

# **COURSE DESCRIPTION FORM**

| Course Title                                | Power Quality   | Power Quality |            |         |  |  |  |  |  |  |  |
|---------------------------------------------|-----------------|---------------|------------|---------|--|--|--|--|--|--|--|
| Course Code                                 | BPE210          | BPE210        |            |         |  |  |  |  |  |  |  |
| Regulation 2017 - 2018                      |                 |               |            |         |  |  |  |  |  |  |  |
| Corress Streetone                           | Lectures        | Tutorials     | Practicals | Credits |  |  |  |  |  |  |  |
| Course Structure                            | 3               | -             | 3          |         |  |  |  |  |  |  |  |
| Course Coordinator                          | Dr. P.M.Sarma P | rofessor      |            |         |  |  |  |  |  |  |  |
| Team of Instructors Dr. P.M.Sarma Professor |                 |               |            |         |  |  |  |  |  |  |  |

# I. COURSE OVERVIEW:

The course provides basic understanding of importance of power quality, nonlinear loads and methods of improvement of power quality.

# **II. PREREQUISITES:**

| Level | Credits | Periods | Prerequisite                                                                                    |  |  |  |  |  |  |
|-------|---------|---------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| PG    | 3       | 3       | Knowledge of voltage fluctuations, frequency variation problems, balanced and unbalanced loads. |  |  |  |  |  |  |

#### III. COURSE ASSESSMENT METHODS: Marks distribution:

#### University end Total **Session Marks** Exam Marks Marks There shall be two continuous internal assessment (CIA). Each continuous internal assessment is for 30 marks, with subjective 30 100 exam for 25 marks (duration of 2 hours) and 5 marks for technical paper and term paper. Subjective test of each CIA in the semester shall contain Part-A with 5 compulsory question to answer of one mark each and Part-B with 5 questions each carrying 5 marks and to be answer any four questions. The average of two CIA is the final internal marks. The external question paper approved by COE contains 5 internal 70 100 choice questions each carrying 14 marks giving an total of 70 marks and to be answer all 5 questions

# **IV. EVALUATION SCHEME:**

| S. No | Component                         | Duration | Marks |
|-------|-----------------------------------|----------|-------|
| 1     | I CIA examination                 | 2 Hours  | 25    |
| 2     | I technical paper and term paper  |          | 05    |
| 3     | II CIA examination                | 2 Hours  | 25    |
| 4     | II technical paper and term paper |          | 05    |
| 5     | External examination              | 3 hours  | 70    |

#### V. COURSE OBJECTIVES:

#### At the end of the course, the students will be able to:

- 1. Classify power quality problems
- 2. Understand the nature of non linear loads
- 3. Apply time domain and frequency domain methods to analyze steady state and transient error

#### VI. COURSE OUTCOMES:

#### After completing this course the student must demonstrate the knowledge and ability to:

- 1. Operate and maintain Gas insulated Substation
- 2. Analyze various Power Quality problems
- 3. Apply techniques to mitigate Power Quality disturbance and transients
- 4. Apply techniques to mitigate harmonics

# VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

|     | Program outcomes                                                                                                                                                                                                                                                                                      | Level | Proficiency assessed by   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------|
| PO1 | <b>General Knowledge</b> : An ability to apply the knowledge of mathematics, science and Engineering for solving multifaceted issues of Electrical Engineering.                                                                                                                                       | S     | Discussion                |
| PO2 | <b>Problem Analysis</b> : An ability to communicate effectively and to prepare formal technical plans leading to solutions and detailed reports for electrical systems.                                                                                                                               | Н     | Assignment<br>s           |
| PO3 | <b>Design / Development of Solutions</b> : To develop Broad theoretical knowledge in Electrical Engineering and learn the methods of applying them to identify, formulate and solve practical problems involving electrical power.                                                                    | Н     |                           |
| PO4 | <b>Conduct Investigations of Complex Problems</b> : An ability to apply<br>the techniques of using appropriate technologies to investigate,<br>analyze, design, simulate and/or fabricate/commission complete<br>systems involving generation, transmission and distribution of<br>electrical energy. | S     | Discussion                |
| PO5 | <b>Modern tool usage:</b> An ability to model real life problems using different hardware and software platforms, both offline and real-time with the help of various tools along with upgraded versions.                                                                                             | Н     | Discussion<br>,Assignment |
| PO6 | <b>The Engineer and Society:</b> An Ability to design and fabricate modules, control systems and relevant processes to meet desired performance needs, within realistic constraints for social needs.                                                                                                 | N     |                           |

