWORK THEORY								
Course Code	A40213								
Regulation	R15								
Course Structure	Lectures Tutorials Practical Credit								
Course Structure	4 - 4								
Course Coordinator	Ms. Lekha Chano	Iran, Associate Pro	fessor						
Team of Instructors Ms. Lekha Chandran									

I. COURSE OVERVIEW:

This course introduces the basic concepts of network theory which is the foundation for all subjects of the electrical engineering discipline. The emphasis of this course is laid on the basic analysis of circuits which includes three phase circuits, transient analysis of DC and AC circuits, network functions, and two port network parameters, Fourier analysis of ac circuits, design and analysis of filters.

II. PREREQUISITE(S):

Level	Credits	Periods / Week	Prerequisites
UG	4	4	Knowledge of electrical circuits

III. MARKS DISTRIBUTION:

Session Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of subjective test.		
The subjective test is for 20 marks, with duration of 2 hours.		
Subjective test of each semester shall contain 5 one mark		
compulsory questions in part-A and part-B contains 5 questions, the student has to answer 3 questions, each carrying 5 marks		
the student has to answer 5 questions, each earlying 5 marks.	75	100
First midterm examination shall be conducted for the first two and		
half units of syllabus and second midterm examination shall be		
conducted for the remaining portion.		
Five marks are earmarked for assignments. There shall be two		
assignments in every theory course. Marks shall be awarded		
considering the average of two assignments in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks			
1	I Mid Examination	90 Minutes	20			
2	I Assignment		05			
3	II Mid Examination	90 Minutes	20			
4	II Assignment		05			
5	External Examination	3 Hours	75			

V. COURSE OBJECTIVES:

At the end of the course, the students will be able to

- i. **Calculate** currents and voltages in three phase circuit arrangements and compute the real, reactive and apparent power in three phase systems.
- ii. Analyse the transient response of RL, RC and RLC circuits for DC and AC excitation using differential equation and Laplace transform methods.
- iii. Describe network functions for one port and two port networks.
- iv. **Discuss** two port network parameters.
- v. **Demonstrate** the various types of filters and their design aspects to implement for the given requirements.
- vi. **Develop** an understanding of the mathematical basis for Fourier transforms and Fourier series and their application in circuit analysis.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

After completing this course the student must demonstrate the knowledge and an ability to apply above concepts to real world electrical and Electronics problems and applications.

- 1. **Analyze** three phase circuits and their interconnections and able to design practical circuits that perform the desired operations.
- 2. **Analyze** first and second order AC and DC circuits for steady-state and transient response using differential equations and Laplace transform techniques.
- 3. **Apply** the knowledge of network functions and two port network parameters in circuit analysis.
- 4. **Design** filters of specific characteristics.
- 5. Able to analyse AC circuits through Fourier transforms.

HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Lectures
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Н	Assignments
PO3	Design / Development of Solutions : Design solutions for complex engineering problems and design system components or	Н	Project Work

	processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.		
PO4	Conduct Investigations of Complex Problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	S	Project Work
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.	S	Project Work
PO6	The Engineer And Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	S	Presentations
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	S	-
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	S	-
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	S	Project Work
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	S	Seminars
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	S	Project Work
PO12	Life - Long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	S	Lectures

N = None S = Supportive H = Highly Related

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.	S	Seminars
PSO2	Problem-Solving Skills: Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in	Н	Assignments

	renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.		
PSO3	Successful Career and Entrepreneurship: The understanding of technologies like PLC, PMC, process controllers, transducers and HMI one can analyze, design electrical and electronics principles to install, test , maintain power system and applications.	S	Project Work
	N – None S – Supportive D L	I	I-Highly

Related

VIII. SYLLABUS:

UNIT – I

Three Phase AC Circuits

Three phase circuits: Phase sequence – Star and delta connection – Relation between line and phase voltages and currents in balanced systems – Analysis of balanced and Unbalanced 3 phase circuits – Measurement of active and reactive power.

