OTIMIZATION TECHNIQUES

V Semester: CSE / IT /EEE										
Course Code	Category	Hours / Week			Credits	Maximum Marks				
AHS012	Core	L	Т	Р	С	CIA	SEE	Total		
		2	1	-	3	30	70	100		
Contact Classes: 30	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 45				

OBJECTIVES:

The course should enable the students to:

- 1. Learn fundamentals of linear programming through optimization.
- 2. Understand and apply optimization techniques to industrial applications.
- 3. Apply the dynamic programming and quadratic approximation to electrical and electronic problems and applications.

COURSE OUT COMES:

- 1. Understand the concept of Linear programming optimization problem and apply various techniques to formulate, solve LP problems.
- 2. Investigate and develop innovative solutions using assignment and transport techniques for various optimization problems.
- 3. Demonstrate applications of Game theory and sequencing techniques in emerging areas of Industry.
- 4. Explore the concepts of principle of optimality and apply dynamic programming algorithms to solve real time applications.
- 5. Enrich the knowledge on applying quadratic approximation solutions for constrained optimization problems of various engineering streams.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Explain the various characteristics and phases of linear programming.
- 2. Formulate the various linear programming problems by using graphical and simplex methods.
- 3. Understand the artificial variable techniques like two phase and Big-M methods.
- 4. Explain Transportation problem and the formulation of the problem by using optimal solution.
- 5. Solve the assignment problems by using optimal solutions and the variance of assignment problems.
- 6. Describe the travelling sales man problem.
- 7. Explain the sequencing and the types of sequencing methods.
- 8. Use n jobs through two machines and n jobs through three machines to solve an appropriate problem.
- 9. Use two jobs through m machines to solve an appropriate problem.
- 10. Understand theory of games and the terminologies used in theory of games concept.
- 11. Determine appropriate technique to solve to a given problem.
- 12. Solve the problems by using dominance principle and Graphical method.
- 13. Understand the Bellman's principle of optimality..
- 14. Describe heuristic problem-solving methods.
- 15. Understand the mapping of real-world problems to algorithmic solutions.
- 16. List out the various applications of dynamic programming.
- 17. Define the shortest path problem with approximate solutions.
- 18. Explain the linear programming problem with approximate solutions.
- 19. Define the various quadratic approximation methods for solving constraint problems.
- 20. Explain the direct quadratic approximation for solving the constraint problems.
- 21. Explain the quadratic approximation method by using lagrangian function.
- 22. Describe the variable metric methods for constrained optimization.

Unit-I	LINEAR PROGRAMMING	Classes: 09					
Definition, characteristics and phases, types of models, operations research models, applications, linear programming problem formulation, graphical solution, simplex method; Artificial variables techniques: Two-phase method, Big-M method.							
Unit -II	I TRANSPORTATION AND ASSIGNMENT PROBLEMS						
Transportation problem, formulation, optimal solution, unbalanced transportation problem, degeneracy, assignment problem, formulation, optimal solution, variants of assignment problem, traveling salesman problem.							
Unit -III	SEQUENCING AND THEORY OF GAMES	Classes: 09					
Sequencing: Introduction, flow-shop sequencing, n jobs through two machines, n jobs through three machines, job shop sequencing two jobs through m machines. Theory of games: Introduction, terminology, solution of games with saddle points and without saddle points, 2 x 2 games, dominance principle, m x 2 and 2 x n games, graphical method.							
Unit -IV	DYNAMIC PROGRAMMING	Classes: 09					
Introduction: Terminology, Bellman's principle of optimality, applications of dynamic programming shortest path problem, linear programming problem.							
Unit -V	QUADRATIC APPROXIMATION	Classes: 09					
Quadratic approximation methods for constrained problems: Direct quadratic approximation, quadratic approximation of the Lagrangian function, variable metric methods for constrained optimization.							
Text Books:							
1. A Ravind 2. Hillier, L	 A Ravindran, "Engineering Optimization", John Wiley&SonsPublications, 4thEdition, 2009. Hillier, Liberman, "Introduction to Operation Research", Tata McGraw-Hill, 2nd Edition, 2000. 						
Reference Books:							
 Dr. J K Sharma, "Operation Research", Mac MilanPublications, 5thEdition, 2013. Ronald L. Rardin, "Optimization in Operation Research", Pearson Education Pvt. Limited, 2005. N V S Raju, "Operation Research", S M S Education, 3rdRevised Edition. 							
Web References:							
 http://www2.informs.org/Resources/ http://www.mit.edu/~orc/ http://www.ieor.columbia.edu/ http://www.universalteacherpublications.com/univ/ebooks/or/Ch1/origin.htm http://www.wolfram.com/solutions/OperationsResearch/ 							
E-Text Books:							
 http://engineeringstudymaterial.net/ebook/new-optimization-techniques-in-engineering-godfrey/ http://www.freetechbooks.com/urban-operations-research-logistical-and-transportation- planningmethods-t486.html 							