| <b>PO7</b> | <b>Environment and Sustainability:</b> An ability To estimate the feasibility, applicability, optimality and future scope of power networks and apparatus for design of eco-friendly with sustainability                  | S        |                           |  |  |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|--|--|--|--|--|--|--|--|
| PO8        | Ethics: To Possess an appreciation of professional, societal, N<br>environmental and ethical issues and proper use of renewable<br>resources.                                                                             |          |                           |  |  |  |  |  |  |  |  |
| PO9        | <b>Individual and Team Work:</b> An Ability to design schemes involving signal sensing and processing leading to decision making for real time electrical engineering systems and processes at individual and team levels | S        | Discussion<br>,Assignment |  |  |  |  |  |  |  |  |
| PO10       | <b>Communication:</b> an Ability to work in a team and comprehend his/her scope of work, deliverables , issues and be able to communicate both in verbal ,written for effective technical presentation.                   | Ν        |                           |  |  |  |  |  |  |  |  |
| PO11       | <b>Life-long Learning:</b> An ability to align with and upgrade to higher learning and research activities along with engaging in life-long learning.                                                                     | S        | Discussion<br>,Seminar    |  |  |  |  |  |  |  |  |
| PO12       | <b>Project Management and Finance</b> : To be familiar with project management problems and basic financial principles for a multi-disciplinary work.                                                                     | S        | Discussion<br>,Seminar    |  |  |  |  |  |  |  |  |
| N= None    | e S=Supportive                                                                                                                                                                                                            | H=Highly | related                   |  |  |  |  |  |  |  |  |

# VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|      | Program Specific Outcomes                                                                                                                                                                                                                                                                                           | Level | Proficiency<br>assessed by             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------|
| PSO1 | <b>Professional Skills:</b> Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.                                                                                                     | Ν     |                                        |
| PSO2 | <b>Problem-Solving Skills:</b> Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally. | S     | Discussion<br>,Assignme<br>nt, seminar |
| PSO3 | <b>Successful Career and Entrepreneurship:</b> The understanding of technologies like PLC, PMC, process controllers, transducers and HMI one can analyze, design electrical and electronics principles to install, test , maintain power system and applications.                                                   | S     | Discussion<br>,Assignme<br>nt, seminar |

N – None

S - Supportive

H- Highly Related

#### **IX. SYLLABUS:**

# UNIT I INTRODUCTION

Introduction: Characterization of electric power quality, transients, short duration and long duration voltage variations, voltage imbalance, waveform distortion, voltage fluctuations, power frequency variation, power acceptability curves; Power quality problems: Poor load power factor, non linear and unbalanced loads, DC offset in loads, notching in load voltage, disturbance in supply voltage, power quality standards.

## UNIT II NONLINEAR LOADS

Non linear loads: Single phase static and rotating AC / DC converters, three phase static AC / DC converters, battery chargers, arc furnaces, fluorescent lighting, pulse modulated devices, adjustable speed drives.

#### UNIT III MEASUREMENT AND ANALYSIS METHODS

Measurement: Voltage, current, power and energy measurements, power factor measurements and definitions, event recorders, Measurement. Error Analysis: Analysis in the periodic steady state, time domain methods; Frequency domain methods: Laplace's, Fourier and Hartley transform, the Walsh transform, wavelet transform

#### UNIT IV

#### ANALYSIS AND CONVENTIONAL MITIGATION METHODS

Analysis of power outages, analysis of unbalance, symmetrical components of phasor quantities, instantaneous symmetrical components, instantaneous real and reactive powers; Analysis of distortion: Online extraction of fundamental sequence components from measured samples, harmonic indices; Analysis of voltage sag: Detroit Edison sag score, voltage sag energy, voltage sag lost energy index (VSLEI), analysis of voltage flicker, reduced duration and customer impact of outages; Classical load balancing problem: Open loop balancing, closed loop balancing, current balancing, harmonic reduction, voltage sag reduction.

## UNIT V AC POWER SUPPLIES

Power quality improvement: Utility, customer interface, harmonic filters, passive, active and hybrid filters; Custom power devices: Network reconfiguring devices, load compensation using DSTATCOM, voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC; Control strategies: P-Q theory, synchronous detection method, custom power park, status of application of custom power devices.

