
`

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION FORM

Course Title PRINCIPLES OF PROGRAMMING LANGUAGES

Course Code A50511

Regulation R15 - JNTUH

Course Structure
Lectures Tutorials Practicals Credits

4 - - 4

Course Coordinator Ms K. Radhika, Associate Professor, CSE

Team of Instructors
Ms. B.Jaya Vijaya, Assistant Professor, CSE

Mr. P. Sunil Kumar, Assistant Professor, CSE

I. COURSE OVERVIEW:

The course addresses growing importance of Programming languages, their uses, and importance of using
different programming tools. Course addresses various influences of language design and language
implementation techniques like, compilers, interpreters. This course also explains about different
expressions and statements used in different programming languages. Comparison of functional
programming with logic programming, structure of imperative programming. Exceptions and exception
handling procedures of different programming languages like, C#, C++, Java, Ada95. It also introduces the
importance of scripting languages features and data types of Python language.

II. PREREQUISITE(S):

Level Credits Periods/ Week Prerequisites

UG 4 4
Computer Programming,

Formal Languages and Automata Theory

III. MARKS DISTRIBUTION:

 University
Total

Sessional Marks End Exam
marks

marks

 Midterm Test

 There shall be two midterm examinations. Each midterm examination consists
 of essay paper, objective paper and assignment.

 The essay paper is for 10 marks of 60 minutes duration and shall contain 4
 questions. The student has to answer 2 questions, each carrying 5 marks.

 The objective paper is for 10 marks of 20 minutes duration. It consists of 10
 multiple choice and 10 fill-in-the blank questions, the student has to answer all

 the questions and each carries half mark.
75 100

First midterm examination shall be conducted for the first two and half units of

 syllabus and second midterm examination shall be conducted for the remaining

 portion.

 Five marks are earmarked for assignments. There shall be two assignments in
 every theory course. Assignments are usually issued at the time of

 commencement of the semester. These are of problem solving in nature with

 critical thinking.

`

1 | P a g e

University Total

Sessional Marks End Exam marks
marks

Marks shall be awarded considering the average of two midterm tests in each
course.

IV. EVALUATION SCHEME:

S. No Component Duration Marks

1. I Mid Examination 80 minutes 20

2. I Assignment - 5

3. II Mid Examination 80 minutes 20

4. II Assignment - 5

5. External Examination 3 hours 75

V. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

I. Be familiar with the structure and design principles of programming languages.

II. Master the skills in analyzing and using the features of programming languages.

III. Be familiar with the preliminary concepts like context-free grammar, Backus-Naur form, Parse trees.

V. Be familiar with logic programming and functional programming languages features.

VI. Be familiar with variable declarations in programming languages, in particular to binding, scope,
and substitution of variables.

VII. Be familiar with Python scripting language.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

1. Review the concepts of programming languages.

2. List out various programming paradigms used in different languages.

3. Recall the design issues of various programming language implementation.

4. Discuss various programming environments.

5. Elaborate the features of attribute grammars and draw parse trees.

6. List out various data types in different programming languages.

7. Tabulate different parameter passing techniques of different programming languages.

8. List out the concepts of object oriented programming in C++, Ada95, and Smalltalk.

9. Recall the importance of semaphores, monitors, message passing.

10. Apply logic programming concepts by using PROLOG.

11. Use of functional programming languages like LISP, ML, Haskell.

12. Apply scripting languages in web design and real-time applications.

`

2 | P a g e
II. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes

Level

Proficiency

assessed by

PO1 Engineering knowledge: Apply the knowledge of mathematics,
Assignments,

science, engineering fundamentals, and an engineering specialization to H
Tutorials

the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and

 analyze complex engineering problems reaching substantiated
H Assignments

conclusions using first principles of mathematics, natural sciences, and

 engineering sciences.

PO3 Design/development of solutions: Design solutions for complex

 engineering problems and design system components or processes that

 meet the specified needs with appropriate consideration for the public S Mini Projects

 health and safety, and the cultural, societal, and environmental

 considerations.

PO4 Conduct investigations of complex problems : Use research-based

 knowledge and research methods including design of experiments,
S Mini Projects

analysis and interpretation of data, and synthesis of the information to

 provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques,

 resources, and modern engineering and IT tools including prediction
S Projects

and modeling to complex engineering activities with an understanding

 of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual

 knowledge to assess societal, health, safety, legal and cultural issues
N --

and the consequent responsibilities relevant to the professional

 engineering practice.

