MACHINE LEARNING

VIII Semester: CSE / IT											
	Course Code	Category	Ho	ours / V	Veek	Credits	Maximum M		Marks		
ACS014		Core	L	Т	Р	C	CIA	SEE	Total		
			3	0	0	3	30	70	100		
Contact Classes: 45		Tutorial Classes: Nil	Practical Classes: Nil				Total Classes: 60				
OBJECTIVES: The students will try to learn:											
1. The fundamental concepts, issues and challenges of machine learning associated to data for model selection.											
2.	2. The supervised learning methods such as decision trees, Naïve Bayes classifier, k-nearest neighbor learning for building data models and basics of unsupervised learning methods.										
3. The knowledge used for making predictions or decisions without human intervention on real- world problems.											

COURSE OUTCOMES:

After successful completion of the course, students will be able to:

- CO1: Recognize the characteristics of machine learning that make it useful to real-world problem.
- CO2: **Discuss** the steps involved in designing a learning system by considering well posed learning problems.
- CO3: Analyze the underlying mathematical relationships within and across machine learning algorithms.
- CO4: Relate the hypothesis space search for an application using decision tree learning.
- CO5: Explain models for reasoning with uncertainty as well as the use of unreliable information.
- CO6: Identify appropriate learning functions as activation function for neural network design.
- CO7: Make use of optimizing function for reducing the error in prediction model.
- CO8: Develop artificial neural network using back propagation algorithm for different applications.
- CO9: Demonstrate Naïve Bayes algorithm based on Bayes theorem for classification problem.
- CO10: Make Use of k-nearest neighbor algorithm for solving both classification and regression problems.
- CO11: **Discuss** the reinforcement learning by observing the current environment state.
- CO12: **Identify** appropriate machine learning techniques and computing environment suitable for the applications.

UNIT-I	TYPES OF MACHINE LEARNING	Classes: 09						
Concept learning: Introduction, version spaces and the candidate elimination algorithm; Learning with trees: Constructing decision trees, CART, classificationexample.								
UNIT -II	LINEAR DISCRIMINANTS	Classes: 09						
Perceptron (MLP): Going forwards, backwards, MLP in practices, deriving back; Propagation support vector Machines: Optimal separation, kernels.								
UNIT -III	BASIC STATISTICS	Classes: 09						
Averages, variance and covariance, the Gaussian; The bias-variance tradeoff Bayesian learning: Introduction, Bayes theorem, Bayes optimal classifier, NaïveBayes classifier.								

Graphical models: Bayesian networks, approximate inference, making Bayesian networks, Hidden Markov models, the forwardalgorithm							
UNIT -IV	EVOLUTIONARY LEARNING	Classes: 09					
Genetic Algorithms, genetic operators; Genetic programming; Ensemble learning: Boosting, bagging; Dimensionality reduction: Linear discriminate analysis, principal component analysis (JAX-RPC)							
UNIT -V	CLUSTERING	Classes: 09					
Similarity and distance measures, outliers, hierarchical methods, partitional algorithms, clustering large databases, clustering with categorical attributes, comparison							
Text Books:							
1. Tom M. Mitchell, "Machine Learning", McGraw-Hill, 1 st Edition, 2013.							
Reference Books:							
1. Rajjal Shinghal, "Pattern Recognition and Machine Learning", Springer-Verlag, New York, 1 st Edition, 2006.							
Web References:							
1. Httd://ww.udemy.com/MachineLearning/Online_Course							

2. https://en.wikipedia.org/wiki/Machine_learning