#### **Text books:**

- 1. Arindam Ghosh "Power Quality Enhancement Using Custom Power Devices", Kluwer Academic Publishers, 1st Edition, 2002.
- 2. G.T.Heydt, "Electric Power Quality", Stars in Circle Publications, 2nd Edition, 1994.
- 3. Jos Arrillaga, Neville R. Watson, "Power system harmonics", Wiley, 2nd Edition, 2003.

# **References:**

- 1. R.C. Duggan, Mark F. McGranaghan, "Electrical Power Systems Quality", Wiley, 3rd Edition, 2012.
- 2. Derek A. Paice, "Power electronic converter harmonics", Wiley, 1st Edition, 1999.

# X. COURSE PLAN:

The course plan is meant as a guideline. There may be probably be changes.

| Lecture<br>No. | Topics to be Covered                                                            | Course Learning Objectives                             | Reference |
|----------------|---------------------------------------------------------------------------------|--------------------------------------------------------|-----------|
| 1              | Introduction of power quality,<br>Characterization of electric power<br>quality | Understand power quality                               | T1T2      |
| 2              | Transients, short and long duration voltage variations                          | understand Characterization of power quality           | T1T2      |
| 3              | voltage imbalance, waveform distortion, voltage fluctuations                    | Analyse of waveform distortion, voltage fluctuations   | T1T2      |
| 4              | power frequency variation, power acceptability curves                           | Understand the power acceptability curves              | T1T2      |
| 5              | Power quality problems                                                          | Analyse Power quality problems                         | T1T2      |
| 6              | Poor load power factor                                                          | Problems of Poor load power factor                     | T1T2      |
| 7              | non linear and unbalanced loads, DC offset in loads                             | Understand non linear loads and unbalance conditions   | T1T2      |
| 8              | notching in load voltage, disturbance<br>in supply voltage                      | Analyse of notching and disturbances in supply voltage | T1T2      |
| 9              | power quality standards                                                         | Understand power quality standarda                     | T1T2      |
| 10             | Non linear loads                                                                | Understand Behavior of non linear loads                | T1T2      |
| 11             | Single phase static and rotating AC / DC converters                             | Understand single phase static and rotating converters | T1T2      |
| 12             | three phase static AC / DC converters                                           | Understand three phase static and rotating converters  | T1T2      |
| 13             | battery chargers                                                                | Knowledge of battery chargers                          | T1T2      |
| 14             | arc furnaces                                                                    | Analyse Types of arc furnaces                          | T1T2      |
| 15             | fluorescent lighting                                                            | Advantages of fluorescent lighting                     | T1T2      |
| 16             | pulse modulated devices                                                         | Understand working of pulse modulated devices          | T1T2      |
| 17             | adjustable speed drives                                                         | Application of adjustable speed drives                 | T1T2      |
| 18             | Measurement of Voltage, current                                                 | Understand the Measurement of Voltage, current         | T1T2      |
| 19             | power and energy measurements                                                   | Understand the power and energy measurements           | T1T2      |
| 18,19          | power factor measurements and definitions                                       | Understand power factor and its measurement            | T1T2      |