PO7 Environment and sustainability: Understand the impact of the

 professional engineering solutions in societal and environmental
N --

contexts, and demonstrate the knowledge of, and need for sustainable

 development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and
N --

responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and

 as a member or leader in diverse teams, and in multidisciplinary N --

 settings.

PO10 Communication: Communicate effectively on complex engineering

 activities with the engineering community and with society at large,

 such as, being able to comprehend and write effective reports and N --

 design documentation, make effective presentations, and give and

 receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and

 understanding of the engineering and management principles and apply
N --

these to one’s own work, as a member and leader in a team, to manage

 projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation
Projects,

and ability to engage in independent and life-long learning in the S
Discussions

broadest context of technological change.

 N – None S - Supportive H - Highly Related

3 | P a g e

`

III. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes

Level

Proficiency

assessed by

PSO1 Professional Skills: The ability to research, understand and implement

 computer programs in the areas related to algorithms, system software,
H

Lectures,

multimedia, web design, big data analytics, and networking for efficient Assignments

 analysis and design of computer-based systems of varying complexity.

PSO2 Problem-Solving Skills: The ability to apply standard practices and

 strategies in software project development using open-ended
S Tutorials

programming environments to deliver a quality product for business

 success.

PSO3 Successful Career and Entrepreneurship: The ability to employ

 modern computer languages, environments, and platforms in creating
S

Guest

innovative career paths, to be an entrepreneur, and a zest for higher Lectures

 studies.

 N - None S - Supportive H - Highly Related

IX. SYLLABUS:

UNIT- I:
Preliminary Concepts: Reasons for studying, concepts of programming languages, Programming domains,
Language Evaluation Criteria, influences on Language design, Language categories, Programming
Paradigms– Imperative, Object Oriented, functional Programming , Logic Programming. Programming
Language Implementation – Compilation and Virtual Machines, programming environments.
Syntax and Semantics: general Problem of describing Syntax and Semantics, formal methods of describing
syntax - BNF, EBNF for common programming languages features, parse trees, ambiguous grammars,
attribute grammars, denotational semantics and axiomatic semantics for common programming language
features.

UNIT – II
Data types: Introduction, primitive, character, user defined, array, associative, record, union, pointer and
reference types, design and implementation uses related to these types. Names, Variable, concept of binding,
type checking, strong typing, type compatibility, named constants, variable initialization.
Expressions and Statements: Arithmetic relational and Boolean expressions, Short circuit evaluation
mixed mode assignment, Assignment Statements, Control Structures – Statement Level, Compound
Statements, Selection, Iteration, Unconditional Statements, and guarded commands.

UNIT – III
Subprograms and Blocks: Fundamentals of sub-programs, Scope and lifetime of variable, static and
dynamic scope, Design issues of subprograms and operations, local referencing environments, parameter
passing methods, overloaded sub-programs, generic sub-programs, parameters that are sub-program names,
design issues for functions user defined overloaded operators, co routines

UNIT – IV
Abstract Data types: Abstractions and encapsulation, introductions to data abstraction, design issues,
language examples, C++ parameterized ADT, object oriented programming in small talk, C++, Java, C#,
Ada 95.
Concurrency: Subprogram level concurrency, semaphores, monitors, massage passing, Java threads, C#
threads.
Exception handling: Exceptions, exception Propagation, Exception handler in Ada, C++ and Java.
Logic Programming Language: Introduction and overview of logic programming, basic elements of
prolog, application of logic programming

UNIT – V
Functional Programming Languages: Introduction, fundamentals of FPL, LISP, ML, Haskell, application
of Functional Programming Languages and comparison of functional and imperative Languages.

4 | P a g e

`

Scripting Language: Pragmatics, key concepts, case study: Python- values and types, variables, storage and

control, bindings and scope, procedural abstraction, data abstraction, separate compilation, module library.

Text books:

1. Robert .W. Sebesta, “Concepts of Programming Languages”, 9/e, Pearson Education.

References:

1. A. B. Tucker, R. E. Noonan, “Programming languages”, 2e, TMH.

2. K. C. Louden, ”Programming Languages”, 2e, 2003.

3. Patric Henry Winston and Paul Horn,” LISP”, Pearson Education.
4. W. F. Clocksin, C. S. Melish, “Programming in Prolog”, 5e, Springer.

X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture

Topics to be covered Course Learning Outcomes Reference
No.

1 Reasons for studying concepts of Identify the importance of T1: 1.2

 programming languages. programming languages.

