POWER SYSTEM OPERATION AND CONTROL

Course Code	Category	Hours / Week			Credits	Maximum Marks		
AEEB28	Core	L	Т	Р	C	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil Practical Classes: Nil Total Classes:						es: 45	
OBJECTIVES: The course should enal	ble the students to:							
II.Illustrate modeliIII.Discuss single at	onomic operation of powe ng of turbines, generators rea and two area load free e power control and load	s and a quency	utomatic control.			ng.		
COURSE OUTCOME	S:							
electrical machin CO 2 Determine econo demand. CO 3 Outline the probl minimizing trans CO 4 Calculate the cos incremental cost CO 5 Develop the math operation of pow	edge of engineering scienc tes in power system operat mic scheduling of generation lems related to the econom smission line losses and per t of generation, economic curves and coordinate equinematical models of the ma er systems under steady a system using the fundame	tion and ion in a nic disp nalties dispate uation t echanic nd dyn	d control a power s patch of p imbibed. ch of pow using iter cal and el amic con	ystem to power pl er amon ration m lectrical iditions.	o supply spe lant schedul ng 'n' therm lethod. component	cific amo ing, strat al units s involve	ount of tegies for using d in the	r
CO 7 Analyze the static and reactive pow	c performance of the syste eer control in an interconn	e <mark>m with</mark> ected p	automat oower sys	tic gene tem.	ration contr	ol, excita	ntion vol	
with its evolution	sation scheme in a transm 1, principle of operation ar 1, of power ca	ıd appl	ications.					
justification. CO 10Demonstrate the with its character	importance of load compe	ensatio	n in symı	netrical	as well as u	nsymme	trical lo	ads
	umerical problems related	l to Eco	onomic L	oad Dis	patch, Load	Freque	ncy Cont	rol and
MODULE-I ECONO	OMIC OPERATION O	F POV	VER SY	STEM	8		Clas	sses: 12
	hermal power system: Oprve, incremental fuel and			sts, inp		haracter	istics, o _l	

turbines and approximate linear models; Modeling of excitation system: Fundamental characteristics of an excitation system, transfer function, block diagram representation of IEEE type-1 model.

MODULE-III SINGLE AREA AND TWO AREA LOAD FREQUENCY CONTROL Classes: 09

Load frequency control of single area system: Necessity of keeping frequency constant, definitions of control area, single area control, block diagram representation of an isolated power system, steady state analysis, dynamic response, uncontrolled case.

Load frequency control of two area system: Uncontrolled case and controlled case, tie line bias control; Load frequency controllers: Proportional plus integral control of single area and its block diagram representation, steady state response, load frequency control and economic dispatch.

MODULE-IV COMPENSATION FOR POWER FACTOR IMPROVEMENT AND REACTIVE POWER CONTROL Classes: 09

Voltage control: Equipment for voltage control, effect of series capacitors, line drop compensation, effect of AVR, power factor control using different types of power capacitors, shunt and series capacitors, effect of shunt capacitors (fixed and switched), power factor correction, capacitor allocation, economic justification, procedure to determine the best capacitor location; Reactive power control: Reactive power compensation in transmission systems, advantages and disadvantages of different types of compensating equipment for transmission systems; Uncompensated and compensated transmission lines: Shunt and series compensation.

MODULE-V LOAD COMPENSATION

Classes: 06

Load Compensation: characteristics of loads, factors associated with loads, relation between the load factor and loss factor; specifications of load compensator; Classification of loads: Residential, commercial, agricultural and industrial loads and characteristics.

Text Books:

- 1. C L Wadhwa, "Electrical power systems", New age International, 3rd Edition, 2005.
- 2. I J Nagarath, D P Kothari, "Modern power system analysis", Tata McGraw-Hill, 2ndEdition, 2006.

Reference Books:

- 1. Singh S N, "Electric Power Generation, Transmission and Distribution", Prentice Hall of India Pvt. Ltd., New Delhi, 2nd Edition, 2002.
- 2. T J E Miller, "Reactive power control in Electrical system", Wiley Interscience Publication, 1982.
- 3. V K Mehta and Rohit Mehta, "Principles of Power System", S Chand, 3rd revised Edition, 2015.
- 4. Turan Gonen, "Electrical Power Distribution System Engineering", CRC Press, 3rd Edition, 2014.
- 5. V Kamaraju, "Electrical Power Distribution Systems", TMH, Publication, Edition, 2009
- 6. O I Elgerd, "Electrical Energy Systems Theory", Tata McGraw-Hill, 2nd Edition, 2007.

Web References:

- 1. https://www.electrical4u.com/working-or-operating-principle-of-dc-motor
- 2. https://www.freevideolectures.com
- 3. https://www.ustudy.in > Electrical Machines
- 4. https://www.freeengineeringbooks.com

E-Text Books:

- 1. https://www.textbooksonline.tn.nic.in
- 2. https://www.freeengineeringbooks.com
- 3. https://www.eleccompengineering.files.wordpress.com
- 4. https://www.books.google.co.in