VLSI DESIGN

VI Semester: ECE								
Course Code	Category	Hours / Week Credits			Maximum Marks			
AEC017	Core	L	Т	P	С	CIA	SEE	Total
/ LCOT/	Core	3	1	-	4	30	70	100
Contact Classes: 48	Tutorial Classes: 10	Practical Classes: Nil		Total Classes: 60				

COURSE OBJECTIVES:

Students will try to learn:		
Ι	The Principles of hierarchical VLSI design from the metal oxide semiconductor transistor up to the	
	system level and impact of scaling trends on the device parameters and fabrication.	
II	The Data path subsystems incorporating into a VLSI chip with contemporary techniques for achieving	
	high-speed, low-power and low area overhead.	
III	The Chip design through a practical approach using advanced modern tools such as vivado and cadence for	
	front end & back end.	

COURSE OUTCOMES (COs):

CO No	Course Outcomes	Knowledge Level (Bloom's Taxonomy)
CO 1	Describe the MOSFET fundamentals & latest trends in the technology in line with forecast made by Moore for computing the parameters with constant or combined scaling models.	Understand
CO 2	Examine the conditions for optimum performance of inverters using the volt- ampere and threshold voltage characteristics of MOSFETS	Analyze
CO 3	Explain the oxidation, diffusion, ion implantation & lithography processes for pmos, nmos, cmos and BiCMOS transistors fabrication.	Understand
CO 4	Illustrate complex gates, switch logic and transmission gates for performance optimization of distortion, power consumption and circuit delays.	Understand
CO 5	Build the stick diagrams, layouts of MOS circuits using lambda, absolute and Euler physical design rules.	Apply
CO 6	Summarize the reliability issues in interconnects, latching and electro migration for formulating remedial measurements to increase lifetime.	Understand
CO 7	Compare static and dynamic CMOS logic circuits in terms of power consumption and speed of operation.	Analyze
CO 8	Distinguish the structure, implementation approaches for full custom and semicustom design on the basis of speed, cost, reconfiguration and time to market parameters.	Understand
CO 9	Outline the role of Programmable logic devices such as PLA, PAL, PROM, FPGA and CPLD for realization of complex boolean functions	Understand
CO 10	Develop data path subsystems such as shifters, adders, multipliers, ALUs, parity generators, counters and comparators using stick diagrams and layouts.	Apply

CO 11	Summarize working principle of memory units and its peripheral circuitry using different models.	Understand
CO 12	Construct simulation, synthesis and design verification of logic circuits using the key elements of VLSI design flow.	Create

Syllabus:

UNIT-I MOSFETS	Classes: 08
\Fundamentals of MOSFETs; Weak & strong inversion conditions; Threshold voltage con Current - voltage characteristics of a MOSFET; MOSFET parasitics; Trends & projections technology; Scaling in MOS devices; Effects in scaling of MOS devices; BiCMOS technology.	in VLSI design &
JNIT-II VLSI DESIGN STYLES	Classes: 09
NMOS, PMOS and CMOS fabrication Flow; Noise Margin; Inverter Threshold Voltage; NMOS characteristics; CMOS inverter design and properties; Delay and power dissipation; Parallel circuits; Pass transistor; Various pull ups; Bi-CMOS inverters	
UNIT-III VLSI PHYSICAL DESIGN	Classes: 09
Stick Diagrams; Physical design rules: 2 μm and lambda CMOS design rules for wires, contacts at design; Euler's rule for physical design. VLSI Interconnects; Reliability issues in CMOS VLSI; Latching; Electromigration.	nd transistors; Layout
JNIT-IV LOGIC DESIGN AND IMPLEMENTATION STRATEGIES	Classes: 09
delays; Driving large capacitive loads; Wiring capacitances; Fan-in and Fan-out; Choice of la strategies full custom and semi custom design; Standard cell design and cell libraries; Program CPLDs; FPGA building block architectures; FPGA interconnect routing procedures; Speed and ar	mable logic devices;
JNIT-V SUB SYSTEM DESIGN	Classes: 10
Data Path Sub Systems: Sub system design; Shifters; Adders; ALUs; Multipliers; Parity gener Zero/one detectors; Counters Array Subsystems: SRAM; DRAM; ROM; Serial access Memories latches and registers; Timing issues; Clock strategies; Low power memory Circuits; Synchronou circuit design. Text Books:	; Static and dynamic
 A. Pucknell, Kamran Eshraghian, "BASIC VLSI Design," Third Edition, Prentice Hall of Inc 978-81-203-0986-9 	-
 R. Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulatio Press, USA, 2005. ISBN: 978-0-470-88132-3 	•
 Jan Rabaey, Anantha Chandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspectition, Phi Learning, 2009. ISBN: 9788120322578 	ective," Second
Reference Books:	
 N. Weste, K. Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision We 978-81-317-1942-8 	esley, 1993. ISBN:
 M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, First edition, 1997 0321602756 	. ISBN-13: 978-
3. John P. Uyemura, "CMOS Logic Circuit Design," Springer, USA, 2007. ISBN: 0-7923-8452	-0