2 Programming domains. Understand different T1: 1.5

 programming domains.

3 – 4 Language evaluation criteria, influences on Evaluate language criteria that T1: 1.7

 language design influence on language design.

5 Language categories. Categorize the languages T1: 1.22

6 – 7 Programming Paradigms – imperative, Compare and Contrast different T1: 1.25
 object oriented, functional programming, programming paradigms

 and logic programming.

8 – 9 Programming language implementation Reproduce programming T1: 2.2

 – compilation and virtual machines language Implementation

10 Programming environments. Distinguish programming T1: 1.32

 environments

11 General Problem of describing syntax and Understand Syntax and Semantics T1: 3.3

 semantics

12 – 15 Formal methods of describing syntax - Contrast BNF, EBNF. T1: 3.5
 BNF, EBNF for common programming

 languages features

16 Parse trees Construct parse trees for given T1: 3.6

 grammar

17 – 18 Ambiguous grammar, attribute grammar. Distinguish ambiguous grammars T1: 3.7

 and define attribute grammar

19 – 21 Denotational semantics and axiomatic Understand semantics of common T1: 3.27

 semantics for common programming programming language features

 language features.

22 – 26 Introduction, primitive, character. Use different data types T1: 6.4
 user defined, array, associative, record,

 union, pointer and reference types, design

 and implementation uses related to these

 types.

27 – 30 Names, variable, concept of binding, Review the concept of binding T1: 5.2,6.5
 type checking, strong typing, type conversion and compatibility of

 compatibility, named constants, variable data types

 initialization.

31 - 33 Arithmetic relational and Boolean Illustrate different type of T1: 7.3

 expressions. expressions

5 | P a g e

`

34 – 38 Short circuit evaluation mixed mode Understand different types of T1: 7.1,8.3

 assignment, assignment statements. Statements.

 Control Structures – Statement Level,

 compound statements. selection, iteration,

 unconditional statements, guarded

 commands.

39– 40 Fundamentals of sub-programs, scope and Able to write subprograms T1: 9.2
 lifetime of variable, static and dynamic

 scope, design issues of subprograms and

 operations

41 Local referencing environments. Understand local referencing T1: 9.1

 environments

42 – 43 Parameter passing methods. Distinguish different types of T1: 9.4
 overloaded sub-programs, generic sub- parameter passing methods

 programs, parameters that are sub-program

 names

44 – 46 Design issues for functions , user defined Illustrate design issues for T1: 9.5

 overloaded operators, co routines. functions and co routines

47 Abstractions and encapsulation, Understand data abstraction. T1:10.3

 introductions to data abstraction.

48 – 49 Design issues, language examples. Illustrate design issues with T1:10.7

 C++ parameterized ADT. examples

50 – 51 Object oriented programming in small talk, Compare and contrast oops T1:11.1

 C++, Java, C#, Ada 95. concepts of different languages

52 – 53 Subprogram level concurrency, Understand concurrency concepts T1:12.6
 semaphores, monitors, Massage passing,

 Java and C# threads.

54 – 56 Exceptions, exception Propagation, Illustrate exceptional handling T1: 13.2

 Exception handler in Ada, C++ and Java. concepts of different languages

57 – 58 Introduction and overview of logic Understand the basic concepts of T1: 14.3
 programming, basic elements of prolog, logic programming and its

 application of logic programming applications

59 – 60 Introduction, fundamentals of FPL, LISP, Understand the basic concepts T1:14.7
 ML, Haskell. Application of functional and applications of different

 programming languages , comparison of functional programming languages

 functional and imperative languages

61 – 62 Pragmatics, key concepts, case study: Understand about scripting T1:16.5
 Python- values and types, variables, storage languages

 and control, bindings and scope, procedural

 abstraction, data abstraction, separate

 compilation, module library

6 | P a g e

`

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF
PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course

Program Outcomes
 Program Specific

Outcomes

Objectives

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

I H H H S H S S

II S H S S H S S

III H S S S S S S

IV H S H H H H S

V S S S

VI S S S H H S

VII S S S S H

 S – Supportive H - Highly Related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM
OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course

Program Outcomes
 Program Specific

 Outcomes

Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

1 S S H H H

2 S H S

3 S S H H

4 S S S

5 H S S S

6 H H H S

7 H H H H S

8 S S S S

9 S H H H H S

10 S S S S S

11 S S S S

12 S S S H S S

S – Supportive H - Highly Related

Prepared by : Ms K Radhika, AssociateProfessor, CSE

HOD, CSE

7 | P a g e