| 20    | event recorders, Error Analysis                                                                             | Knowledge of event recorders and                                                                         | T1T2        |
|-------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------|
| 20    | event recorders, Error Anarysis                                                                             | error analysis                                                                                           | 1112        |
| 21    | Error analysis in the periodic steady                                                                       | Calculation of error analysis for a                                                                      | T1T2        |
|       | state                                                                                                       | periodic steady state waveform                                                                           | <b>T1T0</b> |
| 22    | Error analysis by time domain methods                                                                       | Calculation of error analysis by time domain methods                                                     | T1T2        |
| 23    | Frequency domain methods                                                                                    | Analysis of Frequency domain                                                                             | T1T2        |
|       |                                                                                                             | methods                                                                                                  |             |
| 24,25 | Laplace"s, Fourier transform,<br>Hartley transform                                                          | Understand the application of<br>Laplace"s, Fourier transform, Hartley                                   | T1T2        |
|       |                                                                                                             | transform                                                                                                |             |
| 26    | Walsh transform, wavelet transform                                                                          | Understand the application of Walsh transform, wavelet transform                                         | T1T2        |
| 27    | Analysis of power outages,<br>Analysis of unbalance                                                         | Problems of power outages, Analysis of unbalance                                                         | T1T2        |
| 28    | symmetrical components of phasor quantities                                                                 | Analyse the symmetrical components of phasor quantities                                                  | T1T2        |
| 29    | instantaneous symmetrical components                                                                        | Analyse the instantaneous symmetrical components                                                         | T1T2        |
| 30    | instantaneous real and reactive powers                                                                      | Analyse the instantaneous real and reactive powers                                                       | T1T2        |
| 31,32 | Analysis of distortion: Online<br>extraction of fundamental sequence<br>components from measured<br>samples | Online extraction of fundamental sequence components from measured samples                               | T1T2        |
| 33    | harmonic indices; Analysis of voltage sag                                                                   | Understand harmonic indices;<br>Analysis of voltage sag                                                  | T1T2        |
| 34    | Detorit Edison sag score, voltage sag<br>energy, voltage sag lost energy index<br>(VSLEI)                   | Understand the Detorit Edison sag<br>score, voltage sag energy, voltage sag<br>lost energy index (VSLEI) | T1T2        |
| 35    | analysis of voltage flicker, reduced<br>duration and customer impact of<br>outages                          | Understand voltage flicker                                                                               | T1T2        |
| 36    | Classical load balancing problem:<br>Open loop balancing, closed loop<br>balancing                          | Analysis of Classical load balancing problem                                                             | T1T2        |
| 37    | current balancing, harmonic reduction, voltage sag reduction                                                | Understand current balancing,<br>harmonic reducction techniques                                          | T1T2        |
| 38    | Power quality improvement: Utility, customer interface                                                      | Understand the utility and customer interface                                                            | T1T2        |
| 39    | harmonic filters, passive, active and<br>hybrid filters                                                     | Understand techniques of harmonic filters, passive, active and hybrid filters                            | T1T2        |
| 40    | Custom power devices: Network reconfiguring devices                                                         | Analysis of Network reconfiguring devices                                                                | T1T2        |
| 41    | load compensation using<br>DSTATCOM, voltage regulation<br>using DSTATCOM                                   | Understand the load compensation<br>using DSTATCOM, voltage<br>regulation using DSTATCOM                 | T1T2        |
| 42    | protecting sensitive loads using DVR, UPQC;Control strategies: P-Q                                          | Analysis of protecting sensitive loads using DVR, UPQC;Control strategies:                               | T1T2        |

|    | theory                                                                                              | P-Q theory                                  |      |
|----|-----------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| 43 | synchronous detection method<br>custom power park, status of<br>application of custom power devices | Understand the synchronous detection method | T1T2 |
| 44 | Problems                                                                                            | Problem solving of power quality            | T1T2 |
| 45 | Revision                                                                                            | revision                                    | T1T2 |

# XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Objectives |                | Program Outcomes |                |                |                |         |                |         |         |          |          | Program Specific<br>Outcomes |      |      |      |
|----------------------|----------------|------------------|----------------|----------------|----------------|---------|----------------|---------|---------|----------|----------|------------------------------|------|------|------|
|                      | <b>PO</b><br>1 | <b>PO</b><br>2   | <b>PO</b><br>3 | <b>PO</b><br>4 | <b>PO</b><br>5 | PO<br>6 | <b>PO</b><br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12                     | PSO1 | PSO2 | PSO3 |
| Ι                    |                |                  | Н              | S              |                |         | S              |         |         |          |          |                              |      |      | S    |
| II                   |                |                  |                | Н              | Н              |         |                |         | S       |          |          |                              |      | S    | S    |
| III                  |                |                  | Н              |                |                |         |                |         |         |          | S        | S                            |      |      | S    |

S=Supportive

H=Highly related

# XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE PROGRAM **OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:**

| Course<br>Outcomes | Program Outcomes |            |     |            |        |     |            |            |     |             | Program Specific<br>Outcomes |      |      |      |      |
|--------------------|------------------|------------|-----|------------|--------|-----|------------|------------|-----|-------------|------------------------------|------|------|------|------|
| Outcomes           | <b>PO1</b>       | <b>PO2</b> | PO3 | <b>PO4</b> | PO5    | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | <b>PO10</b> | PO11                         | PO12 | PSO1 | PSO2 | PSO3 |
| 1                  | S                |            |     | S          |        |     | S          |            |     |             |                              |      |      |      | S    |
| 2                  |                  | Н          |     |            | Н      |     |            |            | S   |             |                              |      |      | S    | S    |
| 3                  |                  |            | Н   |            |        |     |            |            |     |             | S                            | S    |      |      | S    |
|                    |                  |            | ,   |            | TT' 11 | 1   | . 1        | •          |     |             |                              |      |      |      |      |

S=Supportive H=Highly related

Prepared by: Dr. P.M. Sarma Professor

# ELECTRICAL AND ELECTRONICS ENGINEERING