UNIT – II

D.C and A.C Transient Analysis

Transient response of R-L, R-C, R-L-C circuits (Series and Parallel combinations) for D.C and A.C excitation– Initial conditions –Solutions using differential equation and laplace transforms

UNIT – III

Networks Functions

The concept of Complex Frequency, Physical Interpretation of Complex Frequency, Transform Impedance and Transform Circuits, Series and parallel combination of Elecments, Terminal pairs or ports, Network functions for the One port and two port, Poles and zeros of network Functions, Significance of poles and zeros, properties of driving point functions, properties of Transfer functions, Necessary conditions for driving point functions, Necessary conditions for transfer functions, time domain response from pole zero plot.

UNIT – IV

Network Parameters

Two port network parameters – Z, Y, ABCD and hybrid parameters and their relations. Cascaded networks, concept of transformed network – 2-port network parameters using transformed variables

UNIT – V

Filters and Fourier analysis of A.C. Circuits

Low pass, High pass, Band pass, Band elimination, Prototype filter design. The Fourier theorem, consideration of symmetry, exponential form of Fourier series, line spectra and phase angle spectra, Fourier integrals and Fourier transforms, Properties of Fourier transforms

IX. LIST OF TEXT BOOKS / REFERENCES / WEBSITES / JOURNALS / OTHERS

Text Books:

- 1. Electric Circuits. Chakrabarthi, Dhanpat Rai& Sons
- 2. Network Analysis N.C. Jagan& C. Lakshminarayana, B.S Publications

References:

- 1. Engineering Circuit Analysis William Hay and Jack E. Kimberley, McGraw Hill,
- 2. Electrical Circuits, David A. Bell, Oxford University Press.
- 3. Electric circuit Analysis ,K.S. Suresh Kumar, Pearson Education
- 4. Circuits, A. Bruce Carlson, engage Learning
- 5. Network Analysis and Circuits ,M. Arshad ,Infinity Science Press
- 6. Electrical Circuits an Introduction, KCA Smith & RE Alley, Cambridge University Press

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Learning objectives	Topics to be covered	Reference
1	Interpret three phase circuits, its generation and connections.	Introduction to three phase circuits, Generation of three phase voltages and three phase connections, phase sequence	T1,T2,R1
2	Discriminate three phase circuits when connected in star and delta.	Relation between phase and line quantities in a three phase star and delta connected system.	T1,T2,R1
3	Analyze the three phase loads	Inter connection of 3 phase loads. Analysis of 3 phase loads	T1, T2,R1
4,5	Discuss voltage and current of three phase unbalanced loads.	Analysis of 3 phase unbalanced loads, Numerical problems on three phase unbalanced loads	T1, T2,R1
6,7	Determine the active power in a three phase circuit and the effect of power factor on Wattmeter readings.	Measurement of active power in a three phase circuit, Effect of power factor on Wattmeter readings and numerical problems on two wattmeter method	T1, T2,R1
8,9	Determine the reactive power in a three phase circuit	Measurement of reactive power in a three phase circuit	T1, T2,R1
10,11,12	Tutorial		
13,14	Show the Transient behaviour of R, L and C elements in a circuit.	Introduction to transient analysis and initial conditions of the R L & C	T1, T2,R1
15,16	Compute initial conditions and time response for current and voltage in first order R-L and R-C circuits	DC Transient analysis of a series RC and RL Circuit differential equation method	T1, T2,R1
17,18	Analyze and solve problems on complicated RC and RL circuits	Problems on DC Transient analysis of a series RLC Circuit using differential equation method	T1, T2,R1
19,20	Describe the AC Transient analysis of a series RC, RL circuits	AC Transient analysis of a series RC and RL Circuit. Problems on AC Transient analysis of a series RC and RL Circuit	T1, T2,R1
21,22	Transient analysis of a series RLC circuits to AC excitation	Series RLC Circuit and numerical problems AC Transient analysis using differential equation method.	T1, T2,R1
23,24	Transient analysis using Laplace transform method	Transient analysis using Laplace transform method	T1, T2,R1
25,26,27	Tutorial		T1, T2,R1
28,29,30	Learn complex frequency	The concept of Complex	T1, T2,R1

		Frequency, Physical Interpretation of Complex Frequency	
31,32	Learn Transform Impedance and	Transform Impedance and	T1, T2,R1
,	Transform Circuits	Transform Circuits, Series and	, ,
		parallel combination of Elements	
33,34	Learn terminal pairs or ports	Terminal pairs or ports, Network	T1, T2,R1
		functions for the One port and two	
		port	
35,36	To learn significance of poles and	Poles and zeros of network	T1, T2,R1
	zeros	Functions, Significance of poles	
		and zeros, properties of driving	
27		point functions	T1 T2 D1
37	Analyze and solve problems	properties of Iransfer functions,	11, 12,KI
		necessary conditions for driving	
38	Analyze and solve problems	Necessary conditions for transfer	T1 T2 R1
50	Analyze and solve problems	functions time domain response	11, 12,11
		from pole zero plot	
39.40.41	Tutorial		T1. T2.R1
42	To learn network parameters	Introduction to network parameters	T1, T2,R1
43,44	Obtain Z parameters	Z - parameters, Y - parameters	T1, T2,R1
	Y - parameters		
45,46	Analyze and solve problems	H - parameters, T - parameters (A,	T1, T2,R1
		B, C, D parameters)	
47	Analyze and solve problems	Relations between Z, Y, H & T	T1, T2,R1
		parameters	
48	Analyze and solve problems	Cascade Networks	T1, T2,R1
49	Analyze and solve problems	Concept of transformed network	T1, T2,R1
50	Analyze and solve problems	Two port network parameters using	T1, T2,R1
		transformed variables	
51,52	Tutorial		T1
53	Discuss filters concept, filter	Introduction to filters, Classification	T1, T2,R1
	networks, classification, and its	of filters, filter networks.	
54	types.	Low Doce filter Analysis and	T1 T2 D1
54	Analysis and Design	Low Pass liner Analysis and Design	11, 12,KI
55	Understand High Pass filter	High Pass filter Analysis and	T1 T2 R1
55	Analysis and Design	Design	11, 12,11
56.57	Understand Band Pass filter	Band Pass filter Analysis and	T1. T2.R1
0 0,0 /	Analysis and Design	Design	
58	Understand Band Elimination	Band Elimination filter Analysis	T1, T2,R1
	filter Analysis and Design	and Design	
59	Understand Prototype filter	Prototype filter Analysis and	T1, T2,R1
	Analysis and Design	Design	
60	Understand Fourier theorem,	Introduction to Fourier theorem,	T1, T2,R1
	different form of Fourier series	consideration of symmetry.	
		Exponential form of Fourier series	
61	Demonstrate different properties	Line spectra and properties of	T1, T2,R1
	of Fourier transforms.	Fourier transforms	
62	Demonstrate different properties	Phase angle spectra	T1, T2,R1
	of Fourier transforms		
63	Demonstrate different properties	Fourier integrals and Properties of	T1, T2,R1
	of Fourier transforms	Fourier transforms	
4,65	Tutorial	Solve problems	T1, T2,R1

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES:

Course		Program Outcomes													Program Specific Outcomes		
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3		
Ι	Н	Н	Н	S	S	S	S	S	S	S	S	S	S	Н	S		
п	Н	Н	Н	S	S	S	S	S	S	S	S	S	S	Н	S		
ш	Н	Н	Н	S	S	S	S	S	S	S	S	S	S	Н	S		
IV	Н	Н	Н	S	S	S	S	S	S	S	S	S	S	Н	S		
V	Н	Н	Н	S	S	S	S	S	S	S	S	S	S	Н	S		
VI	Н	Н	Н	S	S	S	S	S	S	S	S	S	S	Н	S		

S = **Supportive**

H = Highly Related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE **PROGRAM OUTCOMES:**

Course			Program Specific Outcomes												
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
1	Н	Н	Н	S	S	S	S	S	S	S	S	Н	S	Н	S
2	Н	Н	Η	S	S	S	S	S	S	S	S	Н	S	Н	S
3	Н	Н	Η	S	S	S	S	S	S	S	S	Н	S	Н	S
4	Н	Н	Η		S	S	S	S	S	S	S	Н	S	Н	S
5	Н	Н	Η	S	S	S	S	S	S	S	S	Н	S	Н	S
S = Supportive H = High										ghly F	Relate	d			

Prepared By: Lekha Chandran, Associate Professor

HOD